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Publishing Search Logs – A Comparative Study
of Privacy Guarantees

Michaela Götz, Ashwin Machanavajjhala, Guozhang Wang, Xiaokui Xiao, and Johannes Gehrke

Abstract—Search engine companies collect the “database of intentions”, the histories of their users’ search queries. These search
logs are a gold mine for researchers. Search engine companies, however, are wary of publishing search logs in order not to disclose
sensitive information.
In this paper we analyze algorithms for publishing frequent keywords, queries and clicks of a search log. We first show how methods
that achieve variants of k-anonymity are vulnerable to active attacks. We then demonstrate that the stronger guarantee ensured by
ε-differential privacy unfortunately does not provide any utility for this problem. We then propose a novel algorithm ZEALOUS and show
how to set its parameters to achieve (ε, δ)-probabilistic privacy. We also contrast our analysis of ZEALOUS with an analysis by Korolova
et al. [17] that achieves (ε′, δ′)-indistinguishability.
Our paper concludes with a large experimental study using real applications where we compare ZEALOUS and previous work that
achieves k-anonymity in search log publishing. Our results show that ZEALOUS yields comparable utility to k−anonymity while at the
same time achieving much stronger privacy guarantees.

Index Terms—H.2.0.a Security, integrity, and protection < H.2.0 General < H.2 Database Management < H Information Technology
and Systems, H.3.0.a Web Search < H.3.0 General < H.3 Information Storage and Retrieval < H Information Technology and Systems

✦

1 INTRODUCTION

Civilization is the progress toward a society of privacy. The
savage’s whole existence is public, ruled by the laws of his
tribe. Civilization is the process of setting man free from men.
— Ayn Rand.

My favorite thing about the Internet is that you get to go
into the private world of real creeps without having to smell
them. — Penn Jillette.

Search engines play a crucial role in the navigation
through the vastness of the Web. Today’s search engines
do not just collect and index webpages, they also collect
and mine information about their users. They store
the queries, clicks, IP-addresses, and other information
about the interactions with users in what is called a
search log. Search logs contain valuable information that
search engines use to tailor their services better to their
users’ needs. They enable the discovery of trends, pat-
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terns, and anomalies in the search behavior of users,
and they can be used in the development and testing
of new algorithms to improve search performance and
quality. Scientists all around the world would like to
tap this gold mine for their own research; search en-
gine companies, however, do not release them because
they contain sensitive information about their users, for
example searches for diseases, lifestyle choices, personal
tastes, and political affiliations.

The only release of a search log happened in 2007
by AOL, and it went into the annals of tech history
as one of the great debacles in the search industry.1

AOL published three months of search logs of 650,000
users. The only measure to protect user privacy was
the replacement of user–ids with random numbers —
utterly insufficient protection as the New York Times
showed by identifying a user from Lilburn, Georgia [4],
whose search queries not only contained identifying
information but also sensitive information about her
friends’ ailments.

The AOL search log release shows that simply replac-
ing user–ids with random numbers does not prevent in-
formation disclosure. Other ad–hoc methods have been
studied and found to be similarly insufficient, such as
the removal of names, age, zip codes and other iden-
tifiers [14] and the replacement of keywords in search
queries by random numbers [18].

In this paper, we compare formal methods of limiting
disclosure when publishing frequent keywords, queries,

1. http://en.wikipedia.org/wiki/AOL search data scandal
describes the incident, which resulted in the resignation of AOL’s
CTO and an ongoing class action lawsuit against AOL resulting from
the data release.
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and clicks of a search log. These methods we study vary
in the guarantee of disclosure limitations they provide
and in the amount of useful information they retain. We
first describe two negative results. We show that existing
proposals to achieve k-anonymity [23] in search logs [1],
[21], [12], [13] are insufficient in the light of attackers who
can actively influence the search log. We then turn to
differential privacy [9], a much stronger privacy guarantee;
however, we show that it is impossible to achieve good
utility with differential privacy.

We then describe Algorithm ZEALOUS2, developed
independently by Korolova et al. [17] and us [10] with
the goal to achieve relaxations of differential privacy.
Korolova et al. showed how to set the parameters of
ZEALOUS to guarantee (ε, δ)-indistinguishability [8],
and we here offer a new analysis that shows how to
set the parameters of ZEALOUS to guarantee (ε, δ)-
probabilistic differential privacy [20] (Section 4.2), a much
stronger privacy guarantee as our analytical comparison
shows.

Our paper concludes with an extensive experimental
evaluation, where we compare the utility of various al-
gorithms that guarantee anonymity or privacy in search
log publishing. Our evaluation includes applications that
use search logs for improving both search experience and
search performance, and our results show that ZEAL-
OUS’ output is sufficient for these applications while
achieving strong formal privacy guarantees.

We believe that the results of this research enable
search engine companies to make their search log avail-
able to researchers without disclosing their users’ sen-
sitive information: Search engine companies can ap-
ply our algorithm to generate statistics that are (ε, δ)-
probabilistic differentially private while retaining good
utility for the two applications we have tested. Beyond
publishing search logs we believe that our findings are
of interest when publishing frequent itemsets, as ZEAL-
OUS protects privacy against much stronger attackers
than those considered in existing work on privacy-
preserving publishing of frequent items/itemsets [19].

The remainder of this paper is organized as follows.
We start with some background in Section 2 and then
describe our negative results 3. We then describe Algo-
rithm ZEALOUS and its analysis in Section 4, and we
compare indistinguishability with probabilistic differen-
tial privacy in Section 5. Section 6 shows the results of an
extensive study of how to set parameters in ZEALOUS,
and Section 7 contains a thorough evaluation of ZEAL-
OUS in comparison with previous work. We conclude
with a discussion of related work and other applications.

2 PRELIMINARIES
In this section we introduce the problem of publishing
frequent keywords, queries, clicks and other items of a
search log.

2. Zearch Log Publising

2.1 Search Logs
Search engines such as Bing, Google, or Yahoo log inter-
actions with their users. When a user submits a query
and clicks on one or more results, a new entry is added
to the search log. Without loss of generality, we assume
that a search log has the following schema:

〈USER-ID, QUERY, TIME, CLICKS〉,

where a USER-ID identifies a user, a QUERY is a set of
keywords, and CLICKS is a list of urls that the user
clicked on. The user-id can be determined in various
ways; for example, through cookies, IP addresses or user
accounts. A user history or search history consists of all
search entries from a single user. Such a history is usually
partitioned into sessions containing similar queries; how
this partitioning is done is orthogonal to the techniques
in this paper. A query pair consists of two subsequent
queries from the same user that are contained in the
same session.

We say that a user history contains a keyword k if there
exists a search log entry such that k is a keyword in the
query of the search log. A keyword histogram of a search
log S records for each keyword k the number of users
ck whose search history in S contains k. A keyword
histogram is thus a set of pairs (k, ck). We define the
query histogram, the query pair histogram, and the click
histogram analogously. We classify a keyword, query,
consecutive query, click in a histogram to be frequent if its
count exceeds some predefined threshold τ ; when we do
not want to specify whether we count keywords, queries,
etc., we also refer to these objects as items.

With this terminology, we can define our goal as
publishing frequent items (utility) without disclosing
sensitive information about the users (privacy). We will
make both the notion of utility and privacy more formal
in the next sections.

2.2 Disclosure Limitations for Publishing Search
Logs
A simple type of disclosure is the identification of a
particular user’s search history (or parts of the history)
in the published search log. The concept of k-anonymity
has been introduced to avoid such identifications.

Definition 1 (k-anonymity [23]): A search log is k-
anonymous if the search history of every individual is
indistinguishable from the history of at least k − 1 other
individuals in the published search log.

There are several proposals in the literature to achieve
different variants of k-anonymity for search logs. Adar
proposes to partition the search log into sessions and
then to discard queries that are associated with fewer
than k different user-ids. In each session the user-id
is then replaced by a random number [1]. We call the
output of Adar’s Algorithm a k-query anonymous search
log.
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Motwani and Nabar add or delete keywords from
sessions until each session contains the same keywords
as at least k − 1 other sessions in the search log [21],
following by a replacement of the user-id by a random
number. We call the output of this algorithm a k-session
anonymous search log. He and Naughton generalize key-
words by taking their prefix until each keyword is part
of at least k search histories and publish a histogram
of the partially generalized keywords [12]. We call the
output a k-keyword anonymous search log. Efficient ways
to anonymize a search log are also discussed in work by
Yuan et al. [13].

Stronger disclosure limitations try to limit what an
attacker can learn about a user. Differential privacy
guarantees that an attacker learns roughly the same
information about a user whether or not the search
history of that user was included in the search log [9].
Differential privacy has previously been applied to con-
tingency tables [3], learning problems [5], [16], synthetic
data generation of commuting patterns [20] and more.

Definition 2 (ε-differential privacy [9]): An algorithmA is
ε-differentially private if for all search logs S and S′ differing
in the search history of a single user and for all output search
logs O:

Pr[A(S) = O] ≤ eεPr[A(S′) = O].

This definition ensures that the output of the algorithm
is insensitive to changing/omitting the complete search
history of a single user. We will refer to search logs
that only differ in the search history of a single user as
neighboring search logs. Note that similar to the variants of
k-anonymity we could also define variants of differential
privacy by looking at neighboring search logs that differ
only in the content of one session, one query or one
keyword. However, we chose to focus on the strongest
definition in which an attacker learns roughly the same
about a user even if that user’s whole search history was
omitted.

Differential privacy is a very strong guarantee and in
some cases it can be too strong to be practically achiev-
able. We will review two relaxations that have been pro-
posed in the literature. Machanavajjhala et al. proposed
the following probabilistic version of differential privacy.

Definition 3 (probabilistic differential privacy [20]): An
algorithm A satisfies (ε, δ)-probabilistic differential privacy if
for all search logs S we can divide the output space Ω into
to sets Ω1,Ω2 such that

(1) Pr[A(S) ∈ Ω2] ≤ δ, and

for all neighboring search logs S′ and for all O ∈ Ω1:

(2)e−ε Pr[A(S′) = O] ≤ Pr[A(S) = O] ≤ eε Pr[A(S′) = O]

This definition guarantees that algorithm A achieves
ε-differential privacy with high probability (≥ 1 − δ).
The set Ω2 contains all outputs that are considered

privacy breaches according to ε-differential privacy; the
probability of such an output is bounded by δ.

The following relaxation has been proposed by Dwork
et al. [8].

Definition 4 (indistinguishability [8]): An algorithm A is
(ε, δ)-indistinguishable if for all search logs S, S′ differing in
one user history and for all subsets O of the output space Ω:

Pr[A(S) ∈ O] ≤ eε Pr[A(S′) ∈ O] + δ

We will compare these two definitions in Section 5. In
particular, we will show that probabilistic differential
privacy implies indistinguishability, but the converse
does not hold: We show that there exists an algorithm
that is (ε′, δ′)-indistinguishable yet not (ε, δ)-probabilistic
differentially private for any ε and any δ < 1, thus
showing that (ε, δ)-probabilistic differential privacy is
clearly stronger than (ε′, δ′)-indistinguishability.

2.3 Utility Measures
We will compare the utility of algorithms producing san-
itized search logs both theoretically and experimentally.

2.3.1 Theoretical Utility Measures
For simplicity, suppose we want to publish all items
(such as keywords, queries, etc.) with frequency at least
τ in a search log; we call such items frequent items; we
call all other items infrequent items. Consider a discrete
domain of items D. Each user contributes a set of these
items to a search log S. We denote by fd(S) the frequency
of item d ∈ D in search log S. We drop the dependency
from S when it is clear from the context.

We define the inaccuracy of a (randomized) algorithm
as the expected number of items it gets wrong, i.e., the
number of frequent items that are not included in the
output, plus the number of infrequent items that are
included in the output. We do not expect an algorithm
to be perfect. It may make mistakes for items with
frequency very close to τ , and thus we do not take
these items in our notion of accuracy into account. We
formalize this “slack” by a parameter ξ, and given ξ, we
introduce the following new notions. We call an item d
with frequency fd ≥ τ + ξ a very-frequent item and an
item d with frequency fd ≤ τ − ξ a very-infrequent item.
We will measure the inaccuracy of an algorithm then
only using its inability to retain the very-frequent items
and its inability to filter out the very infrequent items.

Definition 5 ((A, S)-inaccuracy): Given an algorithm A
and an input search log S, the (A, S)-inaccuracy with slack
ξ is defined as

E[|{d ∈ A(S)|fd(S) < τ − ξ} ∪ {d �∈ A(S)|fd(S) > τ + ξ}|]

The expectation is taken over the randomness of the
algorithm. As an example, consider the simple algorithm
that always outputs the empty set; we call this algorithm
the baseline algorithm. On input S the Baseline Algorithm

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



4

has an inaccuracy equal to the number of items with
frequency at least τ + ξ.

For the results in the next sections it will be useful
to distinguish the error of an algorithm on the very-
frequent items and its error on the very-infrequent items.
We can rewrite the inaccuracy as:∑

d:fd(S)>τ+ξ

1− Pr[d ∈ A(S)] +
∑

d∈D:fd(S)<τ−ξ

Pr[d ∈ A(S)]

Thus, the (A, S)-inaccuracy with slack ξ can be rewritten
as the inability to retain the very-frequent items plus
the inability to filter out the very-infrequent items. For
example, the baseline algorithm has an inaccuracy of 0
on the very-infrequent items and an inaccuracy equal to
the number of very-frequent items on the very-frequent
items.

Definition 6 (c–accuracy): An algorithm A is c–accurate if
for any input search log S and any very-frequent item d in
S, the probability that A outputs d is at least c.

2.3.2 Experimental Utility Measures
Traditionally, the utility of a privacy-preserving algo-
rithm has been evaluated by comparing some statistics of
the input with the output to see “how much information
is lost.” The choice of suitable statistics is a difficult
problem as these statistics need to mirror the sufficient
statistics of applications that will use the sanitized search
log, and for some applications the sufficient statistics are
hard to characterize. To avoid this drawback, Brickell et
al. [6] measure the utility with respect to data mining
tasks and they take the actual classification error of an
induced classifier as their utility metric.

In this paper we take a similar approach. We use
two real applications from the information retrieval com-
munity: Index caching, as a representative application
for search performance, and query substitution, as a
representative application for search quality. For both
application the sufficient statistics are histograms of
keywords, queries, or query pairs.

Index Caching. Search engines maintain an inverted
index which, in its simplest instantiation, contains for
each keyword a posting list of identifiers of the docu-
ments in which the keyword appears. This index can
be used to answer search queries, but also to classify
queries for choosing sponsored search results. The index
is usually too large to fit in memory, but maintaining
a part of it in memory reduces response time for all
these applications. We use the formulation of the index
caching problem from Baeza–Yates [2]. We are given a
keyword search workload, a distribution over keywords
indicating the likelihood of a keyword appearing in a
search query. It is our goal to cache in memory a set
of posting lists that for a given workload maximizes
the cache-hit-probability while not exceeding the storage
capacity. Here the hit-probability is the probability that
the posting list of a keyword can be found in memory
given the keyword search workload.

Query Substitution. Query substitutions are suggestions
to rephrase a user query to match it to documents or
advertisements that do not contain the actual keywords
of the query. Query substitutions can be applied in query
refinement, sponsored search, and spelling error cor-
rection [15]. Algorithms for query substitution examine
query pairs to learn how users re-phrase queries. We use
an algorithm developed by Jones et al. [15].

3 NEGATIVE RESULTS
In this section, we discuss the deficiency of two existing
privacy models for search log publication. Section 3.1
focuses on k-anonymity, and Section 3.2 investigates
differential privacy.

3.1 Insufficiency of Anonymity
k-anonymity and its variants prevent an attacker from
uniquely identifying the user that corresponds to a
search history in the sanitized search log. Nevertheless,
even without unique identification of a user, an attacker
can infer the keywords or queries used by the user. k-
anonymity does not protect against this severe informa-
tion disclosure.

There is another issue largely overlooked with the
current implementations of anonymity. That is instead
of guaranteeing that the keywords/queries/sessions of
k individuals are indistinguishable in a search log they
only assure that the keywords/queries/sessions asso-
ciated with k different user-IDs are indistinguishable.
These two guarantees are not the same since individuals
can have multiple accounts or share accounts. An at-
tacker can exploit this by creating multiple accounts and
submitting the same fake queries from these accounts.
It can happen that in a k-keyword/query/session-
anonymous search log the keywords/queries/sessions
of a user are only indistinguishable from k − 1 fake
keywords/queries/sessions submitted by an attacker. It
is doubtful that this type of indistinguishability at the
level of user-IDs is satisfactory.

3.2 Impossibility of Differential Privacy
In the following, we illustrate the infeasibility of dif-
ferential privacy in search log publication. In particular,
we show that, under realistic settings, no differentially
private algorithm can produce a sanitized search log
with reasonable utility (utility is measured as defined in
Section 2.3.1 using our notion of accuracy). Our analysis
is based on the following lemma.

Lemma 1: For a set of U users, let S and S′ be two search
logs each containing at most m items from some domain D
per user. Let A be an ε-differentially private algorithm that,
given S, retains a very-frequent item d in S with probability
p. Then, given S′, A retains d with probability at least
p/(eL1(S,S

′)·ε/m), where L1(S, S
′) =

∑
d∈D |fd(S)− fd(S

′)|
denotes the L1 distance between S and S′.
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Lemma 1 follows directly from the definition of ε-
differential privacy. Based on Lemma 1, we have the
following theorem, which shows that any ε-differentially
private algorithm that is accurate for very-frequent items
must be inaccurate for very-infrequent items. The ra-
tionale is that, if given a search log S, an algorithm
outputs one very-frequent item d in S, then even if the
input to the algorithm is a search log where d is very-
infrequent, the algorithm should still output d with a
certain probability; otherwise, the algorithm cannot be
differentially private.

Theorem 1: Consider an accuracy constant c, a thresh-
old τ , a slack ξ and a very large domain D of size ≥
Um

(
2e2ε(τ+ξ)/m

c(τ+ξ) + 1
τ−ξ+1

)
, where m denotes the maximum

number of items that a user may have in a search log. Let
A be an ε-differentially private algorithm that is c-accurate
(according to Definition 6) for the very-frequent items. Then,
for any input search log, the inaccuracy of A is greater than
the inaccuracy of an algorithm that always outputs an empty
set.

Proof: Consider an ε-differentially private algorithm
A′ that is c-accurate for the very-frequent items. Fix
some input S. We are going to show that for each very-
infrequent item d in S the probability of outputting d is
at least c/(eε(τ+ξ)/m). For each item d ∈ D construct S′d
from S by changing τ + ξ of the items to d. That way
d is very-frequent (with frequency at least τ + ξ) and
L1(S, S

′
d) ≤ 2(τ + ξ). By Definition 6, we have that

Pr[d ∈ A′(S′d)] ≥ c.

By Lemma 1 it follows that the probability of outputting
d is at least c/(e2ε(τ+ξ)/m) for any input database. This
means that we can compute a lower bound on the
inability to filter out the very-infrequent items in S by
summing up this probability over all possible values
d ∈ D that are very-infrequent in S. Note, that there
are at least D− Um

τ−ξ+1 many very-infrequent items in S.
Therefore, the inability to filter out the very-infrequent
items is at least

(
|D| − Um

τ−ξ+1

)
c/(e2ε(τ+ξ)/m). For large

domains of size at least Um
(

2e2ε(τ+ξ)/m

c(τ+ξ) + 1
τ−ξ+1

)
the

inaccuracy is at least 2Um
τ+ξ which is greater than the

inaccuracy of the baseline.

To illustrate Theorem 1, let us consider a search log S
where each query contains at most 3 keywords selected
from a limited vocabulary of 900,000 words. Let D be
the domain of the consecutive query pairs in S. We have
|D| = 5.3 × 1035. Consider the following setting of the
parameters τ + ξ = 50,m = 10, U = 1,000,000, ε = 1, that
is typical practice. By Theorem 1, if an ε-differentially
private algorithm A is 0.01-accurate for very-frequent
query pairs, then, in terms of overall inaccuracy (for
both very-frequent and very-infrequent query pairs), A
must be inferior to an algorithm that always outputs
an empty set. In other words, no differentially private
algorithm can be accurate for both very-frequent and
very-infrequent query pairs.

4 ACHIEVING PRIVACY

In this section, we introduce a search log publishing
algorithm called ZEALOUS that has been independently
developed by Korolova et al. [17] and us [10]. ZEAL-
OUS ensures probabilistic differential privacy, and it fol-
lows a simple two-phase framework. In the first phase,
ZEALOUS generates a histogram of items in the input
search log, and then removes from the histogram the
items with frequencies below a threshold. In the second
phase, ZEALOUS adds noise to the histogram counts,
and eliminates the items whose noisy frequencies are
smaller than another threshold. The resulting histogram
(referred to as the sanitized histogram) is then returned
as the output. Figure 1 depicts the steps of ZEALOUS.

Algorithm ZEALOUS for Publishing Frequent Items of
a Search Log
Input: Search log S, positive numbers m, λ, τ , τ ′

1. For each user u select a set su of up to m distinct
items from u’s search history in S.3

2. Based on the selected items, create a histogram
consisting of pairs (k, ck), where k denotes an item
and ck denotes the number of users u that have k
in their search history su. We call this histogram the
original histogram.

3. Delete from the histogram the pairs (k, ck) with
count ck smaller than τ .

4. For each pair (k, ck) in the histogram, sample a
random number ηk from the Laplace distribution
Lap(λ)4, and add ηk to the count ck, resulting in
a noisy count: c̃k ← ck + ηk.

5. Delete from the histogram the pairs (k, c̃k) with
noisy counts c̃k ≤ τ ′.

6. Publish the remaining items and their noisy counts.

To understand the purpose of the various steps one
has to keep in mind the privacy guarantee we would
like to achieve. Step 1., 2. and 4. of the algorithm are
fairly standard. It is known that adding Laplacian noise
to histogram counts achieves ε-differential privacy [9].
However, the previous section explained that these steps
alone result in poor utility because for large domains
many infrequent items will have high noisy counts. To
deal better with large domains we restrict the histogram
to items with counts at least τ in Step 2. This restriction
leaks information and thus the output after Step 4. is not
ε-differentially private. One can show that it is not even
(ε, δ)–probabilistic differentially private (for δ < 1/2).
Step 5. disguises the information leaked in Step 3. in
order to achieve probabilistic differential privacy.

In what follows, we will investigate the theoretical
performance of ZEALOUS in terms of both privacy

3. These items can be selected in various ways as long as the
selection criteria is not based on the data. Random selection is one
candidate.

4. The Laplace distribution with scale parameter λ has the probabil-

ity density function 1

2λ
e−

|x|
λ .
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free hondacertifiedcar
...

free hondacertifiedcar
...

filter

filter ≥ τ

add noise λ

filter > τ ′

per user

τ

free hondacar
...

τ ′

free hondacertifiedcar
...

≤ m keywords

Histogram �s

Histogram

Histogram

Histogram

Searchlog SL

〈Bob 73, “honda accord”, ... 〉
〈Bob 73, “certified car”, ... 〉
〈CarlRu, “free mp3”, ... 〉

free hondacar

Fig. 1. Privacy–Preserving Algorithm.

and utility. Section 4.1 and Section 4.2 discuss the pri-
vacy guarantees of ZEALOUS with respect to (ε, δ)-
indistinguishability and (ε, δ)-probabilistic differential
privacy, respectively. Section 4.3 presents a quantitative
analysis of the privacy protection offered by ZEALOUS.
Sections 4.4 and 4.5 analyze the utility guarantees of
ZEALOUS.

4.1 Indistinguishability Analysis
Theorem 2 states how the parameters of ZEALOUS can
be set to obtain a sanitized histogram that provides
(ε′, δ′)-indistinguishability.

Theorem 2: [17] Given a search log S and positive
numbers m, τ , τ ′, and λ, ZEALOUS achieves (ε′, δ′)-
indistinguishability, if

λ ≥ 2m/ε′, and (1)
τ = 1, and (2)

τ ′ ≥ m

(
1−

log(2δ
′

m )

ε′

)
. (3)

To publish not only frequent queries but also their
clicks, Korolova et al. [17] suggest to first determine the
frequent queries and then publish noisy counts of the
clicks to their top-100 ranked documents. In particular,
if we use ZEALOUS to publish frequent queries in a
manner that achieves (ε′, δ′)-indistinguishability, we can
also publish the noisy click distributions of the top-
100 ranked documents for each of the frequent queries,
by simply adding Laplacian noise to the click counts
with scale 2m/ε′. Together the sanitized query and click
histogram achieves (2ε′, δ′)-indistinguishability.

4.2 Probabilistic Differential Privacy Analysis
Given values for ε, δ, τ and m, the following theorem
tells us how to set the parameters λ and τ ′ to ensure
that ZEALOUS achieves (ε, δ)-probabilistic differential
privacy.

Privacy Guarantee τ ′ = 100 τ ′ = 200
λ = 1 (ε, ε′ = 10) δ = 1.3× 10−37 δ = 4.7× 10−81

δ′ = 1.4× 10−41 δ′ = 5.2× 10−85

λ = 5 (ε, ε′ = 2) δ = 3.2× 10−3 δ = 6.5× 10−12

δ′ = 1.4× 10−8 δ′ = 2.9× 10−17

TABLE 1
(ε′, δ′)-indistinguishability vs. (ε, δ)-probabilistic

differential privacy. U = 500k, m = 5.

Theorem 3: Given a search log S and positive numbers m,
τ , τ ′, and λ, ZEALOUS achieves (ε, δ)-probabilistic differen-
tial privacy, if

λ ≥ 2m/ε, and (4)

τ ′ − τ ≥ max

(
−λ ln

(
2− 2e−

1
λ

)
,−λ ln

(
2δ

U ·m/τ

))
,

(5)
where U denotes the number of users in S.

The proof of Theorem 3 can be found in Appendix A.1.

4.3 Quantitative Comparison of Prob. Diff. Privacy
and Indistinguishability for ZEALOUS
In Table 1, we illustrate the levels of (ε′, δ′)-
indistinguishability and (ε, δ)-probabilistic differential
privacy achieved by ZEALOUS for various noise and
threshold parameters. We fix the number of users to
U = 500k, and the maximum number of items from a
user to m = 5, which is a typical setting that will be
explored in our experiments. Table 1 shows the tradeoff
between utility and privacy: A larger λ results in a
greater amount of noise in the sanitized search log (i.e.,
decreased data utility), but it also leads to smaller ε and
ε′ (i.e., stronger privacy guarantee). Similarly, when τ ′

increases, the sanitized search log provides less utility
(since fewer items are published) but a higher level of
privacy protection (as δ and δ′ decreases).

Interestingly, given λ and τ ′, we always have δ > δ′.
This is due to the fact that (ε, δ)-probabilistic differential
privacy is a stronger privacy guarantee than (ε′, δ′)-
indistinguishability, as will be discussed in Section 5.

4.4 Utility Analysis
Next, we analyze the utility guarantee of ZEALOUS in
terms of its accuracy (as defined in Section 2.3.1).

Theorem 4: Given parameters τ = τ∗−ξ, τ ′ = τ∗+ξ, noise
scale λ, and a search log S, the inaccuracy of ZEALOUS with
slack ξ equals ∑

d:fd(S)>τ+ξ

1/2e−2ξ/λ +
∑

d∈D:fd(S)<τ−ξ

0

In particular, this means that ZEALOUS is (1 − 1/2e−
ξ
λ )-

accurate for the very-frequent items (of frequency ≥ τ∗ + ξ)
and it provides perfect accuracy for the very-infrequent items
(of frequency < τ∗ − ξ).
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Proof: It is easy to see that the ZEALOUS’ accuracy
of filtering out infrequent items is perfect. Moreover, the
probability of outputting a very-frequent item is at least

1− 1/2e−
ξ
λ

which is the probability that the Lap(λ)-distributed noise
that is added to the count is at least −ξ so that a
very-frequent item with count at least τ + ξ remains in
the output of the algorithm. This probability is at least
1/2. All in all it has higher accuracy than the baseline
algorithm on all inputs with at least one very-frequent
item.

4.5 Separation Result
Combining the analysis in Sections 3.2 and 4.4, we obtain
the following separation result between ε-differential
privacy and (ε, δ)- probabilistic differential privacy.

Theorem 5 (Separation Result): Our (ε, δ)- probabilistic
differentially private algorithm ZEALOUS is able to retain
frequent items with probability at least 1/2 while filtering out
all infrequent items. On the other hand, for any ε-differentially
private algorithm that can retain frequent items with non-zero
probability (independent of the input database), its inaccuracy
for large item domains is larger than an algorithm that always
outputs an empty set.

5 COMPARING INDISTINGUISHABILITY WITH
PROBABILISTIC DIFFERENTIAL PRIVACY
In this section we study the relationship between
(ε, δ)-probabilistic differential privacy and (ε′, δ′)-
indistinguishability. First we will prove that probabilistic
differential privacy implies indistinguishability. Then
we will show that the converse is not true. We show that
there exists an algorithm that is (ε′, δ′)-indistinguishable
yet blatantly non-ε-differentially private (and also not
(ε, δ)-probabilistic differentially private for any value
of ε and δ < 1). This fact might convince a data
publisher to strongly prefer an algorithm that achieves
(ε, δ)-probabilistic differential privacy over one that is
only known to achieve (ε′, δ′)-indistinguishability. It also
might convince researchers to analyze the probabilistic
privacy guarantee of algorithms that are only known to
be indistinguishable as in [8] or [22].

First we show that our definition implies (ε, δ)-
indistinguishability.

Proposition 1: If an algorithm A is (ε, δ)-probabilistic dif-
ferentially private then it is also (ε, δ)-indistinguishable.

The proof of Proposition 1 can be found in Ap-
pendix A.2. The converse of Proposition 1 does not hold.
In particular, there exists an an algorithm that is (ε′, δ′)-
indistinguishable but not (ε, δ)-probabilistic differentially
private for any choice of ε and δ < 1, as illustrated in
the following example.

Example 1: Consider the following algorithm that
takes as input a search log S with search histories of
U users.

Algorithm Â
Input: Search log S ∈ DU

1. Sample uniformly at random a single search history
from the set of all histories excluding the first user’s
search history.

2. Return this search history.

The following proposition analyzes the privacy of
Algorithm Â.

Proposition 2: For any finite domain of search histories D
Algorithm Â is (ε′, 1/(|D|−1))-indistinguishable for all ε′ >
0 on inputs from DU .

The proof can be found in Appendix A.3. The next
proposition shows that every single output of the algo-
rithm constitutes a privacy breach.

Proposition 3: For any search log S, the output of Al-
gorithm Â constitutes a privacy breach according to ε-
differentially privacy for any value of ε.

Proof: Fix an input S and an output O that is differ-
ent from the search history of the first user. Consider the
input S′ differing from S only in the first user history,
where S′1 = O. Here

1/(|D| − 1) = Pr[A(S) = O] �≤ eε Pr[A(S′) = O] = 0

Thus the output S breaches the privacy of the first user
according to ε-differentially privacy.

Corollary 1: Algorithm Â is (ε′, 1/(|D| − 1))-
indistinguishable for all ε′ > 0. But it is not (ε, δ)-probabilistic
differentially private for any ε and any δ < 1.

By Corollary 1, an algorithm that is (ε′, δ′)-
indistinguishable may not achieve any form of (ε, δ)-
probabilistic differential privacy, even if δ′ is set to an
extremely small value of 1/(|D| − 1). This illustrates the
significant gap between (ε′, δ′)-indistinguishable and
(ε, δ)-probabilistic differential privacy.

6 CHOOSING PARAMETERS
Apart from the privacy parameters ε and δ, ZEALOUS
requires the data publisher to specify two more param-
eters: τ , the first threshold used to eliminate keywords
with low counts (Step 3), and m, the number of contri-
butions per user. These parameters affect both the noise
added to each count as well as the second threshold
τ ′. Before we discuss the choice of these parameters we
explain the general setup of our experiments.

Data. In our experiments we work with a search log
of user queries from a major search engine collected
from 500,000 users over a period of one month. This
search log contains about one million distinct keywords,
three million distinct queries, three million distinct query
pairs, and 4.5 million distinct clicks.
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Fig. 2. Effect on statistics by varying m for several values of top-j.

τ 1 3 4 5 7 9
τ ′ 81.1205 78.7260 78.5753 78.6827 79.3368 80.3316

TABLE 2
τ ′ as a function of τ for m = 2, ε = 1, δ = 0.01

Privacy Parameters. In all experiments we set δ = 0.001.
Thus the probability that the output of ZEALOUS could
breach the privacy of any user is very small. We explore
different levels of (ε, δ)-probabilistic differential privacy
by varying ε.

6.1 Choosing Threshold τ

We would like to retain as much information as possible
in the published search log. A smaller value for τ ′

immediately leads to a histogram with higher utility
because fewer items and their noisy counts are filtered
out in the last step of ZEALOUS. Thus if we choose τ
in a way that minimizes τ ′ we maximize the utility of
the resulting histogram. Interestingly, choosing τ = 1

does not necessarily minimize the value of τ ′. Table 2
presents the value of τ ′ for different values of τ for
m = 2 and ε = 1. Table 2 shows that for our parameter
settings τ ′ is minimized when τ = 4. We can show the
following optimality result which tells us how to choose
τ optimally in order to maximize utility.

Proposition 4: For a fixed ε, δ and m choosing τ = �2m/ε�
minimizes the value of τ ′.
The proof follows from taking the derivative of τ ′ as a
function of τ (based on Equation (5)) to determine its
minimum.

6.2 Choosing the Number of Contributions m

Proposition 4 tells us how to set τ in order to maximize
utility. Next we will discuss how to set m optimally. We
will do so by studying the effect of varying m on the
coverage and the precision of the top-j most frequent
items in the sanitized histogram. The top-j coverage of a
sanitized search log is defined as the fraction of distinct
items among the top-j most frequent items in the orig-
inal search log that also appear in the sanitized search
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Fig. 3. Effect on Statistics Of Varying j in top-j for Different Values of m.

(A) Distinct item counts with different m.
m 1 4 8 20 40
keywords 6667 6043 5372 4062 2964
queries 3334 2087 1440 751 408
clicks 2813 1576 1001 486 246
query pairs 331 169 100 40 13

(B) Total item counts ×103 with different m.
m 1 4 8 20 40
keywords 329 1157 1894 3106 3871
queries 147 314 402 464 439
clicks 118 234 286 317 290
query pairs 8 14 15 12 7

TABLE 3

log. The top-j precision of a sanitized search log is defined
as the distance between the relative frequencies in the
original search log versus the sanitized search log for
the top-j most frequent items. In particular, we study
two distance metrics between the relative frequencies:
the average L-1 distance and the KL-divergence.

As a first study of coverage, Table 3 shows the number
of distinct items (recall that items can be keywords,
queries, query pairs, or clicks) in the sanitized search log
as m increases. We observe that coverage decreases as we
increase m. Moreover, the decrease in the number of pub-
lished items is more dramatic for larger domains than
for smaller domains. The number of distinct keywords
decreases by 55% while at the same time the number
of distinct query pairs decreases by 96% as we increase

keywords queries click query pairs
avg items/user 56 20 14 7

TABLE 4
Avg number of items per user in the original search log

m from 1 to 40. This trend has two reasons. First, from
Theorem 3 and Proposition 4 we see that threshold τ ′

increases super-linearly in m. Second, as m increases the
number of keywords contributed by the users increases
only sub-linearly in m; fewer users are able to supply
m items for increasing values of m. Hence, fewer items
pass the threshold τ ′ as m increases. The reduction is
larger for query pairs than for keywords, because the
average number of query pairs per user is smaller than
the average number of keywords per user in the original
search log (shown in Table 4).

To understand how m affects precision, we measure
the total sum of the counts in the sanitized histogram
as we increase m in Table 3. Higher total counts offer
the possibility to match the original distribution at a
finer granularity. We observe that as we increase m, the
total counts increase until a tipping point is reached
after which they start decreasing again. This effect is
as expected for the following reason: As m increases,
each user contributes more items, which leads to higher
counts in the sanitized histogram. However, the total
count increases only sub-linearly with m (and even
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decreases) due to the reduction in coverage we discussed
above. We found that the tipping point where the total
count starts to decrease corresponds approximately to
the average number of items contributed by each user in
the original search log (shown in Table 4). This suggests
that we should choose m to be smaller than the average
number of items, because it offers better coverage, higher
total counts, and reduces the noise compared to higher
values of m.

Let us take a closer look at the precision and coverage
of the histograms of the various domains in Figures 2
and 3. In Figure 2 we vary m between 1 and 40. Each
curve plots the precision or coverage of the sanitized
search log at various values of the top-j parameter in
comparison to the original search log. We vary the top-j
parameter but never choose it higher than the number
of distinct items in the original search log for the various
domains. The first two rows plot precision curves for the
average L-1 distance (first row) and the KL-divergence
(second row) of the relative frequencies. The lower two
rows plot the coverage curves, i.e., the total number of
top-j items (third row) and the relative number of top-j
items (fourth row) in the original search log that do not
appear in sanitized search log. First, observe that the
coverage decreases as m increases, which confirms our
discussion about the number of distinct items. Moreover,
we see that the coverage gets worse for increasing values
of the top-j parameter. This illustrates that ZEALOUS
gives better utility for the more frequent items. Second,
note that for small values of the top-j parameter, values
of m > 1 give better precision. However, when the top-
j parameter is increased, m = 1 gives better precision
because the precision of the top-j values degrades due
to items no longer appearing in the sanitized search log
due to the increased cutoffs.

Figure 3 shows the same statistics varying the top-j
parameter on the x-axis. Each curve plots the precision
for m = 1, 2, 4, 8, 10, 40, respectively. Note that m = 1
does not always give the best precision; for keywords,
m = 8 has the lowest KL-divergence, and for queries,
m = 2 has the lowest KL-divergence. As we can see
from these results, there are two “regimes” for setting
the value of m. If we are mainly interested in coverage,
then m should be set to 1. However, if we are only
interested in a few top-j items then we can increase
precision by choosing a larger value for m; and in this
case we recommend the average number of items per
user.

We will see this dichotomy again in our real appli-
cations of search log analysis: The index caching ap-
plication does not require high coverage because of its
storage restriction. However, high precision of the top-j
most frequent items is necessary to determine which of
them to keep in memory. On the other hand, in order
to generate many query substitutions, a larger number
of distinct queries and query pairs is required. Thus m
should be set to a large value for index caching and to
a small value for query substitution.

7 APPLICATION-ORIENTED EVALUATION
In this section we show the results of an application-
oriented evaluation of ZEALOUS in comparison to a k-
anonymous search log and the original search log as
points of comparison. Note that our utility evaluation
does not determine the “better” algorithm since when
choosing an algorithm in practice one has to consider
both the utility and disclosure limitation guarantees of
an algorithm. Our results show the “price” that we
have to pay (in terms of decreased utility) when we
give the stronger guarantees of (probabilistic versions
of) differential privacy as opposed to k-anonymity.

Algorithms.
We experimentally compare the utility of ZEALOUS

against a representative k-anonymity algorithm by Adar
for publishing search logs [1]. Recall that Adar’s Al-
gorithm creates a k-query anonymous search log as
follows: First all queries that are posed by fewer than
k distinct users are eliminated. Then histograms of
keywords, queries, and query pairs from the k-query
anonymous search log are computed. ZEALOUS can
be used to achieve (ε′, δ′)-indistinguishability as well as
(ε, δ)-probabilistic differential privacy. For the ease of
presentation we only show results with probabilistic dif-
ferential privacy; using Theorems 2 and 3 it is straightfor-
ward to compute the corresponding indistinguishability
guarantee. For brevity, we refer to the (ε, δ)-probabilistic
differentially private algorithm as ε–Differential in the
figures.

Evaluation Metrics.
We evaluate the performance of the algorithms in two

ways. First, we measure how well the output of the algo-
rithms preserves selected statistics of the original search
log. Second, we pick two real applications from the
information retrieval community to evaluate the utility
of ZEALOUS: Index caching as a representative applica-
tion for search performance, and query substitution as a
representative application for search quality. Evaluating
the output of ZEALOUS with these two applications
will help us to fully understand the performance of
ZEALOUS in an application context. We first describe
our utility evaluation with statistics in Section 7.1 and
then our evaluation with real applications in Sections
7.2 and 7.3.

7.1 General Statistics
We explore different statistics that measure the difference
of sanitized histograms to the histograms computed
using the original search log. We analyze the histograms
of keywords, queries, and query pairs for both saniti-
zation methods. For clicks we only consider ZEALOUS
histograms since a k-query anonymous search log is not
designed to publish click data.

In our first experiment we compare the distribution of
the counts in the histograms. Note that a k-query anony-
mous search log will never have query and keyword
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counts below k, and similarly a ZEALOUS histogram
will never have counts below τ ′. We choose ε = 5,m = 1
for which threshold τ ′ ≈ 10. Therefore we deliberately
set k = 10 such that k ≈ τ ′.

Figure 4 shows the distribution of the counts in the
histograms on a log-log scale. Recall that the k-query
anonymous search log does not contain any click data,
and thus it does not appear in Figure 4(c). We see that the
power-law shape of the distribution is well preserved.
However, the total frequencies are lower for the sanitized
search logs than the frequencies in the original histogram
because the algorithms filter out a large number of items.
We also see the cutoffs created by k and τ ′. We observe
that as the domain increases from keywords to clicks and
query pairs, the number of items that are not frequent
in the original search log increases. For example, the
number of clicks with count equal to one is an order
of magnitude larger than the number of keywords with
count equal to one.

While the shape of the count distribution is well
preserved, we would also like to know whether the
counts of frequent keywords, queries, query pairs, and
clicks are also preserved and what impact the privacy
parameters ε and the anonymity parameter k have. Fig-
ure 5 shows the average differences to the counts in the
original histogram. We scaled up the counts in sanitized
histograms by a common factor so that the total counts
were equal to the total counts of the original histogram,
then we calculated the average difference between the
counts. The average is taken over all keywords that have
non-zero count in the original search log. As such this
metric takes both coverage and precision into account.

As expected, with increasing ε the average difference
decreases, since the noise added to each count decreases.
Similarly, by decreasing k the accuracy increases because
more queries will pass the threshold. Figure 5 shows
that the average difference is comparable for the k–
anonymous histogram and the output of ZEALOUS.
Note that the output of ZEALOUS for keywords is more
accurate than a k-anonymous histogram for all values of
ε > 2. For queries we obtain roughly the same average
difference for k = 60 and ε = 6. For query pairs the
k-query anonymous histogram provides better utility.

We also computed other metrics such as the root-
mean-square value of the differences and the total varia-
tion difference; they all reveal similar qualitative trends.
Despite the fact that ZEALOUS disregards many search
log records (by throwing out all but m contributions
per user and by throwing out low frequent counts),
ZEALOUS is able to preserve the overall distribution
well.

7.2 Index Caching
In the index caching problem, we aim to cache in-
memory a set of posting lists that maximizes the hit-
probability over all keywords (see Section2.3.2). In our
experiments, we use an improved version of the algo-
rithm developed by Baeza–Yates to decide which posting
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Fig. 6. Hit probabilities.

lists should be kept in memory [2]. Our algorithm first
assigns each keyword a score, which equals its frequency
in the search log divided by the number of documents
that contain the keyword. Keywords are chosen using a
greedy bin-packing strategy where we sequentially add
posting lists from the keywords with the highest score
until the memory is filled. In our experiments we fixed
the memory size to be 1 GB, and each document posting
to be 8 Bytes (other parameters give comparable results).
Our inverted index stores the document posting list for
each keyword sorted according to their relevance which
allows to retrieve the documents in the order of their
relevance. We truncate this list in memory to contain
at most 200,000 documents. Hence, for an incoming
query the search engine retrieves the posting list for
each keyword in the query either from memory or from
disk. If the intersection of the posting lists happens to be
empty, then less relevant documents are retrieved from
disk for those keywords for which only the truncated
posting list is kept on memory.

Figure 6(a) shows the hit–probabilities of the inverted
index constructed using the original search log, the k-
anonymous search log, and the ZEALOUS histogram
(for m = 6) with our greedy approximation algorithm.
We observe that our ZEALOUS histogram achieves bet-
ter utility than the k-query anonymous search log for
a range of parameters. We note that the utility suffers
only marginally when increasing the privacy parameter
or the anonymity parameter (at least in the range that we
have considered). This can be explained by the fact that
it requires only a few very frequent keywords to achieve
a high hit–probability. Keywords with a big positive
impact on the hit-probability are less likely to be filtered
out by ZEALOUS than keywords with a small positive
impact. This explains the marginal decrease in utility for
increased privacy.

As a last experiment we study the effect of varying
m on the hit-probability in Figure 6(b). We observe that
the hit probability for m = 6 is above 0.36 whereas
the hit probability for m = 1 is less than 0.33. As
discussed a higher value for m increases the accuracy,
but reduces the coverage. Index caching really requires
roughly the top 85 most frequent keywords that are still
covered when setting m = 6. We also experimented with
higher values of m and observed that the hit-probability
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Fig. 4. Distributions of counts in the histograms.
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histogram, and the anonymous histogram for varying privacy / anonymity parameters ε and k. Parameter m is fixed to
1.

decreases at some point.

7.3 Query Substitution
Algorithms for query substitution examine query pairs
to learn how users re-phrase queries. We use an algo-
rithm developed by Jones et al. in which related queries
for a query are identified in two steps [15]. First, the
query is partitioned into subsets of keywords, called
phrases, based on their mutual information. Next, for
each phrase, candidate query substitutions are deter-
mined based on the distribution of queries.

We run this algorithm to generate ranked substitution
on the sanitized search logs. We then compare these
rankings with the rankings produced by the original
search log which serve as ground truth. To measure the
quality of the query substitutions, we compute the pre-
cision/recall, MAP (mean average precision) and NDG
(normalized discounted cumulative gain) of the top-j
suggestions for each query; let us define these metrics
next.

Consider a query q and its list of top-j ranked substitu-
tions q′0, . . . , q

′
j−1 computed based on a sanitized search

log. We compare this ranking against the top-j ranked
substitutions q0, . . . , qj−1 computed based on the original
search log as follows. The precision of a query q is the
fraction of substitutions from the sanitized search log
that are also contained in our ground truth ranking:

Precision(q) =
|{q0, . . . , qj−1} ∩ {q

′
0, . . . , q

′
j−1}|

|{q′0, . . . , q
′
j−1}|

Note, that the number of items in the ranking for a query
q can be less than j. The recall of a query q is the fraction

of substitutions in our ground truth that are contained
in the substitutions from the sanitized search log:

Recall(q) =
|{q0, . . . , qj−1} ∩ {q

′
0, . . . , q

′
j−1}|

|{q0, . . . , qj−1}|

MAP measures the precision of the ranked items for a
query as the ratio of true rank and assigned rank:

MAP(q) =
j−1∑
i=0

i+ 1

rank of qi in [q′0, . . . , q
′
j−1] + 1

,

where the rank of qi is zero in case it does is not
contained in the list [q′0, . . . , q

′
j−1] otherwise it is i′, s.t.

qi = q′i′ .
Our last metric called NDCG measures how the rel-

evant substitutions are placed in the ranking list. It
does not only compare the ranks of a substitution in
the two rankings, but is also penalizes highly relevant
substitutions according to [q0, . . . , qj−1] that have a very
low rank in [q′0, . . . , q

′
j−1]. Moreover, it takes the length of

the actual lists into consideration. We refer the reader to
the paper by Chakrabarti et al. [7] for details on NDCG.

The discussed metrics compare rankings for one query.
To compare the utility of our algorithms, we average
over all queries. For coverage we average over all queries
for which the original search log produces substitutions.
For all other metrics that try to capture the precision
of a ranking, we average only over the queries for
which the sanitized search logs produce substitutions.
We generated query substitution only for the 100,000
most frequent queries of the original search log since
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Fig. 7. Quality of the query substitutions of the privacy-preserving histograms, and the anonymous search log.
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the substitution algorithm only works well given enough
information about a query.

In Figure 7 we vary k and ε for m = 1 and we draw the
utility curves for top-j for j = 2 and j = 5. We observe
that varying ε and k has hardly any influence on perfor-
mance. On all precision measures, ZEALOUS provides
utility comparable to k-query-anonymity. However, the
coverage provided by ZEALOUS is not good. This is
because the computation of query substitutions relies not
only on the frequent query pairs but also on the count
of phrase pairs which record for two sets of keywords
how often a query containing the first set was followed
by another query containing the second set. Thus a
phrase pair can have a high frequency even though all
query pairs it is contained in have very low frequency.
ZEALOUS filters out these low frequency query pairs
and thus loses many frequent phrase pairs.

As a last experiment, we study the effect of increasing
m for query substitutions. Figure 8 plots the average
coverage of the top-2 and top-5 substitutions produced
by ZEALOUS for m = 1 and m = 6 for various values
of ε. It is clear that across the board larger values of m
lead to smaller coverage, thus confirming our intuition
outlined the previous section.

8 RELATED WORK
Related work on anonymity in search logs [1], [12], [21],
[13] is discussed in Section 3.1.

More recently, there has been work on privacy in
search logs. Korolova et al. [17] proposes the same

basic algorithm that we propose in [10] and review in
Section 4.5 They show (ε′, δ′)-indistinguishability of the
algorithm whereas we show (ε, δ)-probabilistic differen-
tial privacy of the algorithm which is a strictly stronger
guarantee, see Section 5. One difference is that our
algorithm has two thresholds τ, τ ′ as opposed to one and
we explain how to set threshold τ optimally. Korolova
et al. [17] set τ = 1 (which is not the optimal choice
in many cases). Our experiments augment and extend
the experiments of Korolova et al. [17]. We illustrate the
tradeoff of setting the number of contributions m for
various domains and statistics including L1-distance and
KL divergence which extends [17] greatly. Our applica-
tion oriented evaluation considers different applications.
We compare the performance of ZEALOUS to that of k-
query anonymity and observe that the loss in utility is
comparable for anonymity and privacy while anonymity
offers a much weaker guarantee.

9 BEYOND SEARCH LOGS
While the main focus of this paper are search logs, our
results apply to other scenarios as well. For example,
consider a retailer who collects customer transactions.
Each transaction consists of a basket of products together
with their prices, and a time-stamp. In this case ZEAL-
OUS can be applied to publish frequently purchased
products or sets of products. This information can also
be used in a recommender system or in a market basket
analysis to decide on the goods and promotions in a
store [11]. Another example concerns monitoring the
health of patients. Each time a patient sees a doctor
the doctor records the diseases of the patient and the
suggested treatment. It would be interesting to publish
frequent combinations of diseases.

All of our results apply to the more general problem
of publishing frequent items / itemsets / consecutive
itemsets. Existing work on publishing frequent itemsets
often only tries to achieve anonymity or makes strong
assumptions about the background knowledge of an

5. In order to improve utility of the algorithm as stated in [17], we
suggest to first filter out infrequent keywords using the 2-threshold
approach of ZEALOUS and then publish noise counts of queries
consisting of up to 3 frequent keywords and the clicks of their top
ranked documents.
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attacker, see for example some of the references in the
survey by Luo et al. [19].

10 CONCLUSIONS
This paper contains a comparative study about publish-
ing frequent keywords, queries, and clicks in search logs.
We compare the disclosure limitation guarantees and the
theoretical and practical utility of various approaches.
Our comparison includes earlier work on anonymity and
(ε′, δ′)–indistinguishability and our proposed solution to
achieve (ε, δ)-probabilistic differential privacy in search
logs. In our comparison, we revealed interesting relation-
ships between indistinguishability and probabilistic dif-
ferential privacy which might be of independent interest.
Our results (positive as well as negative) can be applied
more generally to the problem of publishing frequent
items or itemsets.

A topic of future work is the development of algo-
rithms that allow to publish useful information about
infrequent keywords, queries, and clicks in a search log.
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APPENDIX A
ONLINE APPENDIX
This appendix is available online [10]. We provide it here
for the convenience of the reviewers. It is not meant to
be part of the final paper.

A.1 Analysis of ZEALOUS: Proof of Theorem 10
Let H be the keyword histogram constructed by ZEAL-
OUS in Step 2 when applied to S and K be the set of
keywords in H whose count equals τ . Let Ω be the set of
keyword histograms, that do not contain any keyword
in K . For notational simplicity, let us denote ZEALOUS
as a function Z . We will prove the theorem by showing
that, given Equations (4) and (5),

Pr[Z(S) /∈ Ω] ≤ δ, (6)

and for any keyword histogram ω ∈ Ω and for any
neighboring search log S′ of S,

e−ε · Pr[Z(S′)=ω] ≤ Pr[Z(S)=ω] ≤ eε · Pr[Z(S′)=ω].
(7)

We will first prove that Equation (6) holds. Assume
that the i-th keyword in K has a count c̃i in Z(S) for
i ∈ [1, |K|]. Then,

Pr[Z(S) /∈ Ω]

= Pr
[
∃i ∈ [1, |K|], c̃i > τ ′

]
= 1− Pr

[
∀i ∈ [1, |K|], c̃i ≤ τ ′

]

= 1−
∏

i∈[1,|K|]

(∫ τ ′−τ

−∞

1

2λ
e−

|x|
λ dx

)

(the noise added to c̃i has to be ≥ τ ′ − τ )

= 1−

(
1−

1

2
· e−

τ′−τ
λ

)|K|

≤
|K|

2
· e−

τ′−τ
λ

≤
U ·m

2τ
· e−

τ′−τ
λ (because |K| ≤ U ·m/τ )

≤
U ·m

2τ
· e−

−λ ln( 2δ
U·m/τ )
λ (by Equation 5)

= δ. (8)

Next, we will show that Equation (7) also holds. Let
S′ be any neighboring search log of S. Let ω be any
possible output of ZEALOUS given S, such that ω ∈ Ω.
To establish Equation (7), it suffices to prove that

Pr[Z(S) = ω]

Pr[Z(S′) = ω]
≤ eε, and (9)

Pr[Z(S′) = ω]

Pr[Z(S) = ω]
≤ eε. (10)

We will derive Equation (9). The proof of (10) is
analogous.

Let H ′ be the keyword histogram constructed by
ZEALOUS in Step 2 when applied to S′. Let Δ be the

set of keywords that have different counts in H and H ′.
Since S and S′ differ in the search history of a single
user, and each user contributes at most m keywords, we
have |Δ| ≤ 2m. Let ki (i ∈ [1, |Δ|]) be the i-th keyword
in Δ, and di, d′i, and d∗i be the counts of ki in H , H ′,
and ω, respectively. Since a user adds at most one to the
count of a keyword (see Step 2.), we have di − d′i = 1
for any i ∈ [1, |Δ|]. To simplify notation, let Ei, E′i, and
Ei
∗, E′i

∗ denote the event that ki has counts di, d′i, d
∗
i in

H , H ′, and Z(S), Z(S′), respectively. Therefore,

Pr[Z(S) = ω]

Pr[Z(S′) = ω]
=

∏
i∈[1,|Δ|]

Pr[Ei
∗ | Ei]

Pr[E′i
∗ | E′i]

.

In what follows, we will show that Pr[Ei
∗|Ei]

Pr[E′
i
∗|E′

i]
≤ e1/λ

for any i ∈ [1, |Δ|]. We differentiate three cases: (i) di ≥ τ ,
d∗i ≥ τ , (ii) di < τ and (iii) di = τ and d∗i = τ − 1.

Consider case (i) when di and d∗i are at least τ . Then,
if d∗i > 0, we have

Pr[Ei
∗ | Ei]

Pr[E′i
∗ | E′i]

=
1
2λe

−|d∗
i−di|/λ

1
2λe

−|d∗
i−d′

i|/λ

= e(|d
∗
i−d′

i|−|d
∗
i−di|)/λ

≤ e|di−d′
i|/λ

= e
1
λ . (because |di − d′i| = 1 for any i)

On the other hand, if d∗i = 0,

Pr[Ei
∗ | Ei]

Pr[E′i
∗ | E′i]

=

∫ τ ′−di

−∞
1
2λe

−|x|/λdx∫ τ ′−d′
i

−∞
1
2λe

−|x|/λdx
≤ e

1
λ .

Now consider case (ii) when di is less than τ . Since
ω ∈ Ω, and ZEALOUS eliminates all counts in H that
are smaller than τ , we have d∗i = 0, and Pr[E∗i | Ei] = 1.
On the other hand,

Pr[E′i
∗
| E′i] =

{
1, if d′i ≤ τ

1− 1
2e
−|τ ′−d′

i|/λ, otherwise

Therefore,
Pr[Ei

∗ | Ei]

Pr[E′i
∗ | E′i]

≤
1

1− 1
2e
−|τ ′−d′

i|/λ

≤
1

1− 1
2e
−(τ ′−τ)/λ

≤
1

1− 1
2e

ln
(
2−2e−

1
λ

) (by Equation 7)

= e
1
λ .

Consider now case (iii) when di = τ and d∗i = τ − 1.
Since ω ∈ Ω we have d∗i = 0. Moreover, since ZEALOUS
eliminates all counts in H that are smaller than τ , it
follows that Pr[E∗i | E

′
i] = 1. Therefore,

Pr[Ei
∗ | Ei]

Pr[E′i
∗ | E′i]

= Pr[Ei
∗ | Ei] ≤ e

1
λ .
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In summary, Pr[Ei
∗|Ei]

Pr[E′
i
∗|E′

i]
≤ e1/λ. Since |Δ| ≤ 2m, we

have

Pr[Z(S) = ω]

Pr[Z(S′) = ω]

=
∏

i∈[1,|Δ|]

Pr[Ei
∗ | Ei]

Pr[E′i
∗ | E′i]

≤
∏

i∈[1,|Δ|]

e1/λ

= e|Δ|/λ

≤ eε (by Equation 6 and |Δ| ≤ 2m).

This concludes the proof of the theorem.

A.2 Proof of Proposition 1
Assume that, for all search logs S, we can divide the
output space Ω into to two sets Ω1,Ω2, such that

(1) Pr[A(S) ∈ Ω2] ≤ δ, and

for all search logs S′ differing from S only in the search
history of a single user and for all O ∈ Ω1:

(2) Pr[A(S) = O] ≤ eε Pr[A(S′) = O] and
Pr[A(S′) = O] ≤ eε Pr[A(S) = O].

Consider any subset O of the output space Ω of A. Let
O1 = O ∩ Ω1 and O2 = O ∩ Ω2. We have

Pr[A(S) ∈ O]

=

∫
O∈O2

Pr[A(S) = O]dO +

∫
O∈O1

Pr[A(S) = O]dO

≤

∫
O∈Ω2

Pr[A(S) = O]dO + eε
∫
O∈Ω1

Pr[A(S′) = O]dO

≤ δ + eε
∫
O∈Ω1

Pr[A(S′) = O]dO

≤ δ + eε · Pr[A(S′) ∈ Ω1].

A.3 Proof of Proposition 2
We have to show that for all search logs S, S′ differing
in one user history and for all sets O :

Pr[Â(S) ∈ O] ≤ Pr[Â(S′) ∈ O] + 1/(|D| − 1).

Since Algorithm Â neglects all but the first input this is
true for for neighboring search logs not differing in the
first user’s input. We are left with the case of two neigh-
boring search logs S, S′ differing in the search history
of the first user. Let us analyze the output distributions
of Algorithm 1 under these two inputs S and S′. For
all search histories except the search histories of the first
user in S, S′ the output probability is 1/(|D|−1) for either
input. Only for the two search histories of the first user
S1, S

′
1 the output probabilities differ: Algorithm 1 never

outputs S1 given S, but it outputs this search history
with probability 1/(|D| − 1) given S′. Symmetrically,
Algorithm Â never outputs S′1 given S′, but it outputs

this search history with probability 1/(|D| − 1) given S.
Thus, we have for all sets O

Pr[Â(S) ∈ O] =
∑

d∈O∩(D−S1)

1/(|D| − 1) (11)

≤ 1/(|D| − 1) +
∑

d∈O∩(D−S2)

1/(|D| − 1)

(12)

= Pr[Â(S) ∈ O] + 1/(|D| − 1) (13)
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