

Visual Studio .NET—The .NET Framework Black
Book
Julian Templeman
David Vitter

Copyright © 2002 The Coriolis Group, LLC. All rights reserved.

This book may not be duplicated in any way without the express written consent of the
publisher, except in the form of brief excerpts or quotations for the purposes of review. The
information contained herein is for the personal use of the reader and may not be
incorporated in any commercial programs, other books, databases, or any kind of software
without written consent of the publisher. Making copies of this book or any portion for any
purpose other than your own is a violation of United States copyright laws.

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in preparing the book and
the programs contained in it. These efforts include the development, research, and testing of
the theories and programs to determine their effectiveness. The author and publisher make
no warranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book.

The author and publisher shall not be liable in the event of incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of the
programs, associated instructions, and/or claims of productivity gains.

Trademarks

Trademarked names appear throughout this book. Rather than list the names and entities
that own the trademarks or insert a trademark symbol with each mention of the trademarked
name, the publisher states that it is using the names for editorial purposes only and to the
benefit of the trademark owner, with no intention of infringing upon that trademark.

The Coriolis Group, LLC
14455 N. Hayden Road
Suite 220
Scottsdale, Arizona 85260

(480) 483-0192
FAX (480) 483-0193
www.coriolis.com

Library of Congress Cataloging-in-Publication Data

Templeman, Julian

Visual Studio .NET: The .NET Framework black book / by Julian Templeman and David
Vitter

p. cm.

Includes index.

ISBN 1-57610-995-X

1. Microsoft Visual studio. 2. Microsoft.net framework. 3. Website

 development--Computer programs. 4. Application

software--Development--Computer programs. I. Vitter, David. II.

Title.

TK5105.8885.M57 T46 2001

005.2’76--dc21

 2001047659

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

President and CEO
Roland Elgey

Publisher
Al Valvano

Associate Publisher
Katherine R. Hartlove

Acquisitions Editor
Jawahara Saidullah

Developmental Editor
Jessica Choi

Product Marketing Manager
Tracy Rooney

Project Editor
Jennifer Ashley

Technical Reviewer
Roberto Veiga

Production Coordinator
Peggy Cantrell

Cover Designer
Carla Schuder

CD-ROM Developer
Michelle McConnell

About the Authors

Julian Templeman has been involved with computers for nearly 30 years, beginning with
punching Fortran onto cards when he was at college in London. He has worked as a
developer in the fields of science and engineering, mainly in graphical application
programming, and got into Windows programming way back in the days of Windows 3.0.

Julian has programmed in many languages, and for the past few years has majored in C++
and Java. He runs a consultancy and training company in London, and, when not consulting,
running training courses, or running his company, he enjoys playing a variety of musical
instruments.

David Vitter is a Technical Lead Developer with Computer Sciences Corporation (CSC)
developing Web-based solutions for Department of Defense customers. Prior to joining CSC,
David spent 10 years in the US Air Force where he served as both an ICBM Maintenance
Technician and as an Electronic Intelligence Analyst.

David is a Microsoft Certified Professional (MCP) and a Microsoft Certified Solutions
Developer (MCSD) with more than 7 years experience using Visual Basic and more than 20
years experience in writing Basic programs. When not writing code or books, David enjoys
cheering for the University of Virginia lacrosse team or visiting one of Virginia’s many
beautiful points of interest with his family. His first book, Designing Visual Basic. NET
Applications, was published in August of 2001 by the The Coriolis Group, Inc.

My thanks are due to all those who have helped bring this book into being. I must especially
thank Kevin Weeks, who thought up this project and talked me into taking it on.

Acknowledgments

Special thanks also go to Jennifer Ashley, the Project Editor for the book, for putting up with
my awful attitude to deadlines, and generally pushing things along with unfailing good
humor. Thanks also to all those others at Coriolis who contributed to this project, including
Jawahara Saidullah, acquisitions editor, Anne Marie Walker, copy-editor, Peggy Cantrell,
Production Coordinator, and Carla Schuder, cover designer. Finally, I must thank David
Vitter for being willing to contribute his excellent chapters on the Web, SOAP, Remoting, and
ADO.NET.

—Julian Templeman

Introduction
Thanks for buying Visual Studio .NET: The .NET Framework Black Book .

.NET is the most exciting new technology released by Microsoft since the original release of
Windows 3.0, and it will impact every Windows programmer, no matter what language you
use. Whether you are a Visual Basic or C++ programmer or want to learn C#, you’re need to
get up to speed with the world of .NET and the many new paradigms and features it
introduces.

This book is your guide to the .NET Framework, the library that underlies everything in .NET.
You’ll learn how to use the huge amount of functionality that Microsoft has provided in the
Framework to write code for the new world of .NET.

Is This Book for You?

Visual Studio .NET: The .NET Framework Black Book was written with the intermediate or
advanced user in mind. Among the topics that are covered are:
§ How to use the .NET Framework to write applications for the .NET platform.
§ An introduction to the exciting new features introduced by .NET, including Windows

Forms, Web Forms, Web Services, ASP.NET, and ADO.NET.
§ How to produce console and GUI programs.
§ How to interoperate with existing Windows code and COM objects.

How to Use This Book

This book is designed so you can read the chapters in almost any order, without having to
follow any particular sequence. Having said that, if you’re new to the world of .NET, you’ll
want to read the first two chapters in order to give yourself the basic knowledge you’ll need
to understand the material in the rest of the book.

Chapters 1 through 3 set the stage, describing the world of .NET. Chapter 1, “Introduction to
.NET,” introduces you to the .NET platform: what it is and why it’s there. It also introduces
the key .NET technologies, explains the changes that have been made to C++ and VB, and
introduces the new C# language.

The second chapter, “The .NET Programming Model,” explains the structure that underlies
all .NET code. Everything is truly object-oriented (OO) in .NET, so this chapter includes an
introduction to OO programming for those who might not have done any before. It also
explains the .NET programming constructs that are common to all .NET programming
languages, such as properties, delegates, events, and exceptions.

Chapter 3, “The System Namespace,” introduces the concept of namespaces as a way to
organize code, and covers the most fundamental namespace, System. You’ll learn about
the basic types, objects, arrays, exceptions, and many more fundamental constructs.

The fourth chapter, “The System.Collections Namespace,” provides a guide to the data
structure (or “collection”) classes provided by .NET and which can be used by any .NET
language.

XML is very important in .NET, and Chapter 5, “The XML Namespaces,” describes the rich
support that the .NET Framework provides for XML programming. As well as details on
parsing and writing XML, the chapter covers XPath and XSL, and C#’s XML-based
documentation mechanism.

Chapter 6, “The I/O and Networking Namespaces,” gives an introduction to .NET’s I/O
namespace, System.IO, covering console and file I/O. The chapter also looks at the
System.Net namespace, and shows how to use sockets for interprocess communication.

Chapter 7, “.NET Security,” looks at the topic of security and how .NET implements a system
to allow safe use of components in a distributed environment.

Chapter 8, “The System.Web Namespace,” covers the basics of working with the Web in
the .NET world. Learn how to create ASP.NET Web interfaces, and how Microsoft’s XML
Web Services fit into the big picture of application development.

Chapter 9, “Windows Forms,” is the first of three chapters that cover GUI programming
issues. This chapter introduces the System.Windows.Forms namespace, which
implements a Visual Basic-like GUI mechanism that all .NET programming languages can
use.

Chapter 10, “Windows Forms and Controls,” continues the investigation of Windows Forms,
looking in detail at the components you can use to build form-based applications.

Chapter 11, “The Drawing Namespaces,” deals with low-level graphics operations, such as
how to draw on forms, display images, and handle printing.

Chapter 12, “Other Namespaces,” covers a number of minor namespaces that don’t merit a
whole chapter to themselves. These include threading, diagnostics, Windows Services, text,
and regular expression handling.

Chapter 13, “.NET Remoting,” looks at .NET’s built-in support for using components
remotely as easily as if they were on the local machine.

Chapter 14, “SOAP and XML,” gives an introduction to Simple Object Access Protocol
(SOAP), a protocol that is becoming widely used in distributed applications, and shows how
it can be used in .NET applications. The chapter also provides information on advanced XML
topics, such as XML schemas and transformations.

Chapter 15, “ADO.NET,” covers the new version of Active Data Objects: ADO.NET.
Developers wanting to connect their .NET solutions to back-end data sources will absolutely
want to become familiar with this new data access technology.

The final chapter, “Working with COM and the Win32 API,” shows how .NET code can
interoperate with the existing worlds of COM and plain Windows.

The Black Book Philosophy

Written by experienced professionals, Coriolis Black Books provide immediate solutions to
global programming and administrative challenges, helping you complete specific tasks,
especially critical ones that are not well documented in other books. The Black Book ’s
unique two-part chapter format—thorough technical overviews followed by practical
immediate solutions—is structured to help you use your knowledge, solve problems, and
quickly master complex technical issues to become an expert. By breaking down complex
topics into easily manageable components, this format helps you quickly find what you’re
looking for, with the code you need to make it happen.

We welcome your feedback on this book, which you can pass on by emailing The Coriolis
Group at ctp@coriolis.com. Errata, updates, and more are available at www.coriolis.com.

Chapter 1: Introduction to .NET
By Julian Templeman

What Is .NET?

.NET provides a new API, new functionality, and new tools for writing Windows and Web
applications, components, and services in the Web age. Let’s look at the pieces of this
statement a little more closely.

Why do we need a new API? The Windows API, the library of functions used to write
Windows applications, was originally written in C and has steadily grown over the years. It
now consists of many thousands of routines and has several problems. First, it has grown
very large and has no coherent internal organization, which can make it hard to use. During
its growth, features were added piecemeal, so it doesn’t always present a unified interface to
developers, and it contains a lot of legacy functions and datatypes (and is just plain out-of-
date). Second, a more major problem is that the Windows API was initially designed for use
by C programmers. This means that it can be difficult to use in languages other than C, and
it also doesn’t fit in very well with modern object-oriented programming methods and
languages.

.NET provides a new, object-oriented API as a set of classes that will be accessible from any
programming language. This book describes this framework of classes and provides a
reference to what is available and how you can use this framework to write Windows
applications in the brave new world of .NET.

What about the new functionality of this API? Microsoft has made some radical decisions in
the design of .NET and has incorporated many unique new features that will make writing
applications—and especially distributed applications—much easier than ever before. An
overview of the main technologies is presented under the section “Introduction to Key
Technologies,” and in the next chapter we’ll investigate how they work together. A lot of the
new technologies lurk under the surface and may not be highly visible to the casual user, but
the infrastructure of Windows applications and the technologies on which they’re built and
with which they communicate are very different in the .NET world.

There’s a whole new set of tools also being introduced with the next release of Visual Studio,
which will be known as Visual Studio .NET. The Interactive Development Environment (IDE)
is completely new, and Microsoft has radically overhauled Visual C++ and Visual Basic (VB)
as well as introduced a whole new programming language in the form of C#. A new model
for building distributed applications using the Web and XML means that a whole host of new
tools and technologies are needed as well, and they’re all integrated into Visual Studio .NET.

It’s pretty evident that, as far as computers are concerned, the world is moving toward the
Internet. Just pause and think for a minute about the number of ways you use the Internet:
§ Sending and receiving email
§ Using online newspapers, especially when away from home
§ Buying books and other goods, and finding suppliers that may be on another continent
§ Hotel reservations and other services
§ Using online banking and stock trading
§ Buying cars (especially relevant to those of us here in the UK!)
§ Using dictionaries, encyclopedias, and other information services

Microsoft is convinced that the future of Windows lies in distributed applications, where the
various components may not live on Windows machines connected by a company network.
Over the years, Microsoft has introduced technologies aimed at building distributed systems,

but each has had its shortcomings in one area or another. Let’s briefly consider three of
these technologies: Component Object Model (COM), Active Server Page (ASP), and VB.

For several years, COM has been Microsoft’s model for programming components in a
variety of languages, which can be built into distributed applications. COM has been very
successful, but it has suffered from several problems. First, it is difficult to become an expert
COM programmer, and building sophisticated COM applications is very hard indeed. You
need a detailed knowledge of C++ and the internals of COM and Windows to be successful.
Second, COM is a Microsoft-specific architecture and is only available on a limited number
of platforms. Third, because of the proprietary binary protocols used to talk across networks,
all you can easily talk to are other COM components. Although the idea behind COM is valid,
its implementation is limiting the widespread development of distributed systems.

Microsoft introduced ASP as a way for Web servers to deliver customized content by
executing scripting code embedded in the HTML of a Web page. ASP has been very
popular, but it suffers from one shortcoming: It only supports scripting languages, such as
VBScript and JScript. This has implications for efficiency—because scripting languages are
interpreted at runtime, and therefore are not as efficient as compiled languages—and also
because you can’t use other languages. If you have C++ code that you would like to use in
an ASP page, you can’t because C++ isn’t a scripting language.

VB has enjoyed tremendous success as the major drag-and-drop Windows programming
language, but it has well-known limitations. One of its major limitations has to be that it is tied
to Windows, and so it isn’t useful for writing systems that are distributed across a range of
architectures. In addition, it has a narrow range of what it can do, only allows restricted
access to the underlying operating system, and isn’t object-oriented, which is a limitation
when building large-scale systems. That said, many programmers have wished that its
visual, drag-and-drop style was available with other Windows programming languages, such
as Visual C++.

With the advent of .NET, Microsoft has introduced many new technologies that make writing
component-based distributed systems easier, more flexible, and more powerful than ever
before. It is now easier than it has ever been to write components in any programming
language that can interoperate with components on other machines, which may not be
Windows-based at all.

Enough preamble. Let’s move on and take a look at what’s new and improved in .NET.

Introduction to Key Technologies

.NET is bringing a host of new technologies and tools to the Windows platform. Each has its
own name and terminology and many of them introduce new acronyms. In order to start
swimming in the .NET world, you’re going to have to get buzzword compliant with the names
of these new technologies and tools. This section lists the major players, and briefly
describes the part they play in the overall scheme.

Figure 1.1 shows how the major components of the .NET Framework sit on top of the
operating system. High-level languages sit on top of a common intermediate language,
which gives them access to the .NET system services. These services include high-level
services such as ASP.NET and Windows Forms as well as lower-level access to the .NET
class libraries on which everything is based.

Figure 1.1: .NET archeticture.

Let’s look at each of these components and try to build an overall picture of what .NET is.

IL and the Common Language Specification

You’ll notice that the programming languages at the top of Figure 1.1. sit on top of two boxes
labeled Common Language Specification (CLS) and Intermediate Language (IL). These two
components, together with the box at the bottom of the figure, form part of the Common
Language Runtime (CLR).

In .NET, Microsoft has taken a radical step in deciding that programming languages are no
longer independent in the way that they are compiled or interpreted and build executable
code. In traditional programming, each compiled language tends to produce its own unique
form of intermediate binary code. Every language has its own data types, and may be
object-oriented (OO) or not. Functions have their own particular parameter passing
mechanisms, and differ in the order in which arguments are pushed onto the stack and
whose responsibility it is to remove them. All these differences can make it very hard to use
more than one language to build components and has resulted in the invention of several
systems, such as Microsoft’s COM, which provides a neutral middle layer. There are
problems associated with such middle-layer software, such as the fact that they add
complexity, and that they only tend to support a subset of functionality that all languages can
agree on.

All languages that execute within the .NET Framework compile down to the same thing: a
variety of bytecode known as Intermediate Language (or IL) rather than to a language-
specific intermediate object code. This means that no matter if you compile a VB program, a
Visual C++ program, or a C# program, you’ll end up with the same form of intermediate
code.

The idea of bytecodes isn’t new, and those who have been in programming for a while may
remember UCSD Pascal. A more recent example is Java, where source code is compiled
into Java bytecode, which is then executed by the Java Virtual Machine.

Note

IL isn’t a traditional bytecode, but is more akin to the output from a compiler.
There are, however, enough similarities to bytecode for the comparison to
be useful in this discussion.

IL is unusual among intermediate languages in that it has direct support for the constructs
needed by OO programming languages, such as inheritance and polymorphism, along with
other modern language features like exception handling. This means that it will be easy to
port OO languages to work in .NET (subject to a few constraints, such as the use of single
inheritance only). It will also make it possible to add OO support to languages that haven’t
had it before, as is the case with the .NET version of Visual Basic, known as Visual Basic
.NET (or VB .NET).

This is a very important point, and one that is discussed in more detail in Chapter 2. In .NET,
everything is OO because there is now a common underlying OO layer to all programming
languages. This makes it very easy for OO languages to work together, but it does mean
that an occasional language feature in some languages may have to be modified in order to
make them work with the .NET model.

C++ programmers may be getting worried at this point because they know that Java-like
bytecode-based languages aren’t as efficient as traditional compiled ones. In .NET, C++
programmers have a choice of whether to compile and link code the traditional way (known
as unmanaged code), or to join in with .NET and compile down to bytecode (called managed
code). The choice is made per class, and you can mix and match managed and unmanaged
classes within the same application.

It turns out that using an intermediate language has a lot of advantages, many of which are
discussed in the rest of this chapter. One of these advantages is the fact that all compiled
code ends up looking the same regardless of which source language it started out in. This
means that it is easy to mix code written in different languages because they are now
compatible at the bytecode level.

If languages are to be truly compatible in this way, they need to agree on a basic set of
language features and data types, which all languages must support, as well as conventions
for how they are used. The CLS provides this basic functionality, and it ensures that if a
language follows its recommendations, it will be able to interoperate with others that do the
same. The CLS has been made freely available to compiler developers, and many language
designers and vendors have already said that they will provide support for IL in their
compilers. Therefore, we can expect to see a wide variety of other languages—including
COBOL, Fortran, Python, and Perl—joining the .NET family.

The Common Language Runtime

The CLR is the mechanism through which .NET code is executed. It is built upon a single,
common language—IL—into which source languages are compiled and includes
mechanisms for executing the compiled code. This includes code verification and just-in-time
(JIT) compilation, garbage collection and enforcement of security policies, and the provision
of profiling and debugging services.

The CLR provides a lot of added value to the programs it supports. Because it controls how
a .NET program executes and sits between the program and the operating system, it can
implement security, versioning support, automatic memory management through garbage

collection, and provide transparent access to system services. These features are explained
in more detail in the section “How Does the .NET Architecture Work?”

It is an important fact that IL code doesn’t get executed itself, but is instead converted into
platform native code before execution, a process known as JIT compilation. This compilation
may happen at the time a program is installed or just before a piece of code runs, and it
ensures that the code runs as efficiently as it can. The .NET Framework comes with several
different JIT compilers, which are suited for different circumstances, such as whether you
are primarily concerned with compilation speed or obtaining maximum optimization.

The Base Class Library

All programming languages and operating environments have libraries of functions available
for use by programmers, for example, the C Runtime Library, the Windows API, the C++
Standard Template Library, and Microsoft’s MFC and ATL libraries.

The problem with all these libraries is that they are either language-dependent or system-
dependent (or both) and don’t possess even the simplest of data types and operations in
common. Anyone who has worked with COM is aware of the hassle involved in passing
simple collections back and forth between C++ and VB, with all the attendant complications
of SAFEARRAYs and IEnum interfaces.

.NET comes with its own class library, the Base Class Library, which provides all the
functionality associated with traditional class libraries. It is special in two main ways:
§ It is the class library for IL, and so can be used by any language that compiles down

into IL.
§ It is an OO class library, and so provides its functionality through a number of classes

that are arranged into a hierarchy of namespaces.

High-level languages provide their own bindings onto the Base Class Libraries, and it is
possible that not all features will be accessible from all the languages that may end up being
ported to .NET. Although a fully OO Fortran or COBOL may be a possibility, don’t hold your
breath.

The Base Class Library contains a number of components:
§ Definitions of basic types, such as Int32. These are mapped onto specific types by

individual languages.
§ Common collection classes, such as arrays, linked lists, hash tables, enumerations,

queues, and stacks.
§ Classes defining exceptions. All .NET languages can use exception handling because

it is built into the Base Class Library, and it is now possible to throw an exception in,
say, a C# method and catch it in VB.

§ Classes for console, file, and stream I/O.
§ Classes for network programming, including sockets.
§ Database interface classes, including classes for working with ADO and SQL.
§ Graphics classes, including 2D drawing, imaging, and printing.
§ Classes for building graphical user interfaces (GUIs).
§ Classes for object serialization.
§ Classes to implement and handle security policies.
§ Classes for building distributed, Web-based systems.
§ Classes for working with XML.
§ Other operating system features, such as threads and timers.

The Base Class Library is an OO, nonlanguage specific replacement for the old Windows
API, which provides a wide range of services for writing modern applications that make

heavy use of the Web, data exchange, and GUIs. Will it replace the existing Windows API?
Microsoft has said nothing, but I wouldn’t be at all surprised if it didn’t.

The rest of this book explores this library, showing what it contains and how you can use it.

ASP.NET

ASP.NET is a new version of Microsoft’s established ASP technology. It offers significant
improvements over the original model.

An ASP is an HTML page that contains fragments of scripting language code in addition to
HTML markup. When the page is accessed, the scripting code is executed, and the output
from the code is sent to the client along with the rest of the HTML on the page. This mixture
of fixed HTML and scripting code means that Web pages can be customized, with the code
generating custom HTML based on user input.

ASP has been extremely popular, and many Web servers now use it to generate custom
content, but it does have its drawbacks. ASP.NET has been designed to address these
drawbacks:
§ In ASP, you’re limited to using scripting languages, which in most cases means VBA or

JScript. ASP.NET pages can now be written in any .NET language. So if you want to
write ASP pages that use C++, C#, or even COBOL, you can.

§ The scripting code in ASP pages is interpreted, which doesn’t provide the best
performance. Code in ASP.NET pages is compiled rather than interpreted, leading to
great improvements in performance. In addition, code only needs to be compiled once.

§ Code and HTML are intermixed in ASP pages, which makes pages hard to maintain as
they get more complex. It is possible to separate the code and HTML using
programming tricks, but it isn’t supported in ASP itself. ASP.NET does support
separation of the code from the HTML, maintaining the code in separate files. Because
content and presentation is often developed by different people, separating the code
aids the development of complex pages.

§ If you want ASP pages to target multiple browsers or device types, you have to do it
manually. ASP.NET has built-in support for multiple client types, using a range of
server-side controls that automatically adjust their presentation depending on the
capability of different clients. This means that it is possible to write ASP.NET pages that
will display properly—and automatically—on traditional browsers as well as WAP
phones and other small devices.

Perhaps the most radical development in ASP.NET is the introduction of Web Services. A
Web Service is an application that can be found and accessed through a Web server, so that
programmable functionality can be accessed over networks and the Internet using standard
protocols. Figure 1.2 shows the architecture of a Web Service, where a client talks to a
server using standard Web protocols—XML over HTTP for those clients that support it and
standard HTTP Get and Post requests for all other clients. The server maintains a directory
of Web Services that clients can query in order to find out exactly what methods are
available and how they should be called.

Figure 1.2: Web Service architecture

Any method in a .NET object (written, of course, in any .NET language) can be marked very
simply as a Web method. The compiler and CLR make all the necessary arrangements,
registering the method so that it can be used through a Web server. The implications of this
for Web application developments are tremendous because Web sites and other
applications will be able to communicate at the method level, sending queries, invoking
operations, and exchanging data. Communication takes place in XML, so that it is possible
to link diverse systems using Web Services. In fact, because Web Services are simply a way
of discovering and calling methods remotely using XML as the data transfer medium, it is
quite possible that you will see Web Services being written on non-Microsoft platforms that
have nothing whatsoever to do with .NET.

Along with Web Services, ASP.NET introduces a new version of ADO called ADO.NET,
which makes it much easier to work with disconnected data and uses XML as its main
means of data transfer. Working mainly with disconnected datasets means that ADO.NET is
more scalable than ADO because the database connection is only required for a short time
while the dataset is acquired. Working with XML as the data transfer mechanism rather than
COM’s binary protocol means that it’s going to be easier to work through firewalls.

Windows Forms

For years, VB users have been used to being able to create GUIs by selecting controls from
a palette, dragging and dropping controls onto forms, and then setting their properties and
putting code behind the forms and controls. Windows Forms has taken this idea and has
made it part of the .NET Framework, so that it is available for any .NET language to use.

The Windows Forms library contains a complete VB-like set of features that let you create
forms, place controls onto them, set the properties of the controls, and set up interactions
between controls and forms. You can create SDI and MDI applications and dialogs, and the
set of controls supported is particularly full: Date/Time pickers, checked listboxes, and rich
text edit controls.

XML

With all the hype that currently seems to surround the subject, you’d be forgiven for thinking
that XML is the solution to every programming problem, and that every new product has to
contain some form of XML-based functionality if it is to be taken at all seriously.

Although it is true that XML has become a bandwagon, in much the same way that OO did a
couple of years ago, it is revolutionizing many areas of data retrieval and exchange. This
isn’t the place to go into a detailed explanation of what XML is and how it is used, so the
next couple of paragraphs will only explain the basics. If you want more details on using
XML, a good source is the XML Black Book (by Natanya Pitts, The Coriolis Group).

XML provides a way to describe data, in the same way that HTML describes presentation.
When XML is saved to a stream or disk file, it uses the same tagging conventions as HTML

<library>

 <book topic="fantasy">
 <title>Why I Love Linux</title>

 <author>Bill Gates</author>
 <publisher>Microsoft Press</publisher>

 </book>
</library>

XML elements are enclosed between starting and ending tags, and they can be nested to
any depth. The content of an XML element can be other XML elements, text, or a mixture of
the two, and XML elements can also possess attributes, as shown in the preceding book
element.

The big difference between XML and HTML is that in XML you define your own tags, and
you (and your clients) decide on what they mean. This makes XML an ideal data exchange
mechanism because it is possible to define complex data structures and send them as XML
data streams. XML also provides two mechanisms—Document Type Definitions (DTDs) and
Schemas—which can be used by recipients to validate XML data so they can check that, for
example, the title element has to occur inside a book element, and that there can only be
one title per book. There is also a standard method, known as XSL, to transform an XML
document into other forms. This means that data can be stored or transmitted as XML and
then turned into, say, HTML for display on a Web page.

Although XML is typically stored in its HTML-like serialized form, it needs to be parsed in
order to be of use in programs. XML parsers are tools that can parse the XML tree and
either build you a representation of the data in memory or use callbacks to tell you about
each new element as it is parsed. Microsoft has an XML parser, MSXML, that is distributed
with Internet Explorer and can be used from any application.

XML is used in many places in .NET. As an example, the C# language compiler can process
special comments in code in order to produce documentation in XML format. This
documentation can be turned into HTML using an XSL stylesheet or have many other
transformations and operations applied to it.

Perhaps the most important use of XML is in the provision of Web Services. Earlier, you
learned that a Web Service is a method that can be exposed by a Web site. Clients can
obtain a list of the Services that a site exposes as well as details of arguments and return
values and can then call the method at runtime, thus allowing applications to use Web-wide
dynamic linking. Where does XML come into all this? The Web Service definitions are
published in XML, and the method calls and returns are made using XML.

Using XML to make method calls is done using the Simple Object Access Protocol (SOAP).
SOAP was invented by a consortium of companies, which includes DevelopMentor,
Microsoft, and IBM, and provides a language- and system-independent way of making
remote procedure calls using XML to define and pass method details. There are several
advantages to the SOAP approach—it doesn’t use proprietary binary protocols but simple
streams of text, so it is possible to connect extremely different systems. And, because the
method call is made using a text stream of XML sent over HTTP, it is much easier to make it
work over the Internet, where traditional binary protocols can be difficult to use in the
presence of firewalls.

C#

There’s a lot of excitement about the new programming language that Microsoft has
introduced with .NET. It’s true to say that if C is the language of the Windows API and HTML
is the language of Web pages, then C# is the language of .NET. Although C# is used in
sample code, this book is not a C# programming text. If you are interested in learning more
about the language, consult a good C# book.

C# is designed to be a modern, pure OO language that combines the best features of C++,
Java, and VB, and is specially designed for writing .NET programs. The following code
snippet is a fairly typical “Hello World” program to give you a flavor of what C# looks like:

using System;

public class Hello

{
 public static void Main(string[] args)

 {
 Console.WriteLine("Hello world!");

 Console.WriteLine("There were {0} arguments", args.Length);
 }

}

Those who already know some C++ or Java may be wondering what the differences are
between those languages and C#. Table 1.1 summarizes some of the major similarities and
differences.

Table 1.1: A comparison of the features of C++ Java, and C#.

ANSI C++ Java C#

Has a full
preprocessor

Has no preprocessor Has a limited preprocessor,
without macros

Compiles to native
code

Compiles to bytecode
with JIT compilation of
programs on execution

Compiles to intermediate code
with JIT compilation of methods
on first use or on installation

Hybrid language Pure OO language Pure OO language

Supports multiple
inheritance

Single inheritance only Single inheritance only

No language support
for interfaces

Language support for
interfaces

Language support for interfaces

No single ultimate
base class

All classes inherit from a
single Object class

All classes inherit from a single
Object class

Supports templates No template support No template support

Operator overloading No operator overloading Limited operator overloading

Conversion between
bool and int types

No bool-to-int conversion No bool-to-int conversion

No wrapper classes
for built-in types

Wrapper classes for built-
in types

Automatic “boxing” of built-in
types, so they can easily be used
as objects if required

Integer types used
as case labels

Integer types used as
case labels

Strings can also be used as case
labels

Support for enums No enums Support for enums

C-style
multidimensional
array support

C-style multidimensional
array support

Proper support for
multidimensional arrays

Objects accessed
directly, by pointer or

All objects accessed by
reference

Value versus reference types
allows efficient pass-by-value

Table 1.1: A comparison of the features of C++ Java, and C#.

ANSI C++ Java C#

by reference semantics for some types

Pointers and
references supported

Only references
supported

References supported; pointers
allowed in “unsafe” code blocks

Support for variable
argument lists

No direct support for
variable argument lists

No direct support for variable
argument lists

No support for
properties

Properties supported
through coding
conventions

Properties supported as first-class
language feature

No support for
events

Events supported through
coding conventions

Events supported as first-class
language feature

No delegate support No delegate support Support for delegates (class-
based function pointer equivalent)

How Does the .NET Architecture Work?

In this section, we look a little deeper into how the .NET architecture works. With .NET,
Microsoft has created a whole new programming and runtime environment with a large
number of completely new features and mechanisms. While it isn’t necessary at this stage to
understand how it all works in great detail, having a basic understanding of the architecture
will help you to get started with .NET.

IL and Metadata

In the .NET world, compilers still produce EXE and DLL files, but the content of these files is
different. As well as the IL that results from compiling the source code, executable files
contain metadata.

Metadata is a word you’ll hear a great deal when talking about .NET and how it works.
Metadata is data that is used to describe classes and what they can do, separate from the
code of the class itself. It’s important to understand that metadata isn’t part of the class in the
same way that variables and methods are, but instead is used to describe classes.

Why do you need metadata? When you’re dealing with components, there are properties
that need to be discovered at runtime and don’t really belong in the code. Take security as
an example: Suppose an application contains a component that only certain users are
allowed to access, and that the list of permitted users and groups can change over time. The
runtime obviously needs to check the list of permitted users in order to validate requests—
how is it going to do this? If the security data is provided in code, the runtime will need to
create an object and query it, which is awkward. And if the list of permitted users changes,
the developers will have to alter the code and rebuild the object.

The solution is to keep data like this separate from the object, so that it can be queried by
system tools and other applications. Microsoft’s existing component architecture, COM, uses
two mechanisms to store metadata, and each is used to store different types of metadata.
The first is the Windows Registry, which is used for identification and configuration data, and
COM uses this to locate components and find out how they should be created. The second

mechanism is the type library, which contains information about the internal structure of the
component itself including descriptions of the methods, attributes, and events that the
component supports.

The trouble with these approaches is that both mechanisms use storage external to the
component, and this raises the possibility of all sorts of problems. A component can get
separated from its type library, or associated with one that belongs to another version, or its
registry information can get overwritten or not written at all—the possibilities are (almost)
endless. .NET components, on the other hand, are self-contained, with the metadata being
held in the same file as the component itself. This makes them a lot more portable and a lot
less susceptible to configuration errors.

The CLR uses metadata for many purposes including:
§ Locating and loading classes
§ Laying out objects in memory
§ Finding out what methods and properties a class has
§ Enforcing security
§ Discovering a class’s transactional behavior

Most of the metadata associated with a class is provided by the compilation process, but it is
possible to create your own metadata items, called attributes, and attach them to your own
classes. This topic is covered in Chapter 2.

JIT Compilation

JIT compilation is performed by just-in-time compilers, also known as JITters.

Why not compile source code straight down to native code? There are two reasons—
portability and efficiency. Native code isn’t portable, but IL is designed to be. If .NET gets
ported to non-Windows platforms, it will be important that compiled modules can be run
elsewhere. For efficiency, IL code is only JIT compiled as it is needed, and there may be
parts of an application that are never used, so they will never take up machine resources by
being compiled. It is important to note, though, that code is always JIT compiled before being
run, so that IL code is never directly executed.

Each method in a .NET executable file has a stub attached to it by the class loader. When a
method is first executed, the stub passes control to the JIT compiler, which converts the IL to
native code and then modifies the stub so that subsequent invocations will cause direct
execution of the native code. This means that methods are only JIT compiled when
necessary; therefore, the more an application is run, the more of it tends to be converted to
native code.

.NET code is JIT compiled in one of two ways. The normal way is for the code to be
compiled as it is executed, as I outlined in the previous paragraph. It is, however, also
possible for IL code to be JIT compiled when an application is installed.

The JIT compilation process, shown in Figure 1.3, is normally accompanied by verification,
during which the IL is examined to check that it is type safe, and that objects are only
performing legal operations. Note that not all code can be verified because some high-level
languages that may compile down to IL use constructs that can’t be checked, such as C
pointers.

Figure 1.3: CLR compilation a loading.

Managed Code and Garbage Collection

One of the problems with traditional C code is that programmers have to manually deallocate
memory that they have dynamically allocated. This manual memory management has led to
many problems. If a programmer forgets to deallocate memory, the program is subject to
memory leaks, whereas if he or she deallocates memory more than once, the program may
well crash.

The CLR implements dynamic memory management through the use of garbage collection.
The programmer is responsible for allocating memory, but it is the CLR that clears up
unused memory. Therefore, .NET programs never suffer from the problems traditionally
associated with manual memory management. The system knows how many clients are
referring to an object, and when that reference count drops to zero, the system knows that it
is safe to delete the object.

Code that is run under the garbage collection system is known as managed code. All VB and
C# code is managed, and C++ programmers have the option of compiling down to traditional
object code or to .NET managed code. There are some restrictions when using C++ to write
managed code, such as the limitation to single inheritance, but in many cases, the
advantages to C++ programmers are tremendous.

Note that the garbage collector only reclaims unused objects when it needs to because it
does not want to impact program performance unnecessarily. This means that it is not
possible to tell exactly when an object will be reclaimed; if the program does not run short of
resources, it may well be that objects are not reclaimed at all.

Namespaces

Namespaces are heavily used in .NET as a way to organize classes into a hierarchy. They
are also used to stop developers from having to think up arcane naming conventions in order
to ensure that the names they choose for their classes don’t clash with those chosen by
Microsoft or other developers.

The concept of a namespace is familiar to C++ programmers. They are used in a similar way
in .NET, but have extra functionality. Java programmers will find that namespaces are similar
to packages, but without the link to directory paths that packages impose.

Namespaces provide a way to group classes by providing an extra level of naming beyond
the class name. For example, if you had several classes having to do with banking, you
could wrap them in a namespace like this:

namespace Bank
{

 public class Account
 {

 …
 }

 public class Teller
 {

 …
 }

}

You can see that the definition of the Bank namespace wraps the definition of the Account
and Teller classes.

What advantages does this give you? First, it gives you a way to organize your classes, so
that related classes are bound together in a namespace. Second, it helps in large
applications where different classes may be provided by different people, different teams, or
even different organizations. Avoiding name clashes in large applications can be quite a
headache, and in the past, developers have resorted to arcane naming conventions to
ensure uniqueness for their class names.

This naming problem is greatly helped by the fact that namespaces can also be hierarchical,
with namespace names being composed of several parts separated by dots. If you had a
number of different namespaces having to do with financial matters, you could name them
like this:

namespace Finance.Bank

{
 …

}
namespace Finance.InsuranceCo

{
 …

}

When building large applications or producing classes for others to use, multilevel
namespace names can prove very useful in avoiding naming problems. All the classes
provided by Microsoft as part of the base classes are part of the System namespace.

Assemblies

Windows uses EXEs and DLLs as its basic units, but .NET uses assemblies.

An assembly has been described as a “logical EXE or DLL” in that it consists of one or more
physical EXEs and/or DLLs containing components, together with any other resources that
are needed, such as HTML files, bitmaps, and sound files. An assembly contains a manifest
that describes the contents of the assembly. Assemblies are thus self-describing and
contain:
§ Name and version information
§ A list of what is in the assembly
§ Dependency information in the form of references to other assemblies

There are two sorts of assembly—shared and private. A shared assembly is stored in the
global assembly cache, where everyone has access to it. A private assembly, on the other
hand, is used by a single application and is stored in the application’s directory or
somewhere else local to it. Assemblies are found by searching paths. For private
assemblies, the path includes the application’s directory and subdirectories. For shared
assemblies, the path consists of the same directories plus the global assembly cache.

Assemblies are important because the assembly it belongs to is part of a type’s identity. If
assembly A contains a type T and assembly B also contains a type called T, then these are
two different types as far as the CLR is concerned.

How do namespaces fit in with assemblies? The answer is that there’s no firm connection. It
may well be that all the classes belonging to a namespace—say Bank—may be built into an
assembly called Bank.dll, but this isn’t mandatory. In fact, all the standard System
namespaces supplied by Microsoft reside in mscorlib.dll, the central .NET assembly.

A system of versioning is enforced on shared assemblies, with each assembly possessing a
four part version number (known as a compatibility version) that looks like an IP address. A
typical version number might be 1.3.6.9. The CLR uses the version number to determine
whether the assemblies are compatible. There is a default policy for deciding compatibility,
but if you do not like the policy, you can define your own. The default policy states that if the
first two parts of the version are different, assemblies are viewed as incompatible. If the first
two parts are the same but the third is different, they may be compatible, and if only the
fourth part differs, they are most likely compatible.

Let’s explore assemblies and IL by writing a simple “Hello World” application, compiling it,
and then looking at the resulting executable. I’ll write the example in C#, to give you a
sample of what C# code looks like:

public class Hello {
 public static void Main() {

 System.Console.WriteLine("Hello World!");
 }

}

Assuming that you’ve entered the source code into a file called Hello.cs, you can compile it
from the command line like this:

C:>csc Hello.cs

The result is an EXE file of about 3KB in size, which contains the IL code and a small loader
that loads the CLR in order to run the JIT compiler.

You can see what is inside the file by using the IL disassembler utility, ILDASM, which
comes as part of the .NET Framework SDK, and is located in the SDK’s bin directory along
with the other SDK tools. If you open the Visual Studio .NET Command Prompt you can run
it by typing “ildasm” on the command line. Once loaded, use the File menu to open the EXE
file; your screen should look like the display shown in Figure 1.4.

Figure 1.4: Running ILDASM.

The tree in Figure 1.4 shows you that the file contains a manifest plus an assembly called
Hello. The tree below Hello shows the class details next to the red triangle, and the fact that
it has a default constructor (.ctor) and one method. Double-click on the Manifest line and a
window opens that contains something very similar to the following listing:

.assembly extern mscorlib
{

 .originator = (03 68 91 16 D3 A4 AE 33)
 .hash = (52 44 F8 C9 55 1F 54 3F 97 D7 AB AD E2 DF 1D E0

 F2 9D 4F BC)
 .ver 1:0:2204:21

}
.assembly Hello as "Hello"

{
 // -- The following custom attribute is added automatically…

 // .custom instance void
[mscorlib]System.Diagnostics.DebuggableAttribute::.ctor(bool,
 // bool) = (01 00 00 01 00
00)
 .hash algorithm 0x00008004
 .ver 0:0:0:0

}
.module Hello.exe

// MVID: {2909C16C-A45A-4C39-B3E1-44EB8181F6D8}

Without discussing the code in detail, I’ll pick out a few interesting points. The .assembly
section halfway through the listing shows that the file contains an assembly called Hello,
currently at version 0.0.0.0; the .assembly extern section at the top of the file makes

reference to the assembly mscorlib, which is at version 1.0.2204.21. The .module entry
shows that the Hello assembly only contains a single module, Hello.exe. Remember that an
assembly can contain more than one module, although only one module contains the
manifest.

The last line defines the Module Version ID (MVID), a unique identifier used to identify this
version of the module. This identifier is in the form of a GUID (a Globally Unique Identifier),
something that is thoroughly familiar to anyone who has done any COM programming.

Double-clicking on the Main method at the bottom of the tree in the ILDASM window
displays the following:

.method public hidebysig static void Main() il managed
{

 .entrypoint
 // Code size 11 (0xb)

 .maxstack 8
 IL_0000: ldstr "Hello World!"

 IL_0005: call void [mscorlib]System.Console::WriteLine(class
 System.String)

 IL_000a: ret
} // end of method Hello::Main

In the first line, you can see the signature of the method, and the fact that it is IL managed
code. The body of the method consists of three IL instructions, one of which calls the
WriteLine() method from the mscorlib assembly.

Application Domains

.NET has introduced the concept of an Application Domain, or AppDomain. These are like
lightweight processes, meaning that you can have more than one inside a native operating
system (i.e., Win32) process.

AppDomains provide a halfway house between threads and full processes. Processes are
useful because they are completely isolated from one another; each has its own address
space, and it isn’t easy for one process to write to (and possibly corrupt) the address space
of another. The problem with processes is that they are heavyweight—there’s a lot of data
associated with a running process, and creating them and then swapping between them in a
multitasking system is expensive in time and resources. This is especially true under
Windows, but less of a problem under Unix.

Threads are good because they don’t have all the baggage associated with a process, and
this makes them much more lightweight. Creating and maintaining threads is much less of a
drain on system resources, and multitasking between them is much quicker. There’s a
problem, though, in that threads share many parts of their parent process, which leads to the
many well-known problems concerned with unwanted (and unanticipated) interactions
between threads.

An AppDomain, which may contain one or more assemblies, is completely isolated from any
other AppDomains running in the same process, as shown in Figure 1.5, so there’s no
sharing of memory or data. In fact, the separation is so complete that another AppDomain

running in the same process is treated in exactly the same way as one residing on another
machine; the same .NET remoting mechanisms are used to communicate between them.

Figure 1.5: AppDomains.

How Does .NET Affect Visual C++?

With all the changes and new features that have been outlined thus far, you may well be
wondering what is happening to Microsoft’s traditional programming languages, VB and
Visual C++. As you’ll see shortly, VB has changed a lot, with a whole host of new features
being added and some old ones being removed. Visual C++ hasn’t changed quite as much,
but it still has many interesting new features.

Visual C++

Microsoft has made several changes to its C++ compiler to make it as standard-compliant as
possible. The documentation even includes a list of sections in the C++ standard where
Visual C++ has compliance problems.

There are a number of new compiler and linker flags, many of which are concerned with
managed code and attributes (such as the /IDLOUT linker option to control the output of IDL
[Interface Definition Language] files). There are also a couple of new C++ language items
that seem designed to mimic Java features. These include __sealed, which resembles
Java’s final construct in that you can’t inherit from a sealed class, and you can’t override a
sealed member function.

The __super keyword lets you call a base class function in much the same way that super
does in Java. C++ supports multiple inheritance, however; so this rather complicates things
because more than one base class could define a function with the same signature. It turns
out that normal function overloading rules apply, so there must only be one unique match
provided by all the base classes.

Additionally, __interface behaves very much like Java’s interface keyword. Earlier versions
of Visual C++ had an interface keyword, but it was really only a typedef used as a marker
to help identify COM interfaces. The new __interface is a real language feature, defining a
classlike construct that can only contain public, pure virtual functions, which can only inherit
from other interfaces. There’s one other rather nice feature related to interfaces. If a class
inherits from two interfaces and those interfaces define a method with the same signature,
the derived class can override both members separately, using a notation based on the
scope resolution operator.

Although Visual C++ code can be compiled down into traditional object code and linked into
executables, it is now possible to write classes that are managed by the CLR. There are
three types of managed classes: garbage-collected classes , value classes, and managed

interface classes. Traditional C++ classes that don’t interact with the CLR are called
“unmanaged classes.”

Garbage-collected classes are the most general-purpose of the three types. As the name
suggests, deallocation is handled by the garbage collector, which means that you no longer
have to worry about using “free.” Because managed classes have to fit in with the OO model
used by IL, there are restrictions on what you can do in managed classes. For example,
such classes can only use single inheritance (although they can implement interfaces), they
can only inherit from managed classes, they cannot have a copy constructor, and they
cannot override the new and delete operators. You create a garbage-collected class in C++
by using the __gc keyword, and you can also use the __nogc keyword to declare an
unmanaged type.

Value classes are intended to have short lifetimes and are usually allocated on the stack.
Using the __value keyword on a class or struct declaration shows that it is a value class,
and that garbage collection doesn’t need to be used for its instances. A managed interface
embodies the notion of a COM interface and is created by adding the __gc keyword to an
interface definition. As well as classes, arrays and strings can be managed so that they are
automatically deallocated when no longer needed. As a nice side effect, managed arrays are
automatically given sensible default values on creation.

There’s actually quite a lot more to managed classes than simply Java-like garbage
collection. Because they use services provided by the .NET Framework, managed classes
can be used by any other language that targets the COM+ runtime, which means that it is
now very simple to share classes with VB or C# code. This raises the intriguing prospect
that, because managed classes can inherit from one another and VB now has inheritance, a
VB class can inherit from a managed C++ class!

Visual Basic

With the release of VB7 in VS .NET, Microsoft is finally proving that VB is more than a toy
language, a criticism often leveled at it by C++ programmers because it hasn’t had the sort
of language constructs and syntax that other, more “grown up” languages possess. It’s true
that VB may have started out as such, but as time has passed, the way in which VB has
been viewed has changed. It has gone from a limited but very simple way of writing
Windows apps to a product capable of producing much more complex solutions. VB7 sees a
fundamental change in the VB philosophy, with OO features being added to the language.
The new VB inheritance follows a very Java-like model, as it has single inheritance, and all
classes derive from an ultimate Object class.

Inheritance behavior is controlled by the Inherits keyword and the NotInheritable and
MustInherit properties. Inherits lets a class specify its (one and only) base class, whereas
the other two properties are VB’s equivalent of Java’s final and abstract class modifiers,
which let you specify that a class cannot have descendents or that it must act as a base
class. This means that you can now write code like this:

Class Vehicle

 ' stuff in here
End Class

Class Car Inherits Vehicle

 ' more stuff
End Class

Function overloading and polymorphism are handled in the base class by the
NotOverridable, Overridable, and MustOverride modifiers, and by Overrides in the
derived class, like so:

Class Vehicle

 MustOverride Sub Start()
 End Sub

End Class

Class Car
 Inherits Vehicle

 Overrides Sub Start()
 ' code in here

 End Sub
End Class

In this example, MustOverride provides an abstract method with no implementation, which
must be overridden in derived classes. The Car class then uses the Overrides modifier to
show that this is its version of Start(). Classes in VB now also have proper constructors and
destructors via the Sub New() and Sub Destruct() procedures, which replace the old
Class_Initialize and Class_Terminate event procedures. The following code fragment
shows the constructor for the Car class calling its base class constructor:

Class Car Inherits Vehicle

Overrides Sub Start()

 ' code in here
 End Sub

End Class

Along with single inheritance, VB has retained the interfaces that have been features for
some time, and it has also gained shared members. These are what C++ and Java people
know as static members—properties, procedures, and data members that are shared by all
instances of a class.

Other language enhancements include namespaces, which work in a similar manner to their
C++ counterparts but look like Java imports, and assemblies. In addition, error handling has
been enhanced. Programmers who are used to the error- handling facilities provided by C++
and Java are often rather aghast at the rudimentary protection and unstructured coding
provided by the On Error constructs. VB7 has also grown up in this area because it now
supports proper exception handling using the Try…Catch…Finally syntax. This
improvement appears to provide a nicer syntax wrapping around the existing error
generation and handling mechanism because there doesn’t seem to be any way to throw
your own exceptions.

And then there’s threading! VB7 now lets you write multithreaded code, using the Thread
class. It isn’t immediately apparent from the preliminary documentation how (or even
whether) thread synchronization is going to be handled, but it is a welcome addition

Here’s C#

Where has C# come from? You can trace its origins back to two facts. It’s no secret that
Visual J++ met a rather untimely end, killed off by the bumpy relationship between Microsoft
and Sun. Microsoft recognized that Visual J++ had two unique qualities: The first of which
was that Java was a simpler language for OO programmers to use than C++, and the
second was that it was very easy to write COM components in Visual J++.

C++ can be a very hard language to use well, so much so that it is overkill for a lot of
Windows programming and component development tasks. Microsoft therefore sought to
develop a proper OO language that had its roots in C++, but removed many of the features
that make C++ difficult to use.

Writing fully-featured COM components in C++ using the ATL library is likewise not a simple
task, but it was much simpler in Visual J++. This was partly due to the fact that the Java
Virtual Machine could provide a lot of the functionality that C++ programmers had to provide
for themselves, leaving the J++ programmers free to concentrate on what their code was
supposed to do rather than on the mechanics/housekeeping of writing code.

The end result is C#, a language in the C family with specific features for component
development. It extracts the best features from C++, Java, and even VB. C#’s basic syntax
comes from C++ and includes operator overloading. C# doesn’t currently support templates,
but Microsoft says that it is looking into ways of providing a generic programming
mechanism in a future release. The everything-declared-in-one-place class structure comes
from Java, and C# also uses the Java-like idea of single inheritance and interfaces. It is
important to note, though, that single inheritance isn’t a feature of C# syntax that has been
borrowed from Java, but is a reflection of the fact that the underlying CLR supports a single-
inheritance model. From VB, C# has gained the For Each loop for iterating over collections
as well as the idea of having properties and events built into the language.

The design goals of C# can be stated concisely as:
§ Being based on a simple extensible type system where everything can be treated as

an object
§ Having first-class support for writing components
§ Being designed to be robust and durable through the use of garbage collection,

exceptions, type safety, and versioning
§ Having a high level of integration into Visual Studio .NET with COM+, SOAP, and DLLs
§ Being designed to preserve existing investments both in terms of existing knowledge of

C++/Java and an investment in COM and Win32 through its ability to interoperate with
COM components and code housed in DLLs

I’ve already talked about some of these design goals. Basically, C# is the high-level
language for the .NET Framework and the base classes, and it provides the best fit between
a high-level language and .NET.

And you’ve already seen the C# Hello World program:

using System;

// Here's a Hello World program in C#
class Hello

{
 public static int Main()

 {
 Console.WriteLine("Hello world!");

 return 0;

 }
}

Java programmers will probably feel thoroughly at home with this code, and C++ coders
shouldn’t be too alarmed. Let’s just note a few important points about the code before
moving on.

The first important fact, one that is familiar to Java programmers, is that because C# is a
pure OO language, all data and method declarations have to be inside a class. In true C
style, every program has to have exactly one Main() method where program execution
starts. As with all other C family languages, I/O isn’t a part of the language, but instead is
provided in the runtime libraries. In this case, the WriteLine() method belongs to the
Console class, which as you might expect writes a line of output to the console window. In
order to use the Console class, you’ve got to let the compiler access the appropriate library.
This is done with the using keyword, which is similar in concept to Java’s import (and not at
all like C’s #include!).

If you’re not using an IDE, such as Visual Studio .NET, you can type the code into a file with
a .cs extension using your favorite editor, and then compile it from the command line:

C:> csc hello.cs

The output from this command is an EXE file, which you can run just like any other Windows
executable.

What about COM?

By this time, experienced programmers may be wondering where COM fits in, or whether
COM has a place at all in the brave new world of .NET. One thing that is definite is that COM
isn’t going to disappear, although it will be much less evident to the .NET programmer.

Microsoft introduced COM as a way for programmers to create distributed applications out of
components that could be written in different languages and hosted on different operating
systems. COM’s interoperability was achieved by putting strong firewalls in between clients
and objects in such a way that a client might well not know what language the component
was written in or where it was located. This isolation is achieved through the use of
interfaces, which require a COM object to make callable methods available in a standard
layout in memory and for methods to use a standard set of data types. Everything in the
COM world—objects, interfaces, and lots of other things—is identified by a 128-bit identifier
called a GUID. These GUIDs as well as other information about the COM object are stored
in the Registry on a Windows machine.

COM+ is an extension of COM, introduced with Windows 2000, that extends the COM model
to add features that are needed by enterprise applications, such as transaction management
and increased security. Many of the features that were part of Microsoft Transaction Server
(MTS) under Windows NT 4 are available as COM+ Services under Windows 2000.

.NET has taken a different approach to writing components, and therefore .NET components
aren’t the same as COM components. To give you a small idea of how different these
components are, .NET components don’t need to use the Registry and don’t need type
libraries because all information about a component is carried within the assembly in the
form of metadata.

COM objects and .NET objects can work well with each other through a facility called COM
Interop, which lets .NET objects access COM objects by providing a .NET wrapper class,
and lets COM objects access .NET objects by providing all the requisite Registry entries and
COM object creation mechanisms.

COM Interop is covered in detail in Chapter 16.

Chapter 2: The .NET Programming Model

By Julian Templeman

In Depth

Before examining the .NET base classes in any detail, the programming model used in the
Common Language Runtime (CLR) and in particular the Intermediate Language (IL), which
is rather unusual when compared to other bytecode systems, needs to be explained. Most
other intermediate forms of code, such as Java bytecode, are very simple, and often
bytecode instructions map straight onto processor or virtual machine instructions. This
means that the bytecode tends to lose the structure of the high-level language that created
it.

IL, on the other hand, is object-oriented (OO), which means that many features that have
previously been exclusive to certain high-level languages are now available to any language
that compiles down to IL. As mentioned earlier, Visual Basic 7 now has OO features, but the
truth is that it really just reflects what is available in the underlying IL. The same is true of C#
and managed C++. Thus, all the .NET languages use a common OO model provided by IL,
and it is that model that this chapter investigates. You will see that many traditional OO
language features—and several new ones—are provided by IL, and you will see how these
features are expressed in the .NET languages, especially C# and Visual Basic (VB). You will
also see that because high-level languages all have their own syntax and peculiarities
(especially languages such as VB, which has a lot of history behind it), there are certain
.NET OO features that are better expressed in some languages than in others. However,
there may be some features that are not expressible in some languages at all.

OO Programming from 30,000 Feet

This section presents an introduction to object-oriented programming for those who may not
have used an object-oriented programming language previously. This information is no
substitute for a proper grounding in OO, but it should suffice to give you a basic
understanding. If you are familiar with OO programming, you can quickly scan this section
and continue on to the “Classes” section.

Object-oriented programming is not new. It originated in academic computer science studies
in the 1960s. Despite its age, OO techniques and languages have only recently become
more widely used. There are several reasons for this: First, early OO languages were very
academic and were concerned with OO coding techniques, meaning that there really wasn’t
an emphasis on usability or runtime efficiency. Second, these languages only tended to run
on large university mainframe machines, and so were not available to most programmers.

During the 1970s, several authors started to bring object orientation to a wider audience,
arguing that it could solve many of the problems associated with large-scale program
development. Several new OO languages, including C++, were developed toward the end of
1970s, and this, coupled with the increasing availability of powerful desktop hardware
expanded the use of OO programming.

Nowadays, very few people would question the benefits of object-oriented programming
(OOP) techniques. Almost every new language that is developed is object-oriented, and OO
features are being added to many traditional languages.

Do you have to use an object-oriented programming language in order to do object-oriented
programming? Perhaps surprisingly, the answer is no. Object-oriented programming is
simply a technique that can be applied, with greater or lesser success, in almost any
programming language. It is possible to write OO code in non-OO languages, and by the
same token, it is possible to write non-OO (or very bad) code in OO languages. Using an OO
language does not make you an OO programmer any more than buying a set of wrenches
makes you a mechanic. An OO programming language simply makes it easier to express
OO programming concepts in code.

What Is an Object?

It is very difficult to provide a concise definition of what an object is, and you would find
considerable disagreement if you took a poll among programmers and computer scientists.
Here’s a simple but useful definition: An object is simply something you can put a name to,
such as a car, a bank account, an array, or a button on a form. Some people define an
object as representing something in the real world; that may be true, but when was the last
time you saw an array or a linked list?

Object-oriented programming is a style of programming that represents a program as a
system of objects. A banking program might consist of bank, account, and transaction
objects; a model of a road transport system might consist of road, traffic signal, and vehicle
objects, and so on. Objects such as cars and accounts are characterized by their behavior.
You know that you can deposit money into an account, withdraw money from an account,
and find out how much the account contains. You don’t need to know how your bank
account works in order to use it, but behind the scenes there has to be data that reflects the
state of the account.

This data governs how the object responds to requests. Your bank account will allow you to
withdraw money if you have sufficient credit; if credit is insufficient, your withdrawal request
will be refused. The important point is that the object decides what to do based upon its state
data, and this state data is managed by the object.

This mixture of state and behavior is what makes up an object. You’ll notice in Figure 2.1
that clients interact with the behavior side of the object. This is intentional, as clients should
not be able to directly modify the object’s state. After all, the bank would really not be very
happy if clients could directly alter the balance in their accounts.

Figure 2.1: Structure of an object.

When thinking about objects, you can divide them into three broad classifications, depending
on whether state, behavior, or identity is the most important factor. If state is the most
important classification, the object is known as a value object. Good examples of value
objects are dates, times, strings, and currency objects. What’s most important about these
objects is the data they hold. If you have two date objects both holding October 27th, you
can use either of them. Identity isn’t important, but state is.

If behavior dominates state and identity, the object is known as a service object. Think of
checking in at a major airport—you go to a check-in desk, and the clerk takes your ticket and
checks you in. Does it matter which clerk? Not usually; any clerk can provide this service to
you. A good example of a service object is one that checks a credit card number: All you do
is pass the service object the number, and it tells you whether the number is valid or not.
There is no state for it to remember; therefore any “card check” object will work as well as
any other.

The third type of object is one where its identity is the most important factor. Consider the
Account object previously described: state (such as the balance) is important, and behavior
(depositing and withdrawing) is important as well, but identity (which account it is) is
absolutely vital. Obviously, it is very important that your deposit go into your account. These
objects are called entity objects, and often represent data that is retrieved from a database,
which is identified by a key of some sort.

Why is this classification important? It can help you decide what needs to be provided in
code, because certain operations only make sense for particular types of object. Should you
allow users to make exact copies (clones) of your objects? It’s fine for value objects,
because it doesn’t matter which object you’re talking to, so creating another one shouldn’t be
a problem. What about service objects? Cloning is concerned with duplicating state, and if
your service object doesn’t have any state, cloning it doesn’t make much sense. You may as
well create a new one. Entity objects are another matter altogether because you generally
don’t want to let people create identical copies. Having two objects representing the same
bank account could be disastrous because both would have their own idea of what the
balance should be.

Classes and Objects in Code

Let’s start looking at some common OO concepts and see how they are expressed in code.

As mentioned earlier, an object is something that possesses behavior and state. In OO
programming languages, the behavior is represented by functions (also known as methods)
and the state by variables (also known as fields). A class is the definition of an object type,
such as Account or Car, and it lists all the variables and functions that make up an object.

The following code shows how you would define a very simple Account class in Visual
Basic 7:

Public Class Account

 Private balance As Double
 Private accountNo As Integer

 Public Function deposit(ByVal amount As Double) As Boolean

 balance = balance + amount
 Return True

 End Function

 Public Function withdraw(ByVal amount As Double) As Boolean
 If (balance-amount < 0) Then

 Return False

 End If
 balance = balance - amount

 Return True
 End Function

 Public Function query() As Double

 Return balance
 End Function

End Class

It is not necessary to understand much about Visual Basic in order to get a flavor of what is
going on in this code. The first line starts the definition of a class called Account, and this
definition continues until the closing End Class. Inside the Account definition, there are two
variables that hold the state of the object: The first is a floating-point value that holds the
balance, whereas the second is an integer that holds the account number. These are
marked as Private, meaning that they cannot be accessed from outside the Account class.

These variables are followed by the code for the deposit, withdraw, and query functions,
and they are marked Public so that they can be accessed from outside the class. You can
see how these functions modify and maintain the balance. The deposit function adds the
amount it is passed on to the balance; note that for simplicity the code does not check for
invalid input data, although you could easily add that feature. The withdraw function checks
that the account will not overdraw, and if all is okay, it adjusts the balance accordingly. The
query function simply returns the current value of the balance. These three functions let
clients interact with the account, but prevents them from directly manipulating the balance;
the object can check the validity of actions proposed by the client.

Once you have defined the class, you can start to use it by creating objects. The sample
code shows how you can create an Account object in VB and interact with it. Don’t worry
too much about the VB syntax; instead, concentrate on getting the overall idea of what’s
going on:

Dim myAccount As New Account
Dim yourAccount As New Account

myAccount.deposit(1000) ' deposit 1000 in my account

yourAccount.deposit(100) ' deposit 100 in your account

myAccount.withdraw(500) ' withdraw 500 - OK
myAccount.query() ' returns 500

yourAccount.withdraw(500) ' fails!

In the first two lines, the compiler is told to create two Account objects called myAccount
and yourAccount. Because the Account class has been defined, it knows what an
Account is and how to create it.

In the third and fourth lines some money is deposited in each account—1,000 in one, and
100 in the other. Note how the calls are coded to these functions—each call starts with a
reference to the object that should be used and is followed with the operation that it should

perform. This is typical of the notation used by OO languages. Later in this section you’ll see
that C# does things in a similar manner.

In the fourth line, a withdrawal of 500 is made from myAccount, which succeeds because
the account contains 1,000. A query is then made to the account to find out its balance,
which returns the current value. The final line attempts to withdraw the same amount from
the other account, but because that account only contains 100, the operation fails. In other
words, I’ve tried the same operation—withdraw 500—on both accounts, and their response
has been different because of their internal state.

When you look at the code in the deposit, withdraw, and query methods, you may wonder
just how the method knows on which object’s behalf it is acting. There’s no mention in the
code of whose balance is being adjusted or checked, and yet the correct accounts get
credited and debited. The idea—approximately—is that a reference to the object is passed
over to the method, and this is used to qualify all references to class members. So when
deposit() is called for myAccount, it performs as if the following code has been executed:

Public Function deposit(myAccount, ByVal amount As Double) As
Boolean
 myAccount.balance = myAccount.balance + amount

 Return True
End Function

You don’t see this being done, but the method always knows which object has called it.
Many OO languages let you access this reference to the calling object, which is called “Me”
in Visual Basic and “this” in C# and C++.

To show you how the same principles apply across languages, look at the following code for
the Account class in C#. You’ll see later in this section that, allowing for minor syntax
differences, the code structure is almost identical between the two languages:

public class Account {
 private double balance;

 private int accountNo;

 public boolean deposit(double amount) {
 balance = balance + amount;

 return true;
 }

 public boolean withdraw(double amount) {

 if (balance-amount < 0) return false;

 balance = balance - amount;
 return true;

 }

 public double query() {

 return balance;
 }

}

The code for using the class in C# is also very similar to how it is used in VB, differing only in
the way in which the objects are initially created:

Account myAccount = new Account();

Account yourAccount = new Account();

myAccount.deposit(1000); // deposit 1000 in my account
yourAccount.deposit(100); // deposit 100 in your account

myAccount.withdraw(500); // withdraw 500 - OK

myAccount.query(); // returns 500

yourAccount.withdraw(500); // fails!

Inheritance and Polymorphism

You’ve already learned two important principles of OO. Encapsulation binds together data
and functions into a single construct, whereas data hiding restricts access to the variables
that make up the state of your objects. Let’s now look at inheritance and polymorphism, two
other very important features that are supported by every true OO language.

In the real world, objects are classified as belonging to several different types at once. For
example, a sports car is a car and also a vehicle, so you could say that a sports car has
three types—sports car, car, and vehicle. The appropriate type is used depending upon the
circumstances, so if asked to count all the cars in a car park, you would include the sports
cars because they are cars. This ability to perform hierarchical classification comes naturally
to humans, and it is very useful in programming.

Inheritance gives you the ability to express this “is a” relationship between classes in your
code. Figure 2.2 shows a simple inheritance hierarchy, detailing how various types of vehicle
are related.

Figure 2.2: An inheritance hierarchy.

In VB, you could set up these relationships in code like this:

Public Class Vehicle
 ' code for the Vehicle class

End Class

Public Class Car

 Inherits Vehicle
 ' code for the Car class

End Class

Public Class SportsCar
Inherits Car

 ' code for SportsCar
End Class

You can see from the listing how the Inherits keyword is used to set up an inheritance
relationship. Vehicle is known as a base class or superclass, and Car and SportsCar are
derived classes or subclasses .

You can also see that inheritance is easy to do in code, but the art of writing good OO
programs lies in determining which relationships you should set up—rather like in real life.

Why is this inheritance useful? Let’s look at an example. If you ask someone to get you a
vehicle, you are not being very specific, and so the person could bring you a car, a sports
car, or a truck. If you ask for a car, then a car or a sports car will do, but a truck will not
because it is not a type of car. The same thing happens in code; because a car is a vehicle,
you can use a car object anywhere that a vehicle is specified. This turns out to be very
powerful. You can write a program that originally has car and truck classes, and you can use
these wherever vehicles are wanted. Later on someone can come along and add another
kind of vehicle—say a bus—and because a bus is also a type of vehicle, you can use it
wherever a vehicle is required. This means that you can add new functionality to the
program without disturbing existing code, and this is of great benefit in complex modern
programs.

As before, the same principles apply to other OO languages; the following is an example in
C#:

class Vehicle {

 // code for the Vehicle class
}

class Car : Vehicle {

 // code for the Car class
}

class SportsCar : Car {

 // code for SportsCar
}

You’ve seen how inheritance works, but what about polymorphism? This is an important and
very useful feature of true OO languages, whose name derives from the Greek for “many
forms,” and leverages the idea that you can consider an object to have several different
types at once.

Suppose you are writing a drawing program and you have a class called Shape , from which
all the shapes used in the program are derived. You know that each shape has to be able to
draw itself, but only the individual child classes themselves will be able to say what needs to
be done to produce the right output. So you end up with a series of classes, each of which
implements a Draw() method that looks identical, but is implemented differently. The
following is a bit of VB pseudocode that illustrates this idea:

Public Class Circle
Inherits Shape

 Public Sub Draw()

 ' code for drawing circles
 End Sub

End Class

Public Class Square
 Inherits Shape

 Public Sub Draw()
 ' code for drawing squares

 End Sub
End Class

Why is this important or useful? You already know that you can consider Circles and
Squares to be Shapes, and you know that all Shapes have a Draw() method. This means
that you can be passed any Shape and call its Draw() method, and the Shape will do
whatever is necessary to draw itself. The following method shows this in action:

Public Sub DrawShape(ByRef s As Shape)

 s.Draw()
End Sub

It doesn’t matter what sort of shape you’re passed, you can be sure that the correct Draw()
method will be called. This has great implications for program maintainability and evolution
because you can add new shapes to the hierarchy at any time, and they’ll still work with your
DrawShape() method.

In many OO languages, functions that work in this way are called virtual functions, and
they’re said to work by a process called late binding. The word late is used because you
don’t actually know until runtime which function is actually going to be executed. All the
languages in .NET now support virtual functions, as you’ll see.

A Small Digression into UML

When you start dealing with the design of OO programs, you will more than likely come
across the Unified Modeling Language (UML). In a nutshell, UML gives you a notation for
describing the structure and operation of object-oriented programs, and anyone who intends
to use OO these days needs to know UML.

If you want to know more about UML, there are many good books available on the subject;
one such book is UML Distilled (by Martin Fowler and Kendal Scott, Addison Wesley, 1999).
To give you an idea of what UML looks like, Figure 2.3 shows the hierarchy diagram redrawn
using the UML notation.

Figure 2.3: UML class diagram.

You can see how classes are represented by boxes, with the name of the class in the top
section. The other two sections contain details of the classes’ data and functions, and the
arrows point from a class to its parent.

Interfaces

There is one other topic that needs to be discussed before leaving this brief overview of OO,
and that is the idea of interfaces. They are used extensively within the .NET classes, and
therefore, it is important that you understand what they are and how they are used.

Consider this rather simplistic definition: If a class represents something you can give a
name to, then an interface represents some behavior that you can give a name to. For
example, suppose you are writing software for a publishing company, such as The Coriolis
Group. You will end up with a lot of classes representing items that you have to deal with
such as books, catalogues, orders, and invoices. It turns out that all of these items will
probably need to be printed. All of these types share the characteristic that they are
“printable,” even though they are not related by inheritance. An interface provi des a way to
indicate this behavior in code by specifying one or more functions that a class must
implement. For example, a “printable” interface might specify a “print” function, which means
that any class that wants to be considered printable has to implement the print function.

The following code shows how you can define and implement an interface in VB:

Interface Printable
 Sub print()

End Interface

Public Class Account

 Implements Printable

 Sub print() Implements Printable.print
 ' print the account

 End Sub

 Private balance As Double
 Private accountNo As Integer

 ' Rest of class definition omitted

End Class

The Account class is now “printable,” so you can use an Account object wherever
something printable is required.

Interfaces often originate during the design process when you discover behavior that needs
to be implemented by classes, but can’t define how it should be accomplished. It’s a way of
specifying “if you want to do this task, then you have to do it this way….”

Now that some of the major concepts involved in OO programming have been briefly
discussed, let’s move on to some .NET-specific material.

Classes

You now know that the idea of a class is central to OO programming, so let’s look at how
classes are implemented in the CLR. As previously mentioned, .NET is unusual in that the
Intermediate Language (IL) directly supports OO constructs, whereas most bytecode
systems are more akin to a traditional assembly language.

Because classes and other OO concepts are implemented in the CLR, there are certain OO
features that all .NET languages can support. And, there are some OO features that
languages will have to implement in a particular way in order to fit in with the .NET way of
doing things.

Class Elements

.NET classes can consist of four elements:
§ Methods
§ Fields
§ Properties
§ Events

These elements are discussed throughout this section, but bear in mind that how these
components are implemented (and even whether they’re accessible at all) depends upon the
language you’re using.

Methods are the functions that provide the “workings” of the class. A method has a name,
may take arguments, and has a return type. The return type is void if the method doesn’t

return anything, and this will map onto a VB Sub. Classes can contain constructor methods,
which are executed when an object is being created and are used to initialize the new object,
and a finalizer method, which can be used to tidy up after the object when it is being garbage
collected.

Fields hold the data belonging to the object and are represented by value types or
references to objects. It is good OO practice not to make object state data visible outside the
object, so .NET objects can use properties to let clients interact with object state without
having direct access to it.

The following code shows how a property looks in VB:

Property Color() As String
 Get

 Color = myColor
 End Get

 Set
 MyColor = Value

 End Set
End Property

The property looks like a method whose body consists of a get and/or a set clause. The get
clause returns the value of the property, whereas the set clause uses the special “Value”
variable to retrieve the value passed in. The important thing is that, although you know that
the property is implemented in code, to the client it looks like a field, so it can be used like
this:

MyObject.Color = "red"

VB users will realize that this is very similar to what they’ve been used to in Property Get
and Property Set constructs. But the point is that this is now available to every .NET
language, so you can program properties in exactly the same way in C# and C++, and more
importantly, you can use properties across languages.

Another important feature that distinguishes properties from fields is that even though a
property is often used to manage the state of a class member variable, it doesn’t have to be
the case. This means that you can have a dynamic read-only property that, for example,
gets its value from a database or some sort of online data feed.

Because .NET has been designed for writing GUI and Web code, and because events and
event handling form a critical part of those types of applications, Microsoft decided to build
an event-handling mechanism into the features supported by the CLR. If a class supports
events, it is capable of notifying interested parties when something occurs. Other objects can
find out what events a class publishes and can decide to subscribe to those they are
interested in. An obvious example is a button on a form. The button may have one event, the
“clicked” event, and the form can decide to subscribe to the event so that it gets told when
the button has been clicked. Events form the basis of GUI programming, but are also useful
in many other types of programs as well.

Class Characteristics

Table 2.1 shows the characteristics that .NET lets you apply to classes. Remember that how
(or even whether) these are expressed in your own programming language will vary. Table
2.2 shows a number of characteristics that can apply to class members.

Table 2.1: Characteristics of .NET classes.

Characteristic Description

Sealed Marks a class that can’t be used as the basis for inheritance.

Implements Marks a class that implements one or more interfaces.

Abstract Marks a class that contains one or more abstract methods.
You can’t create instances of abstract classes.

Inherits Marks a class that inherits from another one.

Exported Marks a class that is visible outside its assembly.

Table 2.2: Characteristics of .NET class members.

Characteristic Description

Abstract A method that has no implementation is abstract and makes its
class abstract. Classes that inherit from an abstract class must
implement the abstract method.

Private, Public,
Family, Assembly,
Family or Assembly

A private member is accessible only within the class in which it
is defined. A public member is accessible to anyone. A member
with family accessibility is accessible to the defining class and to
all classes derived from it, whereas members with assembly
accessibility are accessible to classes in the same assembly.
Family or assembly accessibility gives access to classes that are
either derived or in the same assembly.

Final A final method cannot be overridden in a derived class.

Overrides A method overrides one that it has inherited from a parent class.

Static A member belongs to the class itself rather than to any instance
of the class. This member is shared between all members of the
class and can be accessed even if no class members exist.

Overloads Used to mark methods that share the same name but differ in
their argument lists.

Virtual A virtual method is one that can be invoked by late binding. The
type of the object used to make the call determines which
method is called rather than the type of the reference through
which the object is accessed.

Synchronized Only one thread can access synchronized code at a

Reference and Value Types

In most programming languages, primitive types such as integers and characters are
declared on the stack (rather than on the pile) and are copied when they are passed around.
Objects, on the other hand, are usually created on the heap and are accessed via
references. These references are passed around rather than the objects themselves.

The CLR divides its types into two categories:
§ Value types—Are derived from System.ValueType and are passed around by value.

They are stored as efficiently as primitive types are in other languages, but they are also
objects and so methods can be called on them. Note that although you can derive new

types from System.ValueType , you can’t derive from the other value types provided in
the System namespace.

§ Reference types—As their name implies, are full classes whose objects are accessed
via references. When you are creating new types, you need to think about how they will
be used and whether objects will be more efficiently passed by value or by reference,
and then define them as either value or reference types.

The system value types, such as System.Int32, provide exact equivalents to language
primitive types. So an Int32 is equivalent to an int in C# and an Integer in VB; you can use
the underlying type if for some reason you don’t want to use the language-specific
equivalent.

Value types, such as System.Int32, pose a problem to the designers of OO languages. In
order to have a nice, unified type system, it is desirable that everything be an object, but this
isn’t good for the language. It is clear that if every integer or character has to be created as
an object, has methods called on it to do any operation (even adding two numbers), and has
to be garbage collected, then basic operations, such as arithmetic, are going to be very
inefficient. The other alternative is to make the basic types special, so that they are simply
bytes holding data and not objects at all. If you do this, low-level operations are much more
efficient, but you end up with a two-tier type system.

.NET has found a third way to treat types, which provides the advantages of both other
approaches without the problems. In .NET, value types are only treated as objects when
they need to be. So if you simply declare an integer, it is represented by a few bytes just as it
would be in a non-OO language. If you add two integers, it will be done by using simple
arithmetic, not by calling a class method. If you pass the integer to a method that needs an
object, .NET will silently encase the integer in an object wrapper, which is a process called
boxing.

When a value is boxed, an object is created that holds its type and value. For example,
suppose you have a method in C# that takes an object reference, but you pass it an integer,
like this:

int n = 3;
foo(n);

…
public void foo(object o) { … }

What happens to the integer? You can see what happens if you look at the disassembly of
the IL code:

.method public hidebysig static void Main(String[] args) cil managed

{
 .entrypoint

 // Code size 14 (0xe)
 .maxstack 1

 .locals ([0] int32 n)

 IL_0000: ldc.i4.3
 IL_0001: stloc.0

 IL_0002: ldloc.0
 IL_0003: box [mscorlib]System.Int32

 IL_0008: call void Boxer.Class1::foo(class System.Object)
 IL_000d: ret

} // end of method Class1::Main

The first highlighted line shows the declaration of an integer called n. The lines labeled
IL_0002 and IL_0003 show n being boxed into a System.Int32, and the following line shows
the call being made to foo().

As you might expect, unboxing is the process of extracting the value type from the object
and is usually done using a cast. If the foo() method was implemented like this:

public static void foo(object o)
{

 int n = (int)o;
 …

}

You would expect the IL to contain something like the following, where you can clearly see
the object being unboxed and stored into the integer:

.locals ([0] int32 n)
 IL_0000: ldarg.0

 IL_0001: unbox [mscorlib]System.Int32
 IL_0006: ldind.i4

 IL_0007: stloc.0

Structs

As well as classes, .NET supports structs. The name comes from the C struct keyword that
is used to define a structure or compound datatype. The following is a simple struct in VB
that describes a point on a graph:

Public Structure Point
 Private myX As Integer

 Private myY As Integer

 Property X() As Integer
 Get

 X = myX
 End Get

 Set
 myX = value

 End Set
 End Property

 Property Y() As Integer

 Get
 Y = myY

 End Get
 Set

 myY = value
 End Set

 End Property

 Sub New(ByVal a As Integer, ByVal b As Integer)
 myX = a

 myY = b
 End Sub

End Structure

If we look at the same code in C#, we can see how similar the constructs are:

struct Point
{

 private int x,y;

 public int X
 {

 get { return x; }
 set { x = value; }

 }
 public int Y

 {
 get { return y; }

 set { y = value; }
 }

 public Point(int a, int b)

 {
 x = a; y = b;

 }
}

Structures are similar to classes in many ways, and they can contain fields, methods,
properties, and events. But there’s one major difference—structures are value types,
whereas classes are reference types. This has several consequences:
§ They are stored on the stack rather than on the heap.
§ They are accessed directly, not through references, and so aren’t garbage collected.
§ They are passed by value when they’re copied around.

These three differences mean that structs can be more efficient than classes for
representing value types.

There are quite a few other differences between structures and classes. Let’s look at three in
particular. The first is that they don’t take part in inheritance, which means that they can’t
inherit from other structures or classes, and they can’t be used as a base class. They can,
however, implement interfaces, and they do this in exactly the same way as a class does.

The second difference concerns constructors. You can implement constructors in structs, but
they must have parameters. You’ll get a compiler error if you try to give a struct a
parameterless constructor, and you’ll also get an error if you try to add a finalizer.

The third difference is that members of structs can’t be initialized. This means that in C# you
can’t use:

struct Point
{

 private int x=0, y=0; // error!
 …

If you want to have your structs initialized, you need to provide a constructor to do it yourself.

Inheritance

.NET only allows classes to inherit from a single parent class, a process known as single
inheritance. Some other OO languages, such as C++, allow classes to inherit from more
than one parent class. However, it has been found that this multiple inheritance can cause
problems in practice, so many OO languages have decided not to use it.

This use of single inheritance poses a slight problem to C++ programmers and means that
when writing managed code in C++, you are restricted to one base class.

Often, multiple inheritance has been used to express multiple “is a” relationships rather than
to inherit code from more than one parent class. When this is the case, you can use
interfaces to model the relationships that multiple inheritance would provide as in traditional
C++.

Interfaces

The topic of interfaces and their place in OO programming has already been touched upon.
As you’ll see, interfaces play a central role in the .NET architecture and can be used from all
three of the initial .NET languages.

Let’s look at the ICloneable interface as an example. The Object base class contains a
MemberwiseClone() method that can be used to produce an exact copy of an object. The
problem is that this produces a shallow copy of the object, which means that if the object
contains references to other objects, then the references will be copied rather than the
objects themselves, as shown in Figure 2.4. Only the top level of the object is copied, and
this simple operation can be automatically carried out on any object, so it is provided as part
of Object.

Figure 2.4: Shallow versus deep copying.

What if you want to copy the object, cloning all the objects to which it refers? This is called a
deep copy, and because .NET has no idea of the structure of your objects, you have to
implement it yourself. In other words, .NET knows what you have to do, but has no idea how
to do it, so it defines the ICloneable interface with its single Clone() method. If you want to
be able to make deep copies of your objects, you must implement ICloneable (and hence
the Clone() method) in your own classes. The following code snippet shows what the
ICloneable interface looks like in VB:

Public Interface ICloneable
 Function Clone() As Object

End Interface

And here it is again in C#:

public interface ICloneable {

 object Clone();
}

By convention, interface names start with I so that it is easy to determine which names refer
to interfaces and which to classes, but this is not a requirement. You can see that the
interface specifies the signature of a single method, Clone, which takes no arguments and
returns an object reference. Obviously, an interface definition needs to have with it some sort
of description of the semantics of the interface so you know just what you have to do when
you implement the interface.

Delegates

Delegates are objects supported by the .NET runtime, which performs roughly the same
purpose as function pointers in C and C++.

So what does this mean for those who aren’t C or C++ programmers? A delegate is an
object that forwards a call to a particular method on a particular object. So a delegate that
looks like this:

Delegate Function MyDelegate(ByVal X As Integer, ByVal Y As Integer)
_
 As Double

would forward calls to a method that took two ints and returned a double. In other words, the
signature of a delegate is the same as the signature of the method it is designed to call. In
computer science terms, a delegate is an example of a functor, which is an object that wraps
a method call, as shown in Figure 2.5.

Figure 2.5: Delegates.

When you want to use a delegate, you create the delegate object and bind it to the method
you want the delegate to call. Note that the inner workings of delegate objects are provided
by .NET, and all you do is create the delegate and tell it where to forward calls. If you want to
see how this works in code, take a look at the Immediate Solution “Creating and Using
Delegates” later in the chapter.

Why are delegates useful? By creating and using a delegate object, you can call any method
on an object that matches its signature without needing to know exactly which object—or
even which type of object—you’re talking to. This is very useful when working with callback
mechanisms where you know which call needs to be made, but don’t necessarily know in
advance which object you’re going to be using. This means that delegates are particularly
suited to event handling and are heavily used for this purpose in .NET.

You may think that delegates and interfaces sound rather similar, and they are. The two
main differences are that, first, you talk directly to the object implementing the interface,
whereas the delegate is an intermediate between you and the object you’re using. And
second, a delegate maps onto a single method, whereas interfaces often define groups of
related methods.

The standard Delegate class is used as a basis for delegates that can only invoke a single
method. There is a second class, MulticastDelegate, which can be used to create
delegates that can invoke more than one method. You’ll see why these are useful in the next
section, where events are discussed.

Events

Unlike many other development systems, .NET has been designed with Web and GUI
applications particularly in mind, which means that certain features have been added to
.NET to support their development. One of these features is the notion of events, something
that is already familiar to VB programmers.

Most modern GUI applications use events as a notification mechanism; when a button on a
form is pressed or the selection in a listbox changes, they generate (or “fire”) events in order
to tell the form what has happened. In practice, firing an event means calling a method in the
object that wants to receive the event (see Figure 2.6).

Figure 2.6: Event firing.

The event mechanism in .NET is based on delegates and provides a way for event sources
and objects that are interested in event notifications to get together and set up the callback
mechanism. For those readers who have OO programming experience and who have come
across design patterns, events are an application of the Observer pattern, which provides a
standard way to set up notification links between an observed object and one or more
observers.

You can see how the mechanism works in Figure 2.7. The object that is going to be the
source of events creates a delegate and makes it public so that any other class can access
it. It also creates an event object based on the delegate. Remember that a delegate is an
object that calls a method on another object; the event knows about “firing,” and the delegate
provides the link back to the client objects that want to be notified.

Figure 2.7: The .NET event mechanism.

A client can then obtain the delegate definition from the button object and implement a
method with the appropriate signature for the delegate to call. It then passes a reference to
its method over to the event object, which stores it in its list of clients. Events use a
MulticastDelegate , which can call a list of methods; this enables one event object to notify
more than one client.

When the button object wants to fire an event, it tells the event object, which calls each of
the methods in its list. In this way, all clients get their notification methods called.

Metadata and Attributes

As discussed in Chapter 1, metadata is extremely important in the world of .NET, and it
provides the essential information that the CLR needs in order to be able to load and
execute code. You do not have control over much of the metadata that is stored in the
executable files by the compiler, although there are a few standard items that you can
choose to attach to your classes. However, the CLR will let you declare your own metadata
items and attach them to classes; these home-brewed metadata items are called attributes,
and they can be created and queried from all .NET languages.

A typical attribute used on a VB class might look like this:

<IsPlugin(" Foo Plugin", version=1.1)> Public Class Foo
…

The attribute, IsPlugin, is declared in angle brackets just before the class name, together
with any parameters it needs. An attribute can have both named and positional parameters.
Positional parameters must come first, with optional named parameters coming at the end of
the list. You can see that the preceding example has one positional and one named
attribute.

Exceptions

The CLR programming model supports error handling using exceptions, and this has two
important consequences:
§ All .NET languages now support exceptions.
§ Exceptions can be used between languages.

Anyone who has programmed in Java or C++ will be familiar with the concept of exception
handling. For those that are not, however, a brief explanation is provided in the following few
paragraphs.

In many programming languages, errors are handled by returning an error code from a
method or by setting some sort of flag. But it is difficult to ensure that the error is handled
properly by the caller. This is especially true in C-type languages, where the return value of a
method can be completely ignored. Exceptions solve many of the problems associated with
traditional error-handling methods. The following brief list contains some of the most
important problems solved by exceptions:
§ An exception, once generated, cannot be ignored. It has to be handled somewhere in

the calling code; otherwise the program will terminate.
§ Exceptions do not have to be handled in the method where they originate, but can be

caught anywhere above that method in the call stack. This makes them particularly
suited to library code because the library method can generate an exception and leave
it up to the client to handle it.

§ Exceptions provide a way to signal errors where there is no alternative. As an example,
consider constructors, which don’t have a return value. This makes it hard to signal that
an error has occurred in the course of constructing an object, but exceptions let you
bypass this restriction.

Figure 2.8 summarizes what happens when an exception is generated, or “thrown.” First,
normal execution stops and the runtime takes over. The runtime looks in the routine where
the exception occurred to see whether it contains a handler. If it does, the handler is
executed and normal execution continues. If it doesn’t, the runtime looks at the calling
routine, the next routine up the call stack. It continues walking up the stack until it finds a
routine that handles the exception; if it gets all the way back to the start of the client code
without finding a suitable handler, the program will be terminated with an “unhandled
exception” error.

Figure 2.8: Exception handling.

The processing of exceptions has broadly the same syntax in VB, C#, and C++, with all
three using the Try, Catch construct. The following is an example of how exceptions might
be used within a VB program:

Imports System

Public Module modmain

Public Class Foo

 Public Sub Bar()
 Console.WriteLine("Foo:bar called")

 End Sub
End Class

Public Sub func(ByRef f As Foo)

 Try
 f.Bar()

Catch
 Console.WriteLine("Exception!")

 End Try
End Sub

Sub Main()

 Dim f As Foo
 func(f)

End Sub

End Module

You declare a simple class called Foo that has one method, Bar(), and a function that takes
a reference to a Foo object. Note what happens in Main()—you create a Foo reference but
no object, and then pass this reference through to the function. As you would expect, you get
a runtime error when you try to execute the Bar() method on this uninitialized reference; in
this example, it is handled by using exceptions. If you try to execute this code, you’ll see the
“Exception!” message appear on the console.

You place code that may fail inside a Try block, and then specify one or more exception
handlers using Catch statements, within which you do whatever is necessary to handle or
report the error. When an exception occurs in a Try block, the runtime steps in and looks for
a handler. If it finds one, the handler is executed and execution continues; if one is not
found, the runtime checks the calling routine.

You’ve seen how to handle exceptions, but the problem is, even though you know there’s
been an exception, you don’t know exactly what has happened. You can easily get around
this because every exception is identified by an exception object that holds information about
the type of error that has occurred, and possibly other information that will help you to
diagnose the problem.

These exception objects are instances of some class that inherits from System.Exception.
Table 2.3 shows some of the more common classes supplied by the system.

Table 2.3: Commonly used .NET exception classes.

Exception Class Description

SystemException The base class for other user-
handleable exceptions.

ArgumentException An argument to a method was invalid.

ArgumentNullException A null argument was passed to a
method that doesnÕt accept it.

ArgumentOutOfRangeException The value of an argument is out of
range.

ArithmeticException An arithmetic overflow or underflow
occurred.

ArrayTypeMismatchException An attempt was made to store the
wrong type of object in an array.

BadImageFormatException An image is in the wrong format.

DivideByZeroException An attempt was made to divide by
zero.

DllNotFoundException A referenced DLL cannot be found.

FormatException The format of an argument is wrong.

IndexOutOfRangeException An array index is out of bounds.

InvalidCastException An attempt was made to cast to an
invalid class.

InvalidOperationException A method was called at an invalid
time.

MethodAccessException An illegal attempt was made to access
a private or protected method.

MissingMemberException An invalid version of a DLL was
accessed.

NotFiniteNumberException An object does not represent a valid
number.

NotSupportedException A method has been called that is not
implemented by a class.

NullReferenceException An attempt has been made to use an
unassigned reference.

OutOfMemoryException There is not enough memory to
continue execution.

PlatformNotSupportedException Thrown when a particular feature is
not supported on a platform.

StackOverflowException A stack has overflowed.

You can specify which exceptions you want to catch by declaring the exception type as part
of the Catch clause. The following code is a more complete example that shows this; it also
shows the use of more than one Catch clause:

Public Sub func(ByRef f As Foo)
 Try

 f.Bar()
 Catch ae As NullReferenceException

 Console.WriteLine("Caught NullReferenceException: {0}", ae)
 Catch ex As Exception

 Console.WriteLine("Caught Exception: {0}", ex)
End Try

End Sub

The first Catch clause is intended to catch exceptions that are tagged with a
NullReferenceException, whereas the second Catch will handle all others because all
exceptions derive from the base Exception class. At runtime, the first Catch clause that
matches the exception will be the one executed: In this case, there is a
NullReferenceException, so the first of the two Catch blocks will be executed, and you will
see something like the following on the console:

Caught NullReferenceException: System.NullReferenceException:

 Attempted to dereference a null object reference.
 at VBExcept.Module1.func(Module1$foo& f) in

 C:\dev\VBExcept\Module1.vb:line 12

Printing out the exception object prints out a message plus a stack trace that tells you
exactly where the error occurred.

You can also add a Finally clause to a Try block. As a result, any code placed in the Finally
clause will be executed before the method is exited regardless of whether an exception
occurs or not:

Public Sub func(ByRef f As Foo)
 Try

 f.Bar()
 Catch ae As NullReferenceException

 Console.WriteLine("Caught NullReferenceException: {0}", ae)
 ' Exit here…

 Exit Sub
 Catch ex As Exception

 Console.WriteLine("Caught Exception: {0}", ex)
 Finally

 Console.WriteLine("Finally executing…")
 End Try

End Sub

The method is exited once the message has been printed out in the Catch clause, but the
Finally clause will be executed before the exit takes place. Finally clauses are very useful
when there is some action that has to be taken before a method exits, such as closing files

or refreshing database tables. They save a lot of complex logic that might otherwise be
needed.

Reflection and the Type Class

In .NET, it is possible to obtain information about assemblies once they have been loaded
into memory, and in particular about the classes, interfaces, and value types that they
include.

This information includes:
§ A list of the classes contained in a module
§ A list of the methods that a class defines
§ Names and types of properties and fields
§ Signatures of methods

As you might expect, this information comes from the metadata associated with the
assembly and its classes; the process of obtaining it is called reflection.

Reflection is implemented by the System.Reflection namespace and the System.Type
class. But because the whole idea of reflection is part and parcel of the .NET model that is
being discussed, it will be covered in this section.

As well as simply letting you query metadata, reflection lets you dynamically create an object
of a given type and call methods on it. It is the mechanism used by VB to implement late
binding, as in the following code:

' Create a general object reference

Dim obj As Object
' Create an object of type Test

obj = New Test()

' Call one of its methods
obj.Foo

A generic Object reference has been used to refer to the object that was created, and as a
result, the VB compiler doesn’t know at compile time what type of object is being referred to,
so it has no idea whether the call to Foo() is legal or not. At runtime, reflection is used to
query the object on the other end of the reference to see whether it supports a Foo()
method, and if so what arguments it requires.

If you run the code through the IL disassembler, ildasm.exe, you can see this late binding in
operation in the following (slightly edited) listing:

IL_0000: nop

IL_0001: newobj instance void Test::.ctor
IL_0006: stloc.0

IL_0007: ldloc.0
IL_0008: ldnull

IL_0009: ldstr "Foo"
IL_000e: ldc.i4.0

IL_000f: newarr [mscorlib]System.Object
IL_0014: ldnull

IL_0015: call void [Microsoft.VisualBasic]
 Microsoft.VisualBasic.CompilerServices.LateBinding::LateCall

 (object, class [mscorlib]System.Type, …)
IL_001a: nop

IL_001b: nop
IL_001c: ret

You can see how the string containing the function name is loaded before a call is made to
the LateCall() helper method, and that one of the parameters to this call is a System.Type
object that describes the object being operated on.

The System.Type class is central to the practical use of reflection. You can obtain a Type
object that represents a loaded type by reflection, and then use the Type object’s methods,
fields, and properties to find out everything you might need to know about that type and even
create objects.

In VB, you can get the Type object representing a type using the GetType operator:

' Get the Type representing an Integer

Dim tf As Type = GetType(Integer)

' Get the Type representing an Integer array

Dim tf1 As Type = GetType(Integer())

Once you have a Type object, you can start to use it to find out about the type it represents.
The GetMembers() methods return an array of MemberInfo objects describing each of the
members; alternatively, you can call the more specific GetMethods(), GetFields(), or
GetProperties() methods to get information about methods, properties, and fields, each of
which returns an array of objects (MethodInfo, FieldInfo, or PropertyInfo).

Creating Classes

If you want to create a class in VB, use the Class keyword:

Class Foo
…

End Class

Within the class definition you can add fields (data items), methods, properties, and events.

Overloading and Overriding Methods

The terms overloading and overriding are often used interchangeably, but they mean
completely different things. If two or more methods within a class share the same name but
have different arguments, they are said to be overloaded.

In VB, the Overloads keyword must be used to show overloaded methods:

Class Foo

 Public Overloads Sub Bar()
 End Sub

 Public Overloads Sub Bar(ByVal n As Integer)

 End Sub
End Class

The two Bar() methods have different arguments lists, so they are valid overloads.

In C# and C++, overloaded methods don’t require any special keywords to be used, as long
as the arguments lists of overloaded methods are different.

Overriding is related to inheritance and is discussed later in this chapter in the “Overriding
Methods” section.

Implementing Fields and Methods That Belong
to the Class

In .NET, you can define members that belong to a class as a whole rather than to any one
object. As an example, consider a bank account class. Each Account object has a balance
that is unique to the object; the Account class may also have an interest rate member,
which sets the interest rate for Accounts. This value belongs to every Account rather than to
any one Account object, so it makes sense that the interest rate variable belongs to the
Account class itself. Members that work like this are called “static” in C# and C++ and
“shared” in VB. Not only can you have static data, but you can also have static methods and
properties.

The following shows how you could code some shared members in VB:

Public Class Account

 Private Shared InterestRate As Double
 …

 Public Shared Function GetInterestRate() As Double
 GetInterestRate = InterestRate

 End Function
End Class

A single InterestRate member is shared by all Account objects as well as a
GetInterestRate() method, which can be used to retrieve it. Because the function belongs to
the class itself, you can use the class name to call it rather than an object name:

d = Account.GetInterestRate

You can read this as “ask the Account class for its interest rate.” Note that because these
members belong to the class as a whole, they are not called on behalf of an object, and so
do not get passed a “this” or “Me” reference.

Creating Structs

In .NET, structs are similar to classes but are value types rather than reference types.
Structs can contain all the same members as classes (methods, fields, properties, and

events), but they are subject to certain restrictions, which were explained in the In Depth
section.

You can create a struct in VB using the Structure keyword:

Public Structure Point

 Private myX As Integer
 Private myY As Integer

 Property X() As Integer

 Get
 X = myX

 End Get
 Set

 myX = Value
 End Set

 End Property

 …

 ' A constructor to initialize a Point
 Sub new(ByVal anX As Integer, ByVal aY As Integer)

 myX = anX
 myY = aY

 End Sub
End Structure

In C#, structs are also declared using the struct keyword:

struct Point {
 int myX, myY;

 public int X {

 get {
 return myX;

 }
 set {

 myX = Value;
 }

 }

 …

 // A constructor to initialize a Point
 public Point(int anX, int aY) {

 myX = anX;
 myY = aY;

 }
}

In Managed C++, things are done slightly differently; C++ uses the __value keyword. All
C++ programmers know that just about the only difference between a class and a struct is
the level of access to class members, so instances of classes and structs should behave the
same. C++ programmers can use the __value keyword to declare C++ classes and structs
to behave like .NET structs. Classes and structs declared using __value are value types and
are subject to the same constraints.

__value struct Point {

 int myX, myY;
};

Object Construction and Destruction in VB

In VB the Sub New() and Sub Destruct() methods are used to provide object initialization
and finalization. A Sub New() method will be called when an instance of your class is
created, and you can overload this method to pass in parameters. Here’s an example where
Car objects will be created by passing in a string representing their make:

Class Car

Public Sub New(ByRef make As String)
 …

 End Sub
End Class

Sub Main()

 Dim c As New Car("Ford")
End Sub

A Sub New() has been declared that takes a string as its only parameter. When you create a
Car object from the Main() method, you pass in the string that denotes the Car’s make. You
could overload the class to provide two constructors, the second of which takes a make and
a model:

Class Car
 Public Sub New(ByRef make As String)

 …
 End Sub

 Public Sub New(ByRef make As String, ByRef model As String)

 …
 End Sub

End Class

Sub Main()
 Dim c As New Car("Ford")

 Dim c2 As New Car("Ford", "Orion")
End Sub

The compiler can tell which constructor needs to be used by the number of arguments that
have been given.

It’s important to realize that a constructor is always called when creating objects, so if you
don’t code any Sub New() methods in your class, the compiler will synthesize a do-nothing
constructor for you.

You can also provide a Sub Destruct() method for your classes. This implements .NET
finalization and is a method that will be called when your object is finally reclaimed by the
garbage collector. The problem with Destruct() is that you can’t tell when—or even
whether—your object is going to get garbage collected, so you don’t want to put any code
into Destruct() that has to be called at any particular time, or that has to be called at all.

Note that because Sub Destruct() takes no arguments, it can’t be overloaded.

How Do I Handle Cleanup in .NET Objects?

All .NET objects, regardless of the language they are written in, end up inheriting a method
called Finalize() from the base System.Object class. This method is called when the
garbage collector finally decides to reclaim your object; so you might be tempted to think that
it’s a useful way of tidying up and releasing the resources that your object has used.

The problem is that finalization in .NET is nondeterministic. In other words, you can’t tell
when it is going to occur, and because the garbage collector may not bother to collect any
outstanding objects when the program terminates, finalization may not occur at all. This
means that any clean-up operations that have to be done at a particular time—such as
writing records back to a database—shouldn’t be entrusted to finalization.

The recommended solution is to implement the IDisposable interface and provide a method
called Dispose() that users have to call once they have finished with the object. When
Dispose() is called, the object should clean itself up, and then mark itself as unavailable for
further use. This may mean, in practice, setting a flag so that any subsequent method calls
on the object will fail. Once the object has been cleaned up, it doesn’t matter when, or even
whether, it is finally garbage collected.

Using Inheritance

In VB, the Inherits keyword is used to set up an inheritance relationship between two
classes:

Class Car
 Inherits Vehicle

 …
End Class

The Inherits statement can only be used with classes and must be the first code (i.e.,
nonblank and noncomment) line of the class definition. The name of the parent class
immediately follows Inherits, and in line with the .NET OO model, there can only be one
parent class. Within a class, the parent class can be referred to by using the MyBase
keyword.

If you set up a constructor for your class, the first line must be a call to the parent class
constructor, MyBase.New:

Class Vehicle
 Public Sub New(ByRef make As String)

 …
 End Sub

End Class

Class Car
 Inherits Vehicle

 Public Overloads Sub New(ByRef make As String)

 MyBase.New(make)
 End Sub

End Class

Overriding Methods

When a class is derived from another by inheritance, it inherits the methods that its parent
has defined.

There are four possible actions that the derived class can take with a method that it inherits
from a parent class:
§ The derived class simply uses the method as inherited from the parent.
§ The derived class overrides the method by providing its own version in order to

customize its behavior. This version must have exactly the same signature as the
method in the base class.

§ The derived class is forced to override the method because the parent class has no
default implementation.

§ The derived class is forbidden to override the method.

VB uses specific keywords to handle the last three cases:
§ A method marked as Overridable can be overridden by a derived class, but it isn’t

compulsory.
§ A method marked as NotOverridable cannot be overridden by a derived class. This is

the default state for methods that don’t have any of these three keywords specified.
§ If a method is marked MustOverride, it won’t have any implementation in the parent

class, and a deriving class must provide its own implementation. Classes that contain
any MustOverride methods are abstract classes, which are discussed in the next
section.

If a derived class wants to override a method, that method has to be marked as Overridable
or MustOverride in the base class, and the derived class has to use the Overrides
keyword:

Public MustInherit Class Shape
 Public MustOverride Sub Draw()

End Class

Public Class Square
 Inherits Shape

 Public Overrides Sub Draw()
 ' code for drawing circles

 End Sub
End Class

In C#, the method at the top of the inheritance hierarchy uses “virtual” to show that this is the
start of a chain of virtual functions; all classes deriving from it have to use the override or
new keywords if they define a method with the same signature:

public abstract class Shape {

 public virtual void Draw() {}
}

public class Square : Shape {

 public override void Draw() {
 // code for drawing circles

 }
}

The use of override shows that Square ’s version of Draw() is intended to override Shape ’s,
so that if a Square is accessed through a Shape reference, the right version will be called.
The alternative would be to use new, which tells the compiler that even though these two
methods have exactly the same signature, Square ’s method is not an override for the one in
Shape . Note that you have to use either override or new if you provide a method in a
derived class that has the same signature as one in its base class; otherwise the compiler
will complain.

Creating Abstract Classes

An abstract class is one that cannot be directly instantiated, but can only be used as a base
for inheritance. This doesn’t mean, however, that an abstract class can’t contain code. Many
abstract classes contain common code, which is used by derived classes.

To declare an abstract class in VB, use the MustInherit keyword on the class definition:

Public MustInherit Class Shape
 …

End Class

Now, you cannot create Shape objects, although you can derive from Shape and refer to
derived objects using Shape references. Note that a MustInherit class doesn’t have to
contain any MustOverride methods, but they often will.

In C#, use the abstract keyword on the class definition:

public abstract class Shape {

 …
}

To create a .NET abstract class in Managed C++, use the __abstract keyword. This
prevents the class from being instantiated, but unlike a traditional C++ abstract class, you
can provide implementations for all member functions:

__abstract __gc class MyBaseClass {

 // implementation…
};

Note that __abstract can also be applied to managed or nonmanaged classes and structs.

Creating Sealed Classes and Methods

A sealed class is the opposite of an abstract class in that a sealed class can’t be used as a
base class, whereas an abstract class has to be used as a base class in order to be useful.

Sealed classes are implemented in VB by using the NotInheritable modifier on the class
definition:

Public NonInheritable Class MySealedClass

 …
End Class

Sealed classes are implemented in Managed C++ by using the __sealed keyword:

__sealed __gc class MySealedClass {
 // implementation…

};

It should be obvious that __abstract and __sealed are mutually exclusive.

A sealed method cannot be overridden in a derived class. In VB, all public methods of a
class are sealed by default, but you can use the NotOverridable keyword if you want to
emphasize the fact that a method or property cannot be overridden.

In Managed C++, you use __sealed to seal a method, whereas in C#, the keyword is
sealed.

Creating Properties

In VB, the .NET property replaces the old Property Get and Property Set constructs. Here’s
what a property might look like in VB:

Property Color() As String
 Get

 Color = myColor

 End Get
 Set

 MyColor = Value
 End Set

End Property

The Get and Set clauses hold code that is used to retrieve and set the value of the property.
In this example, the value is being held in a class variable called myColor. Value is a special
variable, which holds the value that has been passed in as part of the set operation. Its type
is determined by the type of the property.

If you want to make the property read-only, use the ReadOnly qualifier, and omit the Set
clause:

ReadOnly Property Color() As String
 Get

 Color = myColor
 End Get

End Property

The syntax is almost identical in C#:

public string Color {

 get {
 return myColor;

 }
 set {

 MyColor = Value;
 }

}

In this case, if you want to create a read-only or write-only property, you simply omit the Get
or Set clause.

In Managed C++, you use two separate methods to implement a property by using the
__property keyword to define a pair of methods that start with get and set:

__gc class test

{
 int prop;

public:
 __property int get_Prop() { return prop; }

 __property void set_Prop(int m) { prop=m; }
};

The compiler creates a virtual data member called “Prop” when it sees the get_Prop() and
set_Prop() method declarations. Note that this name must be different from the name of the
actual data member that the property represents, even if only in case. Once again, if you
want to have a read-only or write-only property, omit the method you don’t require.

Creating Interfaces

Interfaces in .NET can consist of virtual methods, properties, and events. In C#, interfaces
can also contain indexers.

To create a simple interface in VB, use the Interface keyword:

Interface IAnimal
 Sub MakeNoise()

 ReadOnly Property Name() As String
End Interface

Note how the interface definition simply defines what the methods have to look like, but
doesn’t supply any implementation. By convention, names of interfaces in .NET always start
with an I. The body of the interface contains the signatures of those methods that must be
implemented in order to implement this interface. Note that you cannot put any modifiers on
the method declaration, and that all methods are assumed to be public.

You can also see from this example that in version 7 VB has introduced a new way of
specifying properties to replace the old Property Get and Property Set methods. Not only
does this result in a cleaner syntax, but it also brings it more in line with C# and the other
.NET languages. In order to show that Name can be queried but not set, the property
specifies the ReadOnly modifier.

Note

Interfaces were always rather a kludge in previous versions of VB, relying
on classes with stubbed-out methods. Visual Basic .NET provides for proper
specification and implementation of interfaces.

Interfaces can be specified in a very similar way in C#. Here’s how the Animal interface
would look in C#:

interface IAnimal {

 void MakeNoise();
 string Name { get; }

}

Implementing Interfaces

The way that you implement interfaces looks a lot like inheritance; however, you use the
Implements keyword instead of Inherits:

Public Class Dog
 Implements IAnimal

 Sub MakeNoise() Implements IAnimal.MakeNoise

 Console.WriteLine("Woof!")
 End Sub

 ReadOnly Property Name() As String Implements IAnimal.Name

 Get

 Name = "dog"
 End Get

 End Property
End Class

There are two particular points to note in the preceding code. First, the Implements keyword
tells VB that this class is going to implement the specified interface; once this is done, the
compiler checks that you implement everything necessary. If you are implementing more
than one interface, provide a list of interface names with the members separated by
commas.

Second, you have to tell the compiler explicitly which methods in your class implement
methods and properties in the interface by using the Implements keyword. For instance:

Sub MakeNoise() Implements Animal.MakeNoise

tells the compiler that this function, MakeNoise(), is the implementation of MakeNoise in the
IAnimal interface. This has two immediate consequences. The first is that you can implement
two interfaces that contain methods with the same name without any name resolution
problems.

The second is that your method or property name doesn’t have to be the same as the one it
is implementing. You will probably want it to be the same (see the next section “Using an
Object via an Interface” for reasons why this is so), but it doesn’t have to be. So if you really
want to, you can code MakeNoise() in the Dog class as follows:

Sub DogMakeNoise() Implements IAnimal.MakeNoise

Implementing interfaces in C# looks very much like inheritance. The class name is followed
by a colon, and then a list of the interfaces to be implemented, which are comma-separated
if there’s more than one:

public class Dog : IAnimal {
 public void MakeNoise() {

 Console.WriteLine("Woof!");
 }

 public string Name {

 get { return "dog"; }
 }

}
Using an Object via an Interface

If you have an object that you know implements a given interface, it is easy to use it through
that interface in VB:

' Create a dog and get it to bark…
Dim d1 As New Dog()

d1.MakeNoise()

' Think of the dog as an Animal
Dim a1 As IAnimal

a1 = d1
a1.MakeNoise()

When you create a Dog object, you can call its MakeNoise() method directly, as you would
expect. In order to use the Dog via the IAnimal interface, you create an object reference of
type IAnimal. This reference will let you refer to any object that has an IAnimal interface, be it
a Dog, a Cat, or a Platypus.

The “a1 = d1” line effectively asks VB whether you can refer to d1 through an IAnimal
reference. Because the Dog class implements the IAnimal interface, this is quite okay, and a
reference is returned. If d1 wasn’t something that implemented IAnimal (say, a Car), you
would expect to get an error. Once you have an IAnimal reference, you can use the methods
and properties that are defined on IAnimal.

Note

Users of previous versions of VB are used to using the set keyword when
assigning references, but set is no longer necessary in Visual Basic .NET.

As mentioned in the previous section, you don’t have to name the implementing function the
same name as it is in the interface. If you called the function DogMakeNoise() in the Dog
class like this:

Sub DogMakeNoise() Implements IAnimal.MakeNoise

you would have to modify the calling code:

Dim d1 As New Dog()

d1.DogMakeNoise()

' Think of the dog as an Animal
Dim a1 As IAnimal

a1 = d1
a1.MakeNoise()

See the problem? When you are using the Dog object directly, you have to call
DogMakeNoise(), but when you are accessing it through the IAnimal interface, you have to
call MakeNoise(). Having to use two different names for the same method is confusing, so it
is recommended that you implement interface members using the same names that they
have in the interface.

Before leaving VB, let’s consider one more question: What if you would like to check whether
the Dog class implements the IAnimal interface before trying to use it? VB lets you use the
TypeOf keyword within If statements to check the type of an object; you will find that it also
works for interfaces:

' Check whether the object is a Dog

If TypeOf d1 Is Dog
 Console.WriteLine("Object is a Dog")

End If

' Now check whether it is an Animal

If TypeOf d1 Is IAnimal
 Console.WriteLine("Object implements IAnimal")

End If

The syntax for using objects via interfaces is similar in C#:

// Create a dog
Dog d = new Dog();

d.MakeNoise();

// Think of it as an animal
IAnimal a;

a = (IAnimal)d;
a.MakeNoise();

The important line is the one highlighted, where d is assigned to a. Because both are
references to particular types, you ask the compiler whether you can make a refer to the
same object that d refers to. This is only possible if the object implements IAnimal.

What if you are not sure whether the object does actually implement IAnimal or not? Use the
“is” operator to check:

if (someObjectReference is IAnimal) {

 IAnimal ia = (IAnimal)someObjectReference;
 ia.MakeNoise();

}
else

 Console.WriteLine("This object isn't an animal…");

This operator looks at the object on the other end of the reference and returns true if it is of
the appropriate type. If so, you can cast the reference to an IAnimal and use it.

The as operator provides an alternative way to do this test-and-cast operation:

IAnimal ia = someObjectReference as IAnimal;

if (ia != null)

 ia.MakeNoise();
else

 Console.WriteLine("This object isn't an animal…");

as does the test and cast, and returns null if the object isn’t of the specified type.

Creating and Using Delegates

Delegates can be created and used in all .NET languages. In this first example, you’ll learn
how to create and use them in VB, then you’ll move on to C#, and finally Managed C++.

As an example, let’s use a simple class that can notify clients when something interesting
happens. This is a simple model showing how delegates can be used in an “event” style of
programming. Let’s start with the EventSource class, which can be used to notify clients
when something happens:

Imports System.Collections

Public Class EventSource

 Delegate Sub Notify(ByRef s As String)
 Dim al as New ArrayList()

 Public Sub AddMe(ByRef n As Notify)

 al.Add(n)
 End Sub

 Public Sub TellAll()

 Dim ie as IEnumerator
 ie = al.GetEnumerator

 While (ie.MoveNext)

 Dim n As Notify
 n = CType(ie.Current, Notify)

 n("Here you are")
 End While

 End Sub
End Class

The second line of the class declares a delegate called Notify, and you can see from its
signature that it will take a string and not return anything. The AddMe method is called by
clients who want to be notified, and they pass in a reference to a method that the delegate
will call, which is stored in a dynamic array. This array is an ArrayList object, one of the
standard container types provided by .NET in the System.Collections namespace.

When called, the TellAll method creates an enumerator to iterate over the items in the
ArrayList. It then uses MoveNext() to walk through the list, accesses each item using the
Current() method, and then invokes it with a string argument. Current() returns a reference
of type Object, so the CType function is used to cast the Object reference returned by
ie.Current into a Notify reference before you can use it.

Invoking the item will result in the delegate object calling back to the client and executing the
appropriate method. The EventSource class has no idea what type of objects its clients are,
only that they’ve passed it a delegate object to act as an intermediary. Note how invoking the
delegate object looks like making a method call; whatever is in the brackets following the
delegate name is used to invoke the one method that the delegate is bound to.

How would a client use this class? All the client needs to do is to define the callback function
that the delegate is going to call. This obviously has to have the right signature, so in this
case, it needs to take a string as its only argument and not return anything:

Public Class EventClient
 Public Sub CallbackFunction(ByRef s As String)

 Console.WriteLine(s)
 End Sub

End Class

How do we make these work together? Here’s the code that does it:

Sub Main()
 ' declare client and source objects

 Dim es as New EventSource()
 Dim ec as New EventClient()

 ' set up a delegate to call its CallbackFunction method

 Dim en as EventSource.Notify
 en = New EventSource.Notify(AddressOf ec.CallbackFunction)

 ' tell the source about the delegate

 es.AddMe(en)

 ' use the delegate
 es.TellAll()

End Sub

Once you’ve created a client object, you can then create a delegate and pass it the address
of the callback function using the AddressOf keyword. This means that when the delegate is
invoked, it will call the CallbackFunction method on the “ec” object.

You now have a delegate object. But you have to pass it to the EventSource, so you call
AddMe() to add the delegate to the list maintained by the source. Finally, you can call
TellAll() on the source object, which causes it to call back to all the clients who have
registered.

The C# code works in exactly the same way:

public class EventSource

{
 public delegate void Notify(String s);

 ArrayList al;

 public EventSource() {

 al = new ArrayList();
 }

 public void AddMe(Notify n)

 {
 al.Add(n);

 }

 public void TellAll()
 {

 IEnumerator ie = al.GetEnumerator();
 while (ie.MoveNext()) {

 Notify n = (Notify)ie.GetCurrent();
 n("Here you are!");

 }
 }

}

You can see how the C# code is indeed very similar to the VB code. It uses the same
ArrayList collection to store the delegate references and the same IEnumerator to access
them.

The EventClient class has no surprises at all; it simply declares the callback method that
you will use with the delegate:

public class EventClient
{

 public void CallBackFunction(string s)
 {

 Console.WriteLine("String received was: " + s);
}

}

After this has been done, the class can create a delegate object and use it:

public class EventClient
{

 public void CallBackFunction(string s)
 {

 Console.WriteLine("String received was: " + s);
 }

 public static int Main(string[] s)

 {
 EventClient ec = new EventClient();

 EventSource.Notify en = new
EventSource.Notify(ec.CallBackFunction);

 EventSource e = new EventSource();
 e.AddMe(en);

 e.TellAll();

 return 0;
 }

}

The program starts by creating an EventClient object. The important part—as far as
delegation goes—occurs in the second line, where you create a new Notify delegate and
bind it to the CallBackFunction method on the EventClient object. This means that when
this Notify object is executed, it will call back to a method on one specific object.

Delegates can also be used from Managed C++, as the following example shows:

#using <mscorlib.dll>
#include <tchar.h>

using namespace System;

__delegate void Notify(String* s);

public __gc class EventClient
{

public:
 void CallbackFunction(String* s)

 {
 Console::WriteLine(s);

 }
};

int _tmain()

{
 EventClient* pec = new EventClient;

 Notify* pn = new Notify(pec, &EventClient::CallbackFunction);

pn->Invoke("Here you are…");

 return 0;

}

Managed C++ uses the __delegate keyword to create a delegate. This is the same basic
example as before, so you pass in a pointer to a System.String object.

Note

Remember that all managed types must be accessed via pointers when
using them in Managed C++.

EventClient is a managed class that implements the single callback function. In the main
program, you create a delegate object, passing it the address of an EventClient object and
a pointer to the method to be called. After you have set up the delegate, you can call its
Invoke() method to cause the string to be passed to the EventClient’s callback function.

Creating and Using Events

Events are used to provide a standard asynchronous notification mechanism between
objects. An event source class can publish details of one or more events that it will fire at
appropriate times. Client objects can create callback methods, and then register them with
the event object, which will then call them back when the source fires the event.

Events are very frequently used in GUI programs to implement communication between the
components of the user interface, but in .NET they have much wider applicability. They are
also based on delegates, and if you’ve read the previous section, you’ll recognize a lot of
what is discussed in this section.

VB programmers are used to using the existing VB WithEvents mechanism for handling
events, and although VB still supports this, Microsoft has added a new event-handling
mechanism that uses the .NET delegate method. As a result, using events is now very
similar in VB and C#, but in VB you see less of the workings of the delegate and event
objects. The following code shows the VB delegate example from the previous section
converted to use events, with the significant lines highlighted:

Imports System

Module Module1

 Sub Main()
 Dim es As New EventSource()

 Dim ob As New EventClient(es)

 es.Notify("First call…")
 End Sub

 ' The Event source class

 Public Class EventSource
 Public Event MyEvent(ByVal msg As String)

 Public Sub Notify(ByVal msg As String)

 RaiseEvent MyEvent(msg)
 End Sub

 End Class

 ' The Event client class

 Public Class EventClient
 Private src As EventSource

 Public Sub New(ByRef es As EventSource)

 src = es
 AddHandler src.MyEvent, AddressOf Me.GotNotified

 End Sub

 Private Sub GotNotified(ByVal msg As String)
 Console.WriteLine("Message was '" + msg + "'")

 End Sub
 End Class

End Module

The class that will raise the event, EventSource, declares an Event object that passes a
String to clients. For this demonstration, the event needs to fire somehow, so a Notify()
method is added to fire the event when it is called. You can see that VB events are fired
using the RaiseEvent keyword, passing it the name of the event you want to fire and any
arguments needed by the event object.

The client class keeps a reference to an EventSource object as a member. Once it’s been
passed a reference, it uses the AddHandler keyword to attach its handler routine,
GotNotified, to the event object. There’s also a RemoveHandler method that allows an
object to detach itself from an event when it no longer wishes to receive notifications.

Moving on, let’s look at how you can use events in C#. One thing that will become apparent
pretty quickly is that events in C# are more complicated than they are in VB. Here’s how you
can use the event:

public static int Main(string[] args) {

 // Create an event source
 EventSource es = new EventSource();

 // Create a client object to work with this source

 EventClient one = new EventClient(es);
 EventClient two = new EventClient(es);

 // Tell the source object to notify its clients

 es.Notify("Event Happened…");

 return 0;
}

You start by creating an object that acts as a source of events. This class exposes a
delegate definition and an event object to clients. The second step is to create a pair of client
objects and pass them references to the source. The clients will register their callback
functions with the event and then wait to be called back. The third step is to tell the event

source to notify its clients, and because you registered two clients, you should see two
responses.

The EventSource class needs three components—a delegate definition, an event object
definition, and the Notify() method:

public class EventSource {
 public delegate void MyEvent(object sender, EventInfo ei);

 public event MyEvent OnMyEvent;

 public void Notify(string msg) {
 if (OnMyEvent != null)

 OnMyEvent(this, new EventInfo(msg));
 }

}

In general, delegates can take any arguments you want them to, but in order to work with
events, a delegate has to have an argument list of two items and return void. The first
argument must be a reference to the object that originates the event, and the second one
must be a reference to an object that holds some information about the event.

Every event can pass some information about itself to the client. This is done by defining a
class that inherits from System.EventArgs, adding whatever fields, properties, and methods
you need to support your event data, and then passing an object of this type along with the
event. In this case, only a message string is passing across, so the class is very simple:

public class EventInfo : EventArgs {
 public readonly string msg;

 public EventInfo(string msg) {

 this.msg = msg;
 }

}

Notice how the string field has been made read-only. In C#, this gives you a way to declare a
field whose value can be initialized once, but thereafter cannot be changed.

The second line of the EventSource class declares an event object called OnMyEvent and
links it to the MyEvent delegate. This means that any client with a suitable method can link it
in to the event’s delegate, as you’ll shortly see.

The final member of this class is the Notify() method. The OnMyEvent event object will be
non-null if one or more clients have connected to it; if that’s the case, you tell the event
object to notify its clients using typical delegate execution syntax.

And here’s the client class:

public class EventClient {
 EventSource src;

 EventSource.MyEvent evnt;

 public EventClient(EventSource src) {
 this.src = src;

 evnt = new EventSource.MyEvent(EventHasHappened);
 src.OnMyEvent += evnt;

 }

 public void EventHasHappened(object sender, EventInfo ei) {
 Console.WriteLine("Event string was '" + ei.msg + "'");

 }
}

At the start of the class, you declare an EventSource reference and a reference to the
delegate that’s declared in the EventSource class. The constructor is passed an
EventSource reference, saves it, and then creates a delegate, attaching it to the
EventHasHappened method. In the third line of the constructor, the += syntax adds the
delegate to the list maintained by the event object. The += and -= operators are only
available to multicast delegates and are used by clients to connect and disconnect
themselves.

The second method in the class is EventHasHappened(), the notification method that
matches the signature of EventSource ’s delegate. A reference is passed from this method
over to the event object, so that when the EventSource object fires the event, the
EventHasHappened() method will be called.

And that’s about it. If you type in and compile the code, you should see two strings printed
out on the console as the callback methods of the two objects called.

The final example demonstrates how to detach an object from an event so that it no longer
receives notifications. A simple way to do this is to add a Dispose() method to the class,
which uses the -= operator to remove the reference from the list held by the event object.

public class EventClient : IDisposable {
 EventSource src;

 EventSource.MyEvent evnt;

 public EventClient(EventSource src) {
 this.src = src;

 evnt = new EventSource.MyEvent(EventHasHappened);
 src.OnMyEvent += evnt;

 }

 public void Dispose() {
 src.OnMyEvent -= evnt;

 }

 public void EventHasHappened(object sender, EventInfo ei) {
 Console.WriteLine("Event string was '" + ei.msg + "'");

 }
}

You could call it like this:

public static int Main(string[] args) {
 // Create an event source

 EventSource es = new EventSource();

 // Create a client object to work with this source
 EventClient one = new EventClient(es);

 EventClient two = new EventClient(es);

 // Tell the source object to notify its clients
 es.Notify("Event Happened…");

 // The first object disconnects itself

 one.Dispose();

 // Do the notification again…
es.Notify("Second Event…");

 return 0;
}

If you run this code, you’ll see that the second string is only printed once, because only one
object is still registered. You may think of putting the detach code in a finalizer, but it’s not a
very good idea because your object will continue to receive events until it is finally garbage
collected, and you know that that may not happen. The result is a lot of event calls being
fired off to an object that isn’t being used any more, which isn’t very good for program
efficiency.

Let’s look at what happens in C++. In Visual Studio.NET, Microsoft has introduced a Unified
Event Model, which lets C++ programmers use the same language constructs for coding
event handling in plain C++, ATL, and Managed C++ code. All of these use the basic .NET
event-handling mechanism, which means that all the work needed to attach clients to
senders and maintain their state is done for you. The following example illustrates how this
works, and as usual the important lines are highlighted:

#using <mscorlib.dll>

after #using <mscorlib.dll>
#include <tchar.h>

using namespace System;

[event_source(managed)]
public __gc class EventSource

{
public:

 __event void MyEvent(String* msg);

 void Notify(String* msg)
 {

 __raise MyEvent(msg);
 }

};

[event_receiver(managed)]
public __gc class EventClient : public IDisposable

{
 EventSource* pes;

public:

 EventClient(EventSource* pes)
 {

 this->pes = pes;
 __hook(&EventSource::MyEvent, pes, EventClient::GotNotified);

 }

 void GotNotified(String* msg)
 {

 Console::WriteLine("Message was '{0}'", msg);
 }

 void Dispose()

 {
 __unhook(&EventSource::MyEvent, pes, EventClient::GotNotified);

 }
};

int _tmain()

{
 // Create an event source and two clients

 EventSource* pes = new EventSource();
 EventClient* pec1 = new EventClient(pes);

 EventClient* pec2 = new EventClient(pes);

 // Notify both clients
 pes->Notify("Hello!");

 // Unhook the second client

 pec2->Dispose();
 // Notify the one client left

 pes->Notify("Goodbye!");
 return 0;

}

A class that is going to be a source of events has to be marked with the [event_source]
attribute and has to state whether it is going to use plain C++, COM, or Managed C++
events. In this case, managed code is used, so the attribute takes the “managed” argument.
Within a class that is going to be a source of events, you can declare one or more events by
using the __event keyword. In this example, a delegate is being set up for other objects to
use. Another point to note in the EventSource class is the way in which you fire events; in
C++, you use the __raise keyword, specifying the name of the event you want to raise and
passing any arguments the event may need. You may have noticed that __raise is the exact
equivalent of VB’s RaiseEvent keyword.

A class that is going to use events is marked with the [event_receiver] attribute, which
specifies that managed events will be used. A receiver class registers a handler using the
__hook keyword and specifies the address of the event it wants to hook, the address of the
event source object it wants to use, and the address of its own handler function. A class can
deregister itself using the __unhook function, and you can see this being used in
EventClient::Dispose().

The main() method shows how all event producers and consumers can be used together.
You can create an EventSource object and two EventClient objects, each of which
registers itself with the source. When you tell the source to raise its event, each of the clients
is notified. One of the clients then unhooks, and therefore only one client is notified the next
time round.

How Do I Attach Attributes to My Classes and Members?

Most of the attributes used in .NET are invisible to you. They are produced by the compiler
and included in the metadata in the executable file and then used by the CLR. There are,
however, several standard attributes provided with .NET, most of which are involved with
making .NET and COM work together. Table 2.4 summarizes the available attributes.

Table 2.4: Standard .NET attributes.

Attribute Purpose

attributeusage Applied to attributes themselves to determine
which elements in a class an attribute can be
applied to

conditional Used to include a method in a class conditionally

obsolete Indicates that a member is obsolete so that the
compiler will give a warning or error if it is used

Table 2.4: Standard .NET attributes.

Attribute Purpose

guid Used to specify a GUID for a class or interface
that is to be used with COM

in Used to mark a parameter as an [in] parameter

out Used to mark a parameter as an [out] parameter

returnshresult Shows that a method returns a COM HRESULT

serializable Marks a class or struct as being serializable

nonserialized Marks a field or property as being transient

The following C# example shows the use of the conditional attribute:

public class Foo {
 [conditional(DEBUG)]

 void SomeMethod() {
 …

 }
}

The attribute is specified in square brackets and placed immediately before the item it
applies to. In this case, the conditional attribute applies to SomeMethod(), which will only be
compiled into the class definition if the preprocessor symbol DEBUG has been defined. If
you want to use more than one attribute, simply use a comma-delimited list.

All attribute names end with “Attribute” in order to minimize naming collisions, but you don’t
have to provide the full name if you don’t want to. For example, an attribute called
AuthorAttribute can be referred to either as Author or AuthorAttribute.

Attributes can take arguments, which may be positional or named. As their name implies,
positional arguments are identified by their position in the argument list, whereas named
arguments are identified using a “keyword=value” syntax. Here’s an example:

[test("abc", 123, name="fred")]

This attribute has two positional arguments and one named argument. Named arguments
must always appear at the end of the list and are used to specify optional items.

In VB, attributes are placed in angle brackets and appear immediately before the name of
the item they apply to. A good example of this is using the WebMethod attribute to declare a
class method that is exposed as part of a Web Service:

<WebMethod()> Public Function GetName() As String

 ' Code goes here…
End Function

In C++, attributes are specified in square brackets, as in C#. This style of attribute
declaration will be familiar to anyone who has used COM attributes in IDL in the past:

[AnAttribute] __gc class Foo
{

 [conditional(DEBUG)]
 void SomeMethod() {

 …
 }

};
How Can I Create Custom Attributes?

Custom attributes can be created in C++, C#, and also in VB. The important thing to realize
about attributes is that they are represented by classes and so can have fields and members
of their own.

Attributes can take parameters and these fall into two categories: Positional parameters are
simply identified by their position in the argument list, whereas named parameters are
identified by a keyword. Positional parameters, which must appear before any named
parameters, are passed in constructors, whereas named parameters are implemented as
properties.

A custom attribute in VB takes the form of a class that has to do two things: First, it must
inherit from the System.Attribute class, and second, it has to use the AttributeUsage
attribute to state where it can be used. The one argument for AttributeUsage is a member
of the AttributeTargets class, as summarized in Table 2.5

Table 2.5: The AttributeTargets values that specify where custom attributes can be
used.

Member Description

All The attribute can be applied to anything.

Assembly The attribute can be applied to an assembly.

Class The attribute can be applied to a class.

ClassMembers The attribute can be applied to any class
members, such as fields, methods, interfaces,
properties, delegates, and events.

Constructor The attribute can be applied to a class
constructor.

Delegate The attribute can be applied to a delegate.

Enum The attribute can be applied to an enumeration.

Event The attribute can be applied to an event.

Field The attribute can be applied to a field.

Interface The attribute can be applied to an interface.

Method The attribute can be applied to a method.

Module The attribute can be applied to a module.

Parameter The attribute can be applied to a parameter.

Property The attribute can be applied to a property.

ReturnValue The attribute can be applied to a method return
value.

Table 2.5: The AttributeTargets values that specify where custom attributes can be
used.

Member Description

Struct The attribute can be applied to a value type.

The following sample code shows an attribute called Author that contains one positional and
one named attribute, which can be attached to classes:

Imports System

<AttributeUsage(AttributeTargets.Class)> Public Class Author

 Inherits Attribute
 private authorName As String

 private lastModDate As String

 Public Sub New(ByVal name As String)
 authorName = name

 End Sub

 Public ReadOnly Property Name() As String
 Get

 Name = authorName
 End Get

 End Property

 Public Property ModDate() As String
 Get

 ModDate = lastModDate
 End Get

 Set
 lastModDate = value

 End Set
 End Property

End Class

Note how you can inherit from the System.Attribute class and use constructors and
properties to model the attribute arguments. You could use this attribute on a VB class as
follows:

<Author("Julian")> Public Class Fred
 …

End Class

In C++, you use the “attribute” attribute to create a managed class or struct that represents a
custom attribute. Note that this class doesn’t have to inherit from System.Attribute:

[attribute(target)]
public __gc class Author

{
 …

};

The class must be public if the attribute is going to be used in other assemblies. The target
argument is a member of the System.AttributeTargets enumeration, which was shown
previously in Table 2.5. In the attribute class, constructors are used to specify positional
parameters, whereas data members and properties are used to implement named
parameters. Here’s the Author attribute written in C++:

[attribute(Class)]

public __gc class Author
{

 String *authorName; // positional parameter
 String *lastModDate; // named parameter

public:
 __property String* get_Name () { return authorName; }

 __property String* get_ModDate () { return lastModDate; }

 __property String* set_ModDate (String* date) { lastModDate = date;
}

 Author(String* name) { authorName = name; }
};

You could attach the attribute to a class as follows:

[Author("Julian", Date="21/12/00")]
public __gc class Foo

{
};

You can see that because Date is a named parameter, it has to be specified by a keyword,
and it has to be last in the list of arguments.

Attribute creation is similar in C#, with one or two differences:

[AttributeUsage(AttributeTargets.Class)]

public class Author : System.Attribute
{

 private string authorName; // positional parameter
 private string lastModDate; // named parameter

 public string Name {
 get { return authorName; }

 }

 public string ModDate {
 get { return lastModDate; }

 set { lastModDate = value; }
 }

 Author(string name) { authorName = name; }

};

The first difference is that your attribute class has to inherit from System.Attribute, whereas
C++ doesn’t require any inheritance. The second difference is the use of the
AttributeUsage attribute to control where this attribute may be used. Apart from that, the
code is structurally very similar, using constructors to implement positional parameters and
properties to implement named ones.

How Do I Query Attributes?

Although most attributes are created by compilers and consumed by the CLR, there may be
occasions when you need to know whether some item possesses a particular attribute and
be able to look at its arguments.

In order to find out about attributes, you need to understand the System.Type class. Type is
a class that represents type declarations for classes, interfaces, arrays, value types, and
enumerations; it lets you find out a lot of details about the type and its properties. However,
your only concern is how to use Type to get attribute information.

Note

If you know C++, think RTTI and you’ll be on the right track!

Let’s look at an example of how to retrieve attribute information in VB, and then analyze the
code. Let’s use the example of the Author attribute that was developed in the previous
section:

<Author("Julian", Date="21/12/00")> Public Class Foo
 …

End Class

You can find out whether the Foo class has an Author attribute by getting a Type object
representing the class, and then querying it:

Imports System

…
' Create a Type reference

Dim tf as Type

' Create an object to query
Dim aa As New Foo()

' Get its type information
tf = aa.GetType

Dim obj, atts() As Object

atts = tf.GetCustomAttributes(True)

For Each obj In atts
 If (TypeOf obj Is Author) Then

 Console.WriteLine("Author attribute, name is {0}", _
 (CType(obj,Author)).Name)

 End If
Next

You create a Foo object, and then use the GetType() method that every .NET class inherits
from its ultimate Object parent class to obtain a Type object representing the object’s type
information. Once you have this, you can call GetCustomAttributes() to get an array of
Object references that refer to the custom attribute objects. This function takes a Boolean
argument that tells it whether to walk up the inheritance tree looking for attributes; I’ve set it
to True, but it really makes no difference in this case.

You can then walk over the array, checking the type of each reference to see if it is an
Author. If it is, you can access the fields within the Author object by casting the reference
appropriately.

Doing this in C# is pretty much the same:

using System;

…
Type tf = typeof(Foo);

object[] atts = tf.GetCustomAttributes(true);

foreach(object o in atts) {
 if(o.GetType().Equals(typeof(Author)))

 Console.WriteLine("Foo has an Author attribute");
}

The first thing you do is to use the typeof operator to get a Type object representing the
class you want to query. Once you have that, you can use its GetCustomAttributes()
method to get a list of references to the custom attributes this object supports. Because an
array of plain object references is returned, you need to check the type of the objects to see
whether one of them is an Author. Note the use of the GetType() method, which returns a
Type object from an object reference, as opposed to the typeof operator, which returns a
Type object from a class name. Once you have established that your class has an Author
attribute, you can retrieve its arguments.

Finally, let’s see how you can do this in Managed C++. As you might expect, it’s a little more
trouble than in C#, but still relatively straightforward:

#using <mscorlib.dll>;

using namespace System;
…

Foo* f = new Foo();
Type* pt = f->GetType();

Object* patts[] = pt->GetCustomAttributes(true);

for (int i=0; i<patts->Length; i++)

{
 Console::WriteLine("attribute {0} is {1}", __box(i),

 patts[i]->GetType()->get_Name());

 Type* pa = Type::GetType("Author");
 if (patts[i]->GetType()->Equals(pa))

 Console::WriteLine("Object has Author attribute");
}

The first task is to get the type of the managed class Foo, and then ask for the list of custom
attributes. Checking these involves getting the Type object representing each attribute, and
then comparing it with the Type object for the Author attribute class using the Equals()
method. Note the use of __box() to turn the C++ int variable i into a System.Int32, which
can be used with Console::WriteLine().

How Do I Catch Exceptions?

Exceptions are caught using the Try, Catch, Finally construct; this works pretty much the
same in all .NET languages. Here’s an outline of the syntax:

Try

 ' Code that may fail goes here
Catch ex As SomeExceptionType

 ' Handle SomeExceptionType
Catch ex2 As SomeOtherExceptionType

 ' Handle SomeOtherExceptionType
Catch

 ' Handle any exception that gets here
Finally

 ' Code that's always executed
End Try

A Try block is placed around code that may give rise to an exception, and one or more
Catch clauses are declared to handle exceptions. You can’t have a Try without at least one
Catch clause, and you can’t have Catch clauses outside a Try block.

Exceptions are tagged with an exception object, and Catch clauses can be constructed to
catch a particular class of exception, as in:

Catch ex As SomeExceptionType

All exception objects must be from classes that inherit from System.Exception. Once
you’ve caught an exception, you can use its members to find out about the exception. The
StackTrace property returns the stack trace (which tells you where the exception occurred)
as a string; the Message property retrieves the message associated with the exception; the
Source property returns a string indicating the name of the application or object that
generated this exception; and TargetSite is a property that tells you which method threw the
exception:

Try
 f.bar()

Catch ae As NullReferenceException
 Console.WriteLine("Exception stack trace was: {0}", ae.StackTrace);

 Console.WriteLine("Message was: {0}", ae.Message);
 Console.WriteLine("Source was: {0}", ae.Source);

 Console.WriteLine("TargetSite was: {0}", ae.TargetSite);
End Try

Because of the way that inheritance works, you can use Exception to catch any exception
type, as it’s the base class for all exceptions. If you use multiple Catch clauses, you need to
be careful that one Catch does not hide another:

Try

 ' Code that may fail goes here
Catch ex As Exception

 ' Handle all exceptions…
Catch ex2 As SomeOtherExceptionType

 ' Nothing gets through to here…
End Try

Because all exceptions are Exception objects, all exception objects will be caught by the
first clause and nothing will get through to the second. The C# compiler will warn you if you
try to do this, but VB won’t.

It is also quite possible to nest Try/Catch blocks inside one another, provided that you nest
a complete Try/End Try construct, although this isn’t done very often in practice because it
can lead to code that is hard to read.

How Do I Generate Exceptions?

All .NET languages use the Throw statement to generate exceptions. The following VB code
fragment shows a typical use of Throw; the same basic mechanism is used in C# and C++:

Public Sub someMethod(ByRef o As Object) {

 ' test for null reference
 If o = Nothing Then

 Throw New ArgumentException()

 End If
End Sub

The argument to the Throw statement must be a reference to an object whose class derives
from System.Exception. This may be one of the standard system exception classes, as in
this code, or one that you have derived yourself. Exception objects can take parameters to
their constructors, which allows data to be passed to the exception handler.

It is valid to rethrow an exception from within a Catch clause, in which case it will be caught
by an enclosing exception (if any) or passed up the call chain for handling at a higher level:

Try

 someFunc(obj)
Catch e As ArgumentException

 Console.WriteLine("Caught exception: {0}", e)
 throw

End Try

You can also throw a completely different exception type from within a Catch block if you
need to.

How Do I Get a Type Object Representing a Type?

Instances of the System.Type class are used to represent types. When a Type object is
created, the class code is queried by reflection, and the metadata is used to build a Type
object that completely describes the makeup of the type, including all its fields, properties,
and methods.

You can use the Type class to do some interesting and powerful things, but most often you’ll
be required to provide a Type object as a parameter to a function call. For example, the
System.Array class lets you create arrays to hold objects of a given type, and it needs you
to provide a Type object that describes what you want to hold in the array. In VB, you use
the GetType operator to do this, as shown here:

Dim arr As Array = Array.CreateInstance(GetType(Integer), 10)

In this example, an array of integers is created with a length of 10 elements by specifying the
type of the Integer class.

In C#, you use the typeof operator to get the same information:

Type t = typeof(Integer)

How Can I Find Out about a Type?

Once you have a Type object representing the type you want to investigate, you can use the
methods of Type to retrieve the information you require:

' Get a Type object for a class

Dim t1 As Type = GetType(Test)

' Get the name

Console.WriteLine("Name of type is: {0}", t1.Name)
Console.WriteLine("Module is: {0}", t1.Module)

' Find out a few things…

Console.WriteLine("Is it a class: {0}", t1.IsClass)
Console.WriteLine("Is it a value type: {0}", t1.IsValueType)

For this Test class, the program displayed the following output:

Name of type is: Module1$Test
Module is: VBReflect.exe

Is it a class: True

Is it a value type: False

The first line shows that the Test class is part of the Module1 module, and the second line
tells you that the module lives in VBReflect.exe. Type contains over 30 query properties,
some of which are quite esoteric. Table 2.6 lists a few of the most generally useful query
properties.

Table 2.6: Query properties belonging to the System.Type class.

Query Property Description

IsAbstract Returns true if the type is abstract

IsArray Returns true if the type is an array

IsClass Returns true if the type is a class

IsInterface Returns true if the type is an interface

IsPublic / IsNotPublic Tells you whether the type is declared as public

IsSealed Returns true if the type is sealed

IsSerializable Returns true if the type is serializable

IsValueType Returns true if the type is a value type

In order to go get more information about a type, you have to use the System.Reflection
namespace, as this defines many of the structures you’ll need if you want to look at the
methods, properties, and fields that make up a class.

You can use the System.Reflection namespace in two ways. The first way is to fully qualify
the names of all the classes you want to use from the namespace, as shown here:

Dim mi() As System.Reflection.MethodInfo

Although it is quite possible to work with fully qualified names, it gets a little tiring having to
type them out. In addition, as you delve deeper into .NET, you will find that some of the
namespace names get very long indeed, so this method is not very practical.

The second way to use System.Reflection namespace is to use an Imports statement in
VB (or using in C#, or #using in C++). This tells the compiler that it can try to resolve type

names by looking in the namespaces that you specify using the Imports statement, so that
you no longer have to type fully qualified names:

Imports System.Reflection
…

dim mi() as MethodInfo

After you have done this, you are in a position to list the methods a class supports:

' Get a Type object for a class
Dim t1 As Type = GetType(Test)

' Get the MethodInfo objects

Dim mi() As MethodInfo = t1.GetMethods
Dim m As MethodInfo

For Each m In mi

 Console.WriteLine("Method: {0}", m)
Next

You first create an array of MethodInfo objects, and then call the GetMethods member of
Type in order to fill it. Once you’ve done this, you can iterate over the array and print out the
details of each method. The implementation of ToString() in MethodInfo returns the entire
method signature; when you run the code, you get the following output:

Method: Int32 GetHashCode()
Method: Boolean Equals(System.Object)

Method: System.String ToString()
Method: Void Foo()

Method: System.Type GetType()

The listing contains all the methods exposed by the class, including those it has inherited
from Object. You can extend this by adding information on whether the method is public and
whether it is virtual:

For Each m In mi
 Console.WriteLine("Method: {0}, public: {1}, virtual: {2}", _

 m, m.IsPublic, m.IsVirtual)
Next

The amended output is as follows:

Method: Int32 GetHashCode(), public: True, virtual: True

Method: Boolean Equals(System.Object) , public: True, virtual: True
Method: System.String ToString(), public: True, virtual: True

Method: Void Foo(), public: True, virtual: False
Method: System.Type GetType(), public: True, virtual: False

Similar mechanisms let you find out about the fields and properties and about the
parameters belonging to the methods.

How Can I Create Objects Dynamically?

Creating objects dynamically means deciding at runtime which class you want to instantiate.
However, you may not have any idea until runtime which class you’re going to use. For
example, it may be that you need to load some sort of driver because a user has installed a
new driver and has provided you with its class name. Dynamic creation lets you create and
use objects even if all you have to go on is a string holding the class name.

If the class you want to use isn’t already loaded, you need to load the assembly. This can
easily be done using the Load method of the Assembly class. After the assembly is loaded,
you can then use the GetType() method of the Assembly class to get an appropriate Type
object representing the class you want to use. Here’s an example:

' Load the assembly called MyAssembly
Dim ass As Assembly = Assembly.Load("MyAssembly")

' Get a Type object for the type we want to use

Dim tp As Type = ass.GetType("MyClass")

When you have the Type object representing the class you want to use, you can dynamically
create an instance. You do this by using the Activator class, a member of
System.Reflection that contains methods to create objects dynamically:

' Use the Activator to get an instance

Dim obj As Object = Activator.CreateInstance(tp)

Because CreateInstance() can be used with any type, it returns a plain Object reference.

The InvokeMember() function in the Type class lets you invoke a method by name on a
dynamically created object; if you’re at all familiar with COM and Automation, this is the
equivalent of the Invoke() method on the IDispatch interface. In fact, InvokeMember() lets
you do a good deal more, such as get and set property values as well, but let’s stick to
invoking a method to see how it’s done. The function takes several parameters, as you can
see from the following line of code:

tp.InvokeMember("Foo", _
 BindingFlags.Default Or BindingFlags.InvokeMethod _

 Nothing, obj, New Object(){})

The first parameter is the name of the function you want to execute, in this case “Foo”. The
second parameter tells InvokeMember() how you want it to work. There is a large
BindingFlags enumeration that contains all the possible actions, and two have been
chosen. The first, BindingFlags.Default, tells the function to use the language default rules
for binding names, whereas the second tells it that you intend on invoking a method, as
opposed to getting or setting a property. The third parameter is often Nothing (or null for
C#) and can be used to specify an optional binder object that controls the name binding
process. The fourth parameter provides a reference to the object on which the function is
being invoked. The last parameter is an array containing references to any arguments
needed by the function. In this case there aren’t any, so an empty array is passed.

Chapter 3: The System Namespace

By Julian Templeman

In Depth

The System namespace is the most important namespace in the whole of .NET. It defines
most of the basic entities supported by all the .NET languages plus a lot of commonly used
functionality:
§ Base classes for value and reference types
§ Common basic types, such as integers, doubles, and Booleans
§ Object and string classes
§ Events and event handling
§ Interfaces
§ Attributes
§ Exceptions
§ Math functions

Basic Types

The System namespace contains definitions of the basic value types that are supported by
a wide variety of .NET languages as shown in Table 3.1.

Table 3.1: The .NET basic data types.

Structure CLS
Compliant
?

Description

Boolean Y Can take the values true or false

Byte Y Represents an 8-bit unsigned integer

Char Y Represents a 16-bit Unicode character

Decimal Y Represents a decimal value with 28 significant digits

Double Y Represents an IEEE754 64-bit double-precision
floating-point value. The range of values held in a
Double is approximately +/- 1.8e308

Int16 Y Represents a 16-bit signed integer

Int32 Y Represents a 32-bit signed integer

Int64 Y Represents a 64-bit signed integer

Single Y Represents an IEEE754 32-bit single-precision
floating-point value. The range of values held in a
Single is approximately +/- 3.4e38

UInt16 N Represents an unsigned 16-bit integer

UInt32 N Represents an unsigned 32-bit integer

UInt64 N Represents an unsigned 64-bit integer

Table 3.1: The .NET basic data types.

Structure CLS
Compliant
?

Description

DateTime N Represents a date and time since 12:00 a.m. on
January 1 A.D. 1

SByte N Signed 8-bit integer

For ease of use, these types are mapped onto native types in each language, so that an int
in C# is a synonym for a System.Int32. There’s no reason why you shouldn’t use the
underlying System types rather than the language-specific mappings if you so desire.

All these derive from System.ValueType , and although you are free to derive your own
types from ValueType , you can’t derive types from the basic types themselves.

Basic Types and the CLS

The Common Language Specification (CLS) defines a range of types and language features
(such as exception handling) that must be supported by a language if it is to work within the
.NET world. As such, the CLS concerns compiler writers far more than it does developers,
but there’s one detail that needs to be noted about it.

Some of the types in Table 3.1—specifically the unsigned integer types—aren’t CLS
compliant. As a result, you won’t be able to use them from every .NET language because
languages aren’t forced to support them. In particular, unsigned integer types aren’t
supported by Visual Basic (I have no idea why; it is a decision that hasn’t been popular with
many VB programmers), so you may need to be careful if you want to use these types in
components written in other .NET languages that may end up being used with VB.

Table 3.2: A selection of the conversion methods provided by the Convert class.

Method Description

ToBoolean(Short) Converts a Short to a Boolean. Returns True
if the value is non-zero, and False if it is zero.

ToBoolean(String) Converts a String to a Boolean. Returns True
if the String contains the text “True”, otherwise
it returns False.

ToDouble(Boolean) Returns 1 if the value is True, and 0 if it is
False .

ToDouble(String) Returns a Double representing the String.

ToInt64(Int32) Converts a 32-bit integer into a 64-bit integer.

ToDateTime(Long) Tries to convert the Long into a DateTime
object. Because DateTime holds its value as a
large integer, this may be possible.

ToDateTime(String) Tries to convert the String into a DateTime
object.

Floating-Point Types

Doubles work to the IEEE 754 standard, which means that every floating-point operation
has a defined result. One outcome of this is that you’ll never get a floating-point divide by
zero exception because the result of dividing by zero is defined as infinity. Floating-point
classes have values to represent positive and negative infinity and Not-A-Number as well as
methods to test for them. Here’s an example using VB:

Dim d1,d2,d3 As Double

d1 = 1
d2 = 0

d3 = d1 / d2 ' divide by zero

If d3 = Double.PositiveInfinity Then
 Console.WriteLine("Division returned positive infinity")

ElseIf d3 = Double.NegativeInfinity Then
 Console.WriteLine("Division returned negative infinity")

ElseIf d3 = Double.NaN Then
 Console.WriteLine("Division returned not-a-number")

Else
 Console.WriteLine("Division returned something else!")

End If

Conversions

All the basic type classes support a ToString() method, and the Convert class is provided
for general conversions between the built-in types. To give you an idea of the conversions
that are available, Table 3.2 contains some of the conversions available from Convert.

Because all classes implement conversions and all the conversion methods return
references to new objects, you can chain them together like this:

Dim p1 as System.Int32

p1 = 0
Dim s as String

s = Convert ToString(Convert.ToBoolean(p1))
Console.WriteLine("s is {0}", s)

The call to ToBoolean() converts the Int32 to a Boolean; I then call ToString() on the
Boolean to convert it to a string. The result of this is that s holds the value False .

Interfaces

If you examine the definitions of the basic value types, you’ll find that they often implement
one or more of a group of three interfaces: IComparable, IConvertible, and IFormattable. For
example, the definition of the Double type is as follows:

Public Structure Double
 Implements IComparable, IFormattable, IConvertible

Interfaces (discussed in more detail in Chapter 4) are used to define behavior that can be
implemented by a number of classes regardless of whether they are related by inheritance
or not.

IComparable defines a single comparison function, CompareTo(). A class that implements
this interface will provide an implementation of CompareTo() so that

myObject.CompareTo(someOtherObject)

returns zero if they are the same, less than zero if myObject is “less” than
someOtherObject (in some class-dependent way), and greater than zero if myObject is
“greater” than someOtherObject. Use of an interface in this way means that if a class
implements IComparable, it is possible to sort a collection of those objects using
CompareTo() without knowing anything else about the class.

IConvertible defines a number of conversion methods that classes can implement. Some of
the conversions that Convert supports were shown previously: All of them—ToString(),
ToInt64(), and so on—are in fact part of IConvertible. Once again, if a class supports
IConvertible, client code knows which conversions it can apply. What if a class doesn’t
support a particular conversion, such as trying to convert a Boolean to a DateTime?

The Convert class implements every possible conversion between built-in types, but throws
an InvalidCastException for those that make no sense. Some of the methods defined by
IConvertible take an IFormatProvider argument, which can be used to provide a custom
formatting object.

IFormattable provides a single ToString() method that is used to provide a formatted
representation of the value as a String. It is used where a type needs more control over
formatting than the general Object.ToString() method would provide. In this case we don’t
really need one, but I’ve included it to show you how it works. In VB, the
IFormattable.ToString() function has the following signature:

Function ToString(ByVal fmt as String, _

 ByVal fp as IFormatProvider) As String

The first argument specifies the format to use; if it is null (Nothing in VB), then the default
format for the type will be used. The second argument—which can also be null—can be
used to specify a reference to an object that implements IFormatProvider. What is this and
why might you want to use it? If you’re writing any numeric class, the format is going to
depend on the localization settings of the machine on which the code runs. In the United
Kingdom, I’d write “10.75”, whereas in France, someone would use a comma for the decimal
separator; I’d write “10,000”, whereas the French would write “10.000”. The
IFormatProvider object lets you retrieve a NumberFormatInfo object, which describes
numerical formatting information including data on decimal and thousand separators and
currency symbol placement.

The Object Class

The Object class is at the root of the type hierarchy. As a result, all classes in .NET are
derived from Object. This inheritance is implicit; there is no need to explicitly declare that a
class has Object as its superclass.

The fact that all classes inherit directly or indirectly from Object has certain consequences.
First, there is only one class hierarchy in .NET; this stands in contrast to languages such as
C++, where you can have as many separate class hierarchies as you like. Second, because
all classes derive from Object, all objects can be passed around using Object references,

which makes it quite easy to write generic classes, such as containers that can hold any kind
of object.

Third, Object provides a base set of useful methods that all .NET classes inherit, as
summarized in the Table 3.3.

Table 3.3: Methods of the Object class.

Object Method Description

Equals() Tests whether two objects are the same

Finalize() Called before an object is garbage collected, so
that it can free up resources

GetHashCode() Returns a hash code used to represent the
object in hashtables and other data structures

GetType() Returns a Type object that describes the
object’s type

MemberwiseClone() Creates a shallow copy of the object

ReferenceEquals() Shared (static) function that compares two
references and returns True if they both refer to
the same object

ToString() Returns a string representing the object

I’ll look at each of these in a little more detail and show you when (and how) derived classes
might want to override the basic implementations provided by Object.

Object Equality

The Equals() method is provided so you can test objects for equality, but that isn’t always as
simple as it may sound.

You may be wondering whether there’s a difference between the Equals() method and the =
operator in VB, or the == operator in C# and C++. There certainly is, and it’s one that you
need to understand in order to prevent problems in your code. Here’s a summary of the
operators and methods we’ve got to play with:
§ Equals() tests for equality of content between objects.
§ Is in VB, and == in C#, test for equality of reference.
§ In VB, = tests for equality of value types, which aren’t accessed via references.

This is illustrated in the following code fragment, where I am comparing two objects of a
mythical Person class, which has an Equals() method implemented:

Dim person1 As New Person("Fred")

Dim person2 As New Person("Fred")

If person1 Is person2 Then
 Console.WriteLine("person references are equal")

Else
 Console.WriteLine("person references are not equal")

End If

If person1.Equals(person2) Then

 Console.WriteLine("person objects are equal")
Else

Console.WriteLine("person objects are not equal")
End If

I am creating two Person objects that have the same content, namely the string “Fred”.
When I use the Is operator to compare the two objects, the references are compared;
because these are two different objects, the references to them are obviously different, and
consequently the test fails. When I use Equals(), on the other hand, the code compares the
content of the two objects and finds them to be equal.

The meaning of equality depends on the types of objects you are considering. For value
types it is usually pretty easy—two value objects are the same if they contain the same
value. So two Doubles that contain the value 12.3 can be considered equal. But what about
something like a Bank Account class? Can two Account objects ever be “equal” given that
they have unique account numbers? It may be that you decide that two Accounts are equal
if their balances are equal, but it is by no means the only solution. For reference types, you
may need to be careful in defining exactly what equality means if you decide to override
Equals().

Note

If you override Equals(), the compiler will warn you about not overriding
GetHashCode(). This is because when storing objects in collections the
Equals() and GetHashCode() methods get used together—if you override
one then you’ll need to override the other if you intend to use your class in a
hash table or similar collection.

What happens if you decide not to override the Equals() method? Then your class will
inherit the default implementation from Object, which does exactly the same thing as the Is
(or ==) operator—it compares references.

The following list summarizes the rules for value types and reference types:
§ You can use Is or == with reference types (i.e., classes) to test for equality of

references.
§ You cannot use the Is and == operators with value types. By definition, value types are

not accessed through references, so it doesn’t make sense to try to compare them.
§ You can override Equals() for reference types, so that you can define your own

comparisons for your own classes. If you don’t override it, the default Equals() checks
for reference equality.

§ Value types use the inherited Equals(), which tests for content equality, and they
cannot override it.

The ReferenceEquals() method is used to test whether two references refer to the same
object. In VB, you’d tend to use the Is operator rather than calling this method directly.

Finalization

The Finalize() method is called when an object is about to be reclaimed by the garbage
collector. Its job is to let you reclaim any resources that may have been requested by the
object. Java programmers can note that .NET’s Finalize() is very similar in function to Java’s

Finalize(). C++ programmers should note that Finalize() is not equivalent to a destructor, for
reasons that will become apparent very shortly.

Finalize() is called when the garbage collector finally decides to end an object’s life. But the
problem is that you don’t know when that will be, or even if it will happen at all. The idea
behind garbage collection is that it allows the system to minimize memory usage by
recycling unused objects. If the amount of memory being used by the application is small
and there is no danger of running out of resources, then there is no need for the garbage
collector to run. In addition, there is little point in reclaiming resources when a program ends
because it will happen anyway. So unless you tell it otherwise, the garbage collector will not
call Finalize() for any objects at the end of a program.

This means that finalization is nondeterministic, so you really shouldn’t put any code into
Finalize() that has to run at a particular point in the program, or that has to run at all. See
also my discussion in the Immediate Solution, “How Do I Handle Cleanup in .NET Objects,”
in Chapter 2.

GetHashCode()

The GetHashCode() method is used to generate a hash code for value types and classes
that need one. Without getting too technical, a hash code is an integer that can be used to
identify an object. They are used when storing objects in data structures, such as hash
tables.

It is obvious what the hash code ought to be for some classes: For all my bank accounts, the
account number is a unique integer value, so that will do very nicely. For other classes it isn’t
as obvious: What should the hash code of a string be?

GetHashCode() provides a way for class implementers to generate a suitable hash code for
their classes, and it must be overridden for value types.

GetType()

GetType() is used to return a Type object that describes the class this object belongs to.
This method cannot be overridden, and it is difficult to see why there would ever be a need
to do so. See the section “Reflection and the Type Class” in Chapter 2 for details of this
class and what it is used for.

Cloning and Copying

MemberwiseClone() can be called to produce a shallow copy of the object. Shallow copying
only looks at the top level of an object. If an object contains references to other objects, the
references will be copied. The shallow copy process is shown in Figure 3.1.

Figure 3.1: Shallow copying.

Note that the MemberwiseClone() method is protected; it can only be called from within the
derived class. This means that you cannot use the following code:

Dim obj As New SomeObject()
obj.MemberwiseClone()

Why not? It may not be appropriate for your objects to be copied in this way, but if it is, you
can choose to expose the function through a public method:

Public Function Copy() As Object
 Return MemberwiseClone()

End Function

Because the function is protected, you can choose whether to make it available for use or
not.

What if you want to make a separate copy of the object and everything to which it refers, as
shown in Figure 3.2? This is called a deep copy, and in order to instruct the Common
Language Runtime (CLR) to use deep rather than shallow copying for a class, you have to
implement the ICloneable interface. Details of how you do this in practice are given in the
Immediate Solutions section in this chapter.

Figure 3.2: Deep copying.

ToString()

By overriding ToString(), an object can return a string that represents it in some way. In the
case of value types, it is normally pretty obvious what this method should return: A Double
returns a string containing the floating-point value it represents, a Boolean returns true or
false, and so on.

Sometimes, it is not clear what reference types ought to return. What should an Account
object or a Car object return? You’ll find that in many cases overriding ToString() is
essential in order to be able to use value types, but that its use with reference types may be
mainly for diagnostic purposes.

Who uses ToString()? Although you can call ToString() on an object yourself, it will
automatically be called in situations where you use an object where a String is wanted. For
example, if you write:

Dim myObject As New SomeClass
…

Console.WriteLine(myObject)

WriteLine() doesn’t know how to output SomeClass objects, so it checks to see whether the
class implements ToString(). If it does, WriteLine() calls ToString() because it does know
how to output a String. If the class doesn’t implement ToString(), WriteLine() simply
outputs the fully-qualified class name, which might look something like this:

TestProject.Module1$SomeClass

Which shows that SomeClass belongs to Module1 in the project called TestProject.

Arrays

Arrays in .NET are objects in their own right, objects that are responsible for holding a
collection of other objects. This means that they have methods you can call and properties
you can interact with, and as you would expect, they are mapped onto the native arrays
supported by the .NET languages.

Note

For VB programmers, arrays are indexed from zero in .NET, which means
you may have problems if you have relied in the past on using Option Base
to set the array index base to one. See the Immediate Solutions section for
details on how to deal with this situation.

The System.Array class provides methods for creating, searching, manipulating, and
sorting arrays, and it serves as the base for all arrays in the .NET world. It supports
multidimensional arrays, although the syntax for using them is not very tidy.

In practice, you’ll tend to use the native array types provided by the language you are coding
in, but you can use the System.Array class if you want to. There are some members of
System.Array that are very useful, and that aren’t provided by most language array
implementations.

Note that arrays are not thread safe. The array class does contain two properties relating to
thread safety, but they don’t do anything. The first one, IsSynchronized(), returns a Boolean
value indicating whether access to the array is synchronized or not. By default, this simply
returns False, although the method could be overridden by a derived class. The second
property, SyncRoot, returns a reference to an object that can be used to synchronize
access to an array.

If you want to implement thread-safe arrays, you can derive your own class from
System.Array and override these properties.

Other Types

In this section, I’ll discuss a few other useful utility classes that are defined within the
System namespace.

String

System.String is used to represent character strings and is one of only two reference types
that is provided for you along with the value types, the other being Object.

One thing you may find strange—but will be quite familiar if you’ve used Java—is that once
you’ve stored something in a String, you can’t change it. You can perform operations that
retrieve a copy of part or all of the String, but you cannot change the underlying data. If you
want to edit character strings, you need to use the StringBuilder class, which is discussed
in Chapter 12.

You’ll find some methods in the String class that appear to change the String object, but
they always create a new object that contains the modified text.

DateTime and TimeSpan

DateTime is a value type that is used to store, examine, and manipulate dates and times. It
stores its value in a property named Ticks, which holds the number of 100-nanosecond
intervals since 12:00 a.m. on January 1, a.d. 1. This class uses the Gregorian calendar for
interpreting and manipulating dates. See the discussion of the Calendar class in Chapter 12
for more details on how to create and manipulate calendars.

The DateTime class has a wide range of methods for manipulating, examining, and
formatting dates and times. Details for using many of these methods are provided in the
Immediate Solutions section.

The TimeSpan class is used to represent a period in time and can represent any number of
days, hours, minutes, and seconds. The result of subtracting two DateTime objects is a
TimeSpan; you can add a TimeSpan onto a DateTime to get a new DateTime.

TimeZone

The TimeZone class represents a time zone and can be used to query the time zone
currently being used by the system.

The following sample code shows how TimeZone can be used; it demonstrates the main
functions and properties of the class:

' Get the current time zone
Dim tz As TimeZone = TimeZone.CurrentTimeZone

Console.WriteLine("Timezone name is {0}", tz.StandardName)

Console.WriteLine("Daylight savings name is {0}", tz.DaylightName)
Console.WriteLine("Today is in daylight saving time: {0}",

 tz.IsDaylightSavingTime(DateTime.Now))

Decimal

The Decimal class is useful in financial calculations because it can represent numbers to a
high degree of accuracy (28 significant digits) and with no rounding errors. They are stored
as 96-bit signed integers scaled by a variable power of 10. This power specifies the number
of digits to the right of the decimal point and ranges from 0 to 28.

Decimal has a set of arithmetic and logical operators, and also a range of methods to let you
perform arithmetic, such as Add(), Subtract(), Multiply() and Divide(), Mod(), Floor(), and
Round(). It is recommended that Decimal be used to replace the older VB Currency type.

Enums

An enum is an enumerated type—a collection of related constants bound together as a type.
A good example of an enumerated type would be the days of the week, which can take the
values “Sunday” through “Monday”, or the number of days in each month.

The System namespace contains the System.Enum value type, which is used as the basis
for enumerations in higher-level languages and is seldom if ever used by application
programmers.

The following is a simple example in VB:

Enum ErrorCodes
 BadFileName = 100

 NoPermission
 FileIsReadOnly

 SecurityError = 200
End Enum

An enum consists of one or more named members, each of which can optionally be
assigned a numerical value. If you don’t assign a value, the first one defaults to zero, and
each succeeding member is incremented by one. You can mix assigned and unassigned
members, as shown in the preceding example.

This enum can now be used to declare variables and be passed to and returned from
functions.

Exceptions

The mechanics of exceptions and the way you use them was discussed in the “Exceptions”
section in Chapter 2. You might want to refer to that section before reading on.

System.Exception is the base class for all exceptions. An object cannot be thrown or
caught unless it inherits from Exception. The following listing shows all the exception
classes that were documented in beta 2; you can see that there is a hierarchy of exception
classes:

Exception

 ApplicationException
 SystemException

 MemberAccessException

 FieldAccessException
 MethodAccessException

 MissingMemberException
 MissingFieldException

 MissingMethodException
 AppDomainUnloadedException

 ArgumentException
 ArgumentNullException

 ArgumentOutOfRangeException
 DuplicateWaitObjectException

 ArithmeticException
 DivideByZeroException

 NotFiniteNumberException
 OverflowException

 ArrayTypeMismatchException
 BadImageFormatException

 CannotUnloadAppDomainException
 ContextMarshalException

 CoreException
 IndexOutOfRangeException

 NullReferenceException
 ExecutionEngineException

 StackOverflowException
 ExecutionEngineException

 FormatException
 IndexOutOfRangeException

 InvalidCastException
 InvalidOperationException

 ObjectDisposeException
 InvalidProgramException

 MulticastNotSupportedException
 NotImplementedException

 NotSupportedException
 PlatformNotSupportedException

 NullReferenceException
 OutOfMemoryException

 RankException
 ServicedComponentException

 TypeInitializationException
 StackOverflowException

 TypedInitializationException
 TypeLoadException

 DllNotFoundException
 EntryPointNotFoundException

 TypeUnloadedException
 UnauthorizedAccessException

 WeakReferenceException
 URIFormatException

System.Exception forms the base class for everything that can be thrown and caught.
Under this parent class, there are two other main base classes from which all others are
derived: ApplicationException and SystemException. Of these, the
ApplicationException class can be used as a base for application-specific exceptions,
whereas the SystemException class forms the base for exceptions that are thrown by the
runtime.

Arranging exceptions in a hierarchy has advantages when using an object-oriented (OO)
language because of the way that class hierarchies work. Because by inheritance an
OverflowException is an ArithmeticException, an ArithmeticException is a
SystemException, and a SystemException is an Exception, you can
catch whole groups of exceptions by choosing the appropriate base class to use in your
Catch clause. For example, the following VB code would catch all ArithmeticExceptions
that arise:

Catch e as ArithmeticException

One useful facility offered by the Exception class is the ability to use one exception to wrap
another. This is useful in situations that could give rise to a large number of different
exceptions, but where you don’t want to burden the client programmer with having to catch
numerous different types. An example might be database access, where you could get
exceptions due to security problems, network problems, errors in SQL, and any number of
other reasons. In order to simplify things, the database code could catch all exceptions
internally, wrap them in a (mythical) DatabaseException object, and rethrow them. The
client programmer then only has to catch DatabaseExceptions and can if necessary use
the InnerException property to see details of the original error.

The Console Class

The Console class has been used since the beginning of Chapter 1, so now would be a
good time to examine it in more detail.

The System.Console class provides access to the standard input, standard output, and
standard error streams. Standard input represents the stream from which input normally
arrives; for a console application, this is the keyboard. Standard output represents the
stream where output is normally sent, and for a console application, this is the console
window. Standard error is a stream to which error messages can be written, and this defaults
to the console window. Two separate output streams are provided because it is possible to
redirect standard output to a file or another device, and you will probably want to see your
error messages displayed on the screen rather than being sent along with your other output.

In this section, only console I/O is considered. The topic of I/O in general is covered more
fully in Chapter 6.

One thing that sometimes puzzles people new to .NET is that it is possible to use the
Console class in two ways, as shown in the following code:

Console.Writeline ("this is the first way")
Console.Out.Writeline ("this is the second way")

Out is a TextWriter, a shared member of the Console class, which writes to standard output,
and the Writeline method belongs to Out. The Console class provides a shortcut by
implementing Writeline as a shared method that delegates to the Out object, and thus
saves you four characters every time you use an output statement. A similar shortcut is
provided for Console.In, but if you want to write to standard error, you have to use the full
form.

In comparison with some languages (such as Java), console I/O is very simple and there are
few methods to master. The Writeline() and Write() methods output text with and without a
trailing new line respectively; Read() gets the next character from the input stream, and
Readline() obtains a complete line of text. Although it hasn’t yet been used in this book, it is
possible to produce formatted output; this topic is covered in the Immediate Solutions
section at the end of this chapter.

The Math Class

The System.Math class is basically a placeholder for a number of constants and methods
that are mathematical in nature and don’t belong anywhere else.

The class includes definitions for Pi and E, as you would expect, and includes a number of
methods that implement common math functions. These are implemented as static (or in VB
terminology shared) members of the Math class because they don’t belong to any one
object. Remember that in .NET, every function has to be a part of a class. Table 3.4 shows
some commonly used methods of the Math class.

Table 3.4: Commonly used methods of the Math class.

Method Description

Abs() Returns the absolute value of a number

Sin(), Cos(), Tan() Standard trigonometric functions

Max(), Min() Returns the maximum or minimum of two
numbers

ACos(), ASin(), ATan(), ATan2() Standard trigonometric arc functions

Ceil(), Floor() Rounds up or down to the nearest integer

Cosh(), Sinh(), Tanh() Standard trigonometric hyperbolic
functions

Exp() Returns e to the specified power

Log(), Log10() Returns the natural and base-10 logarithm

Pow() Raises a number to a specified power

Rint() Returns the integer nearest to a given
number

Round() Returns the floating-point whole number
nearest to a given number

Table 3.4: Commonly used methods of the Math class.

Method Description

Sign() Returns the sign of a number

IEEERemainder() Returns the remainder of x/y as defined by
the IEEE 754 rules

This is a good place to introduce a couple of other math-related classes. First is the
Random class, which as you would expect implements a random number generator. In fact,
Random implements a pseudorandom number generator rather than generating truly
random values. This means that the algorithm starts from an integer “seed” value and
produces a new random value each time you ask it to. The “pseudo” comes from the fact
that if the same seed is used, you’ll get exactly the same set of random numbers produced.
If this was a true random number generator, you would expect to get a completely random
value each time, but it is very hard to write true random number generators, so you’ll usually
find the pseudo version implemented in software.

The Type Class

Instances of the Type class are used to hold the information that fully describes a type. This
class and its uses are described more fully in Chapter 2 under “Reflection and the Type
Class.”

Miscellaneous Classes

The OperatingSystem class represents an operating system version. However, this isn’t as
useful as it might be because it doesn’t tell you what system your code is running on; it only
lets you construct an OperatingSystem object to represent a system version.

How Do I Access Classes Defined in the System Namespace?

All the classes making up the System namespace and its subspaces are provided in a .NET
assembly called mscorlib.dll. So, in order to use any of the System classes in code, you
have to make sure that the System namespace has been imported into your code. How you
do that depends on the language you’re using.

In Visual Basic.NET you use the Imports statement to import names from a namespace, so
that they’re recognized by the compiler:

Imports System

The Imports System statement makes all type names defined in the namespace System
available to the compiler. You’ll have to do this if you are creating a VB project from scratch
and building it from the command line. However, you won’t need to do this if you are building
a project using Visual Studio .NET because VB projects are automatically set up to import a
number of common namespaces, including System and System.Collections.

As you might expect, Imports statements (of which there can be any number in a module)
must occur before references to anything defined in the namespace.

In C#, you need to use the using keyword to import names from a namespace. The
namespace name is given as an unquoted string, as shown here:

using System;

Managed C++ is rather different because instead of referring to the namespace, you have to
refer to the assembly in which it is held. The #using directive is an extension provided with
Managed C++ that directs the compiler to search a given assembly file for references. In
normal C++ fashion, the file name is given in angle brackets if it is a System namespace:

#using <mscorlib.dll>;

using namespace System;

C++ namespaces are used to map onto .NET namespaces, so you need to use a standard
C++ using directive to introduce the System namespace.

What’s the Relationship between Language Types and Those
Defined in System?

The System namespace defines a range of standard types, and these are mapped onto
native types in .NET languages for convenience. For example, a System.Double is the
same as a VB Double and a C# double, which makes it very easy to pass parameters
between languages.

You can happily use the System type name in code, although it normally means more
typing. Be aware that not all the .NET types are supported by all languages—only those that
are defined in the CLS must be supported. The most noticeable consequence of this is that
VB doesn’t support unsigned types because unsigned integer types aren’t part of the CLS.

How Do I Create a New Value Type?

Creating new value types isn’t that difficult, although it can be a long-winded process if you
want to implement a completely functional type. As an example, let’s look at a simple value
type implemented in VB, which formats negative numbers by placing parentheses around
them the way you often see them in accounting and financial spreadsheets. It implements
the three common interfaces: IComparable (so that you can easily write code to compare
objects), IConvertible (to provide conversions between a MyType and other common value
types), and IFormattable (so that it can be printed out in the correct format):

Public Structure MyType

 Implements IComparable, IConvertible, IFormattable

 Sub New(ByVal v As Double)
 d = v

 End Sub

 ' Here's the value contained in the type

 Dim d As Double

 ' IComparable implementation

 Function CompareTo(ByVal o As Object) As Integer Implements _
 IComparable.CompareTo

 ' We're always greater than a null reference…

 If o Is Nothing Then
 Return +1

 End If

 ' Check we're not something we don't like…
 If TypeOf o Is MyType Then

 ' Create a temporary object
 Dim tmp As MyType

 tmp = o

 If d < tmp.d Then
 Return -1

 ElseIf d > tmp.d Then
 Return +1

 Else
 Return 0

 End If
 Else

 Throw New ArgumentException("Can't compare to this type!")
 End If

 End Function

 ' IFormattable implementation

Overloads Function ToString(ByVal fmt As String, ByVal sop As _
 IFormatProvider) As String Implements IFormattable.ToString

 ' Format up negative numbers in parentheses, rather than
 'using a minus sign

 Dim tmp As Double
 tmp = Math.Abs(d)

 Dim s As String

 ' Turn the number into a string, and put parentheses round it if
it is
 ' negative

 s = String.Concat(tmp.ToString(fmt, sop))
 If d < 0 Then

 s = String.Concat("(", s, ")")
 End If

 Return s
 End Function

 ' IConvertible implementation

 Function GetTypeCode() As TypeCode Implements
IConvertible.GetTypeCode
 Return d.GetTypeCode()

 End Function

 Function ToBoolean(ByVal p As IFormatProvider) As Boolean _
 Implements IConvertible.ToBoolean

 Return Convert.ToBoolean(d, p)
 End Function

 Function ToByte(ByVal p As IFormatProvider) As Byte _

 Implements IConvertible.ToByte
 Return Convert.ToByte(d, p)

 End Function

 Function ToChar(ByVal p As IFormatProvider) As Char _
 Implements IConvertible.ToChar

 Return Convert.ToChar(d, p)
 End Function

 Function ToDateTime(ByVal p As IFormatProvider) As Date _

 Implements IConvertible.ToDateTime
 Return Convert.ToDateTime(d, p)

 End Function

 Function ToDecimal(ByVal p As IFormatProvider) As Decimal _
 Implements IConvertible.ToDecimal

 Return Convert.ToDecimal(d, p)
 End Function

 Function ToDouble(ByVal p As IFormatProvider) As Double _

 Implements IConvertible.ToDouble
 Return d

 End Function

 Function ToInt16(ByVal p As IFormatProvider) As Int16 _

 Implements IConvertible.ToInt16
 Return Convert.ToInt16(d, p)

 End Function

 Function ToInt32(ByVal p As IFormatProvider) As Int32 _
 Implements IConvertible.ToInt32

 Return Convert.ToInt32(d, p)
 End Function

 Function ToInt64(ByVal p As IFormatProvider) As Int64 _

 Implements IConvertible.ToInt64
 Return Convert.ToInt64(d, p)

 End Function

 ' SByte isn't supported by VB
 Function ToSByte(ByVal p As IFormatProvider) As SByte _

 Implements IConvertible.ToSByte
 Throw New InvalidCastException()

End Function

 Function ToSingle(ByVal p As IFormatProvider) As Single _
 Implements IConvertible.ToSingle

 Return Convert.ToSingle(d, p)
 End Function

 Overloads Function ToString(ByVal p As IFormatProvider) As String _

 Implements IConvertible.ToString
 Return Convert.ToString(d, p)

 End Function

 ' Overload Object.ToString() as well…
 Overloads Function ToString() As String

 Return Convert.ToString(d)
 End Function

 Function ToType(ByVal convType As Type, ByVal p As IFormatProvider)
_
 As Object Implements IConvertible.ToType
 Throw New InvalidCastException()

 End Function

 ' The unsigned types aren't supported by VB

 Function ToUInt16(ByVal p As IFormatProvider) As UInt16 _
 Implements IConvertible.ToUInt16

 Throw New InvalidCastException()
 End Function

 Function ToUInt32(ByVal p As IFormatProvider) As UInt32 _

 Implements IConvertible.ToUInt32
 Throw New InvalidCastException()

 End Function

 Function ToUInt64(ByVal p As IFormatProvider) As UInt64 _
 Implements IConvertible.ToUInt64

 Throw New InvalidCastException()
 End Function

End Structure

Let’s look at some of the important parts of this code. Note that MyType is simply a wrapper
around a Double value, which lets you use a lot of shortcuts in the implementation. The
IConvertible interface requires that you implement no fewer than 17 methods, but because
the value that is being converted is a double, you can make use of a lot of utility functions.
The highlighted code for GetTypeCode() simply calls the appropriate member of the Double
class to do the work, and most of the other functions call shared members of the Convert
class to do the conversion. Note how the SByte, UInt16, UInt32, and UInt64 types are
handled: You have to implement the functions as part of the interface, but VB doesn’t
support these unsigned types, so you can arrange for the code to throw an
InvalidCastException if they are ever called.

IComparable requires that you implement the CompareTo() method, which returns -1 if the
value is less than that of the object passed as an argument, 0 if they have the same value,
and +1 if the value is greater. There are a couple of things to remark on here, the first of
which is the check for a null reference; if I get passed one of these, I return +1, because
whatever my value, it is always greater than that of a null reference. Be careful when
checking for the null reference, and make sure that you use “If o Is Nothing” rather than “If o
= Nothing”. If you use the latter, you’ll get a recursive call to this function.

The second point to note is the way in which the code checks the type of the object it is
being compared with. I have to do this because the argument only specifies a simple Object
reference, and I’m not going to get very far comparing my object with (say) a String. I
obviously could make the class more sophisticated by allowing comparison with Doubles as
well, but I’m keeping it simple here.

In addition, IFormattable is used to format the object when a String representation is
required. If you try printing out an object using Console.WriteLine() and that object isn’t one
of the classes Console knows about, the function needs to get a String representation of
the object. It does this by checking whether your class implements IFormattable; if it does, it

will call the Format() method to get the String. If it doesn’t, you’ll simply get the name of the
class printed out, such as VBTest.Foo.

Once again, I can trade on the fact that my value is a Double object by calling the Double
class’s ToString() method to do all the hard work. All I have to do is to make sure that the
value I pass to Double.ToString() is positive by using Math.Abs(). Once I’ve done that, if
the value was negative, I’ll use the String.Concat() method to add parentheses to the start
and end of the string before returning it. Of course, if I wanted to, I could also look at the
format string passed in, in order to support custom formats.

You can test the new type using test code like this:

Sub Main()
 ' Create a negative value

 Dim t As New MyType(-6.2)

 ' Printing it out causes Format() to be called
 Console.WriteLine("Value of t is {0}", t)

 ' Create a positive value

 Dim t1 As New MyType(5.5)

 ' Compare it to the last one… the answer should be 1, because 5.5
is
 ' definitely bigger than -6.2

 Dim n As Integer
 n = t1.CompareTo(t)

 ' Test against null references… once again, the answer should be 1

 n = t1.CompareTo(Nothing)
End Sub

How Do I Test Whether Two Objects Are the Same?

Determining whether two objects are the same depends on what is meant by “the same,”
and whether you’re talking about value or reference objects.

Reference Types

Because reference types are accessed using references, there are two possible tests for
equality:
§ Are the two references the same? In other words, are they referring to the same

object?
§ Is the content of the two objects the same?

The first comparison is done using the = operator in VB—or the == operator in C# and
C++—and it returns true if the two references are pointing at the same object.

The second comparison is done using the Equals() method, which all .NET classes inherit
from Object. By default, this method does a reference comparison in the same way as =,
and you should override it if you want to compare content.

The following code shows how you could implement Equals() in a mythical VB Person
class, which has two String members firstName and lastName. Let’s assume that two
objects are equal if both first and last names are the same:

Public Overrides Function Equals(ByVal o As Object) As Boolean

 Dim b As Boolean

 If TypeOf o Is Person Then
 Dim tmp As Person

 tmp = o

 If (tmp.firstName.Equals(firstName) And _
 temp.lastName.Equals(lastName)) Then

 b = True
 Else

 b = False
 End If

 Else
 b = False

 End If

 Return b
End Function

The first thing to do is to check the type of object that is being compared. Because this
function is inherited from Object, all that is passed in is a generic Object reference, which
could point at anything. If the TypeOf operator indicates that it’s not dealing with another
Person, the code returns false because the object can’t be equal to anything other than
another Person object.

If you are dealing with another Person, the code checks the first and last names against
those of the passed in object, and returns true if they both match.

Value Types

Value types are different because they are not accessed through references. In this case,
the Equals() method tests for equality of value, and you can’t use the == operator. In
addition, you can’t override Equals() for value types because it is fixed to check for value
equality.

How Do I Implement Shallow and Deep Copying for a Class?

First, a brief recap: The Object class defines a MemberwiseClone() method that makes a
shallow copy of an object. A shallow copy only looks at the top-level members of an object

and copies them. This means that if an object contains references, then those references will
get copied, and the original and copied objects will end up referring to the same data. In
many—or even most—cases, this isn’t what you want.

Here’s an example of shallow copying in action. I’ll start by defining a basic Person class,
simply to use as data in what follows:

Public Class Person

 Private personName As String

 Property Name() As String
 Get

 Name = personName
 End Get

 Set
 personName = Value

 End Set
 End Property

End Class

Now I have Person objects that I can use as data and whose state I can modify. Let’s use
them in a class:

Public Class ShallowObject

 Public p As New Person()
End Class

The ShallowObject class simply has a reference to a Person object as a member, and
(although it isn’t recommended OO practice) I’ve declared it as Public to make the code
more compact. If I want to allow shallow copying of objects of this class, I need to implement
some sort of copying function that uses MemberwiseClone():

Public Class ShallowObject

 Public p As New Person()

 Public Function Copy() As ShallowObject
 Return CType(MemberwiseClone(), ShallowObject)

 End Function
End Class

Note that because MemberwiseClone() returns an Object reference, I have to use CType
to cast it to the right type before returning it. Now that I’ve added that function, I can
demonstrate how shallow copying works:

' Create a new object and set its name to Fred

Dim object1 As New ShallowObject()
object1.p.Name = "Fred"

' Create a second reference and make it point to a copy of

' the first object
Dim object2 As ShallowObject

object2 = object1.Copy

Console.WriteLine("object2 name is {0}", object2.p.Name)
' Change the name in object1

object1.p.Name = "Bill"
Console.WriteLine("object2 name is now {0}", object2.p.Name)

If you run the preceding code, you’ll get the following output:

object2 name is Fred

object2 name is now Bill

This shows that the Person reference in object1 has been copied into object2. When I
change the content of object1 the change is immediately reflected in object2.

If I want to create object2 as an independent copy of object1, I have to implement deep
copying, which means making copies of all the objects to which my object holds a reference.
Obviously, .NET cannot know what the structure of your objects is, so you have to do it all
manually by implementing the ICloneable interface.

You do this by implementing the Clone() function, which copies the object and returns a
reference to it. Obviously, just what copying your object entails will depend on your class;
here’s an example that copies an object containing a single string:

Module Module1
 Public Class Foo

 Implements ICloneable

 Private s As String

 Public Sub New()
 s = New String("hello")

 End Sub

 Public Function Clone() As Object Implements ICloneable.Clone
 Dim copy As New Foo()

 copy.s = New String(s)

 Return copy
 End Function

 End Class

 Sub Main()
 Dim obj1 As New Foo()

 Dim obj2 As Foo = CType(obj1.Clone, Foo)

 End Sub
End Module

You can see how Clone() is implemented: It makes a new Foo object, and then creates a
new string as a copy of the existing one. In this way the two Foo objects have completely
different string members, rather than sharing a reference.

How Do I Implement ToString() for a Class?

Here’s an example of implementing ToString() for a class in VB, showing how a simple
class can override ToString() to return a representation of its state:

Public Class Person

 Private firstName As String
 Private lastName As String

 Public Sub New(ByVal fn As String, ByVal ln As String)

 firstName = fn
 lastName = ln

 End Sub

 Public Overrides Function ToString() As String
 Return String.Concat(firstName, " ", lastName)

 End Function
End Class

Sub Main()

 Dim p As New Person("Bill", "Gates")

 Console.WriteLine("Person is {0)", p)
End Sub

The class contains two private strings holding the first and last names of the person.
ToString() uses the Concat() shared function from the String class to build three Strings
into a single output string. Note how I’ve had to use the Overrides keyword to show the
compiler that this is an override for the inherited ToString() method.

Here’s the same example in C#:

namespace CSToString

{
 using System;

 public class Class1

 {
 public static int Main(string[] args)

 {
 Person p = new Person("Scott", "McNeally");

 Console.WriteLine("p is {0}", p);

 return 0;
 }

 }

 public class Person
 {

 private String firstName;
 private String lastName;

 public Person(String fn, String ln)

 {
 firstName = fn; lastName = ln;

 }

 public override String ToString()
 {

 return firstName + " " + lastName;
 }

 }
}

If your class is part of a hierarchy, you may want to call the superclass ToString() method as
part of your own ToString() implementation. In this way, you can build a string that
completely describes your object. As an example, suppose you have a hierarchy of classes
that deals with classification of biological organisms. This classification occurs on five levels:
From the top down, you have the kingdom (such as Animalia for animals and Plantae for
plants), the phylum (Chordata for animals with backbones, Annelida for worms), the class
(Mammalia for mammals), the genus or family (Canis for dogs, Felis for cats), and finally the
species (such as Familiaris for domestic dogs). The last two classifications are used together
when referring to species, so the full classification for a domestic dog is Canis Familiaris of
the class Mammalia of the phylum Chordata of the kingdom Animalia.

You could model this structure using a hierarchy of classes; in order to print out a full
classification, you can get each class to call the ToString() method of its superclass, like
this:

Public Class Familiaris
 Inherits Canis

…

 Public Overrides Function ToString() As String

 Return String.Concat(MyBase.ToString(), ", Species: Familiaris")
 End Function

End Class

When this class is required to render itself as a string, it calls the superclass ToString()
using the MyBase keyword, and uses the string it obtains to build its output. If each class
does the same thing, you should end up with a full classification printed out as follows:

Kingdom: Animalia, Phylum: Chordata, Class: Mammalia,
 Family: Canis, Species: Familiaris

Dealing with Zero-Based Arrays in Visual Basic

In previous versions of VB, you could set the indexing of arrays to start from one rather than
zero by using the Option Base statement. You could also set the upper and lower bound
values explicitly when creating arrays.

In order to conform with the CLS, arrays in Visual Basic.NET are required to have a lower
bound of zero. Any arrays that do not meet this requirement will give compilation errors, so
preexisting code may need to be changed. The preferred course of action is to rewrite code
so that it uses zero-based arrays, or to use the System.Array class, which lets you create
and manipulate arrays with non-zero lower bounds.

How Do I Work with .NET Arrays?

The System.Array class forms the basis of all arrays in .NET languages. You will usually
use the native array types provided by the high-level language you are programming in, but
you can use the System.Array class itself if you wish. In this section, I’ll show you the
basics of representing arrays using System.Array.

Creating Arrays

Arrays are created using the CreateInstance() method, which takes type and dimension
information:

' Create a 10 element array of integers
Dim arr1 As Array = Array.CreateInstance(GetType(Integer), 10)

' Create a 3D array of integers

Dim arr2 As Array = Array.CreateInstance(GetType(Integer), 2, 2, 2)

There is also an overload of CreateInstance() that takes lower bound information, if you
want to create an array with non-zero lower bounds:

' Create a 2D array of integers with a non-zero lower bound

Dim arrDims() As Integer = { 2, 2 }
' Lower bounds are 2 and 3 respectively

Dim arrBnds() As Integer = { 2, 3 }

Dim arr2 As Array = Array.CreateInstance(GetType(Integer), arrDims,
arrBnds)

As you can see, the overloaded function takes two arrays. The first specifies the lengths of
each dimension (and implicitly defines the number of dimensions), whereas the second
specifies the lower bounds for each dimension.

Finding Array Properties

Once you’ve created an array, the Length and Rank properties return the total number of
elements and dimensions in the array, respectively.

Console.WriteLine("Ranks: arr1={0}, arr2={1}", arr1.Rank, arr2.Rank)

Console.WriteLine("Lengths: arr1={0}, arr2={1}", arr1.Length,
arr2.Length)

For the arrays I’ve created, the result of executing this code is:

Ranks: arr1=1, arr2=3

Lengths: arr1=10, arr2=8

You can discover more information about the individual dimensions in an array using the
GetLength(), GetLowerBound(), and GetUpperBound() functions:

For i = 0 To arr2.Rank-1

 Console.WriteLine("Size of dimension {0} is {1}, lb={2}, ub={3}" _
 i, arr2.GetLength(i), arr2.GetLowerBound(i),
arr2.GetUpperBound(i))
Next

Each of these functions is passed the zero-based dimension index, and in this example, the
values printed are as follows:

Size of dimension 0 is 2, lb=0, ub=1

Size of dimension 1 is 2, lb=0, ub=1
Size of dimension 2 is 2, lb=0, ub=1

The Boolean IsReadOnly property tells you whether an array is writeable or not, but it is
always set to false. Derived array classes can override this property if they decide to
implement read-only behavior.

Getting and Setting Values

You have to use the GetValue() and SetValue() functions in order to work with elements in
arrays. SetValue() takes a reference to an object and the index or indices indicating the
element to be set up. GetValue() takes an index or indices and returns an object reference.
Because GetValue() returns a reference of type Object, you may have to cast this reference
into the appropriate type before using it. Here’s how you can set up and access the elements
in a 2D array:

' Create a 2D array

Dim array2d As Array = Array.CreateInstance(GetType(Integer), 3, 3)

' Populate it

array2d.SetValue(10, 0, 0)
array2d.SetValue(11, 0, 1)

array2d.SetValue(12, 0, 2)
array2d.SetValue(100, 1, 0)

array2d.SetValue(110, 1, 1)
array2d.SetValue(120, 1, 2)

array2d.SetValue(200, 2, 0)
array2d.SetValue(210, 2, 1)

array2d.SetValue(220, 2, 2)

' Print out all the elements
For i = array2d.GetLowerBound(0) To array2d.GetUpperBound(0)

 For j = array2d.GetLowerBound(1) To array2d.GetUpperBound(1)
 Console.Write("{0} ", array2d.GetValue(i,j))

 Next
 Console.WriteLine()

Next

While I’m on the subject of printing out array elements, it is worth mentioning
GetEnumerator() and the IEnumerator interface. This interface, discussed in more detail in
Chapter 4, provides a way to iterate over all the elements in a collection using a simple set of
methods that hide the way in which the collection actually stores its elements. I could use an
enumerator to list the elements of an array like this:

' Import the Collections namespace, which is needed for enumerators

Imports System.Collections

' Create an enumerator
Dim en As IEnumerator = array2d.GetEnumerator

While en.MoveNext = True

 Console.WriteLine("{0} ", en.Current)
End While

IEnumerator only has three members; two of which are used in the preceding code.
MoveNext() moves to the next element in the collection, returning false when it has moved
past the end. It is initially positioned before the first element, so you need to call it once in
order to move to the start. The Current property returns a reference to the current element
in the collection, which is simply printed out. The Reset() method, not used here, can be
used to reset the enumerator to its starting position.

Note that IEnumerator treats all collections as one-dimensional, so it isn’t very useful with
multidimensional arrays.

To round off this discussion of getting and setting values, the Initialize() method provides a
way to initialize every element in an array by calling the default constructor for the element
type. Be aware that this only works for arrays of value types, not for reference types.

Note

C# programmers can only use this method for value types that have
constructors, and value types that are native to C# do not have constructors.

Array Operations

The Array class provides a number of methods for working with arrays. Clear() will empty
the array, setting numeric values to zero and object references to null (or Nothing if you are
programming in VB).

The Copy() method copies a section of one array into another array, performing any type
casting as required. There are two overloads for this function, one of which uses the same
starting index for both source and destination arrays, whereas the second lets you specify
different indexes in the two arrays. This function can be useful because it also works with
native language arrays as well as System.Array objects:

' Create a native integer array

Dim arrSrc() As Integer = { 10, 11, 12, 13, 14 }

' Create a System.Array and fill it
Dim arrDest As Array = Array.CreateInstance(GetType(Integer), 10)

For i = 0 To 9
 arrDest.SetValue(100 + i, i)

Next

' Copy part of the integer array over the System.Array
Array.Copy(arrSrc, 0, arrDest, 5, 3)

In this example, I’ve copied three elements from the source array, starting at element zero,
into the destination array at position five. If I had copied arrays of different types where the
conversion was safe—say integer to double—then the conversion would have been applied
automatically.

The CopyTo() function performs the same function as Copy(), but it is an instance method
where Copy() is shared. Clone() is an instance method that creates a shallow copy of an
array. A shallow copy is one that only copies the top level of an object, so object references
are duplicated.

Reverse(), as you might expect, reverses the order of all or part of a 1D array, whereas
Sort() can perform a variety of sorting operations, again on 1D arrays. The simplest version
of Sort() takes a reference to the array to be sorted, as shown here:

' Create a System.Array and fill it with random integers
Dim arrSrt As Array = Array.CreateInstance(GetType(Integer), 10)

Dim r As New Random(1000)

For i = 0 To 9
 arrSrt.SetValue(r.Next, i)

Next

' Create an enumerator
Dim en As IEnumerator = arrSrt.GetEnumerator

Console.WriteLine("Unsorted array:")

While en.MoveNext = True
 Console.WriteLine("{0} ", en.Current)

End While

' Sort the array and reset the enumerator
Array.Sort(arrSrt)

en.Reset
Console.WriteLine("Sorted array:")

While en.MoveNext = True
 Console.WriteLine("{0} ", en.Current)

End While

For this to work, the type being stored in the array must implement the IComparable
interface. Other overloads of Sort() let you sort part of an array, sort a matching pair of
key/value arrays, and let you specify an external “comparer” object that controls the sorting
process.

IndexOf() and LastIndexOf() let you search an array for a particular value. As you might
expect, they search for the first and last occurrences of a value, respectively. Overloads let
you search the whole array, specify a starting index, or specify a range:

Dim ifind As Integer = 101

If Array.IndexOf(arrDest, ifind) = -1 Then
 Console.WriteLine("Value 101 doesn't occur in array")

Else
 Console.WriteLine("Value 101 occurs in array")

End If

You can see from the code that IndexOf() takes a reference to an object, but remember that
you are dealing with value types, so the comparison is done on value. The test isn’t whether
object ifind occurs in the array, but whether the value 101 is present. In practice, you can
substitute the value in the function call, like this:

If Array.IndexOf(arrDest, 101) = -1 Then …

It will work because the integer value is boxed to produce an object that is used in the
function call.

More efficient searching can be performed using the BinarySearch() method, which doesn’t
simply start at one end or the other when looking for a value. Instead, it divides the array into
two pieces and determines in which of them the desired object is located. It then divides that
piece in two and repeats the process, until it ends up with a piece containing just the object.

How Do I Work with Strings?

Let’s look at how to work with the String data type.

Creating Strings

The String class is provided with a variety of constructors, although precisely what is
available may vary from language to language. The String constructors supported by Visual
Basic.NET are summarized in Table 3.5.

Table 3.5: String class constructors supported by VB.

Constructors Description

New(ByVal value() As Char) Builds a String from an array of Chars

New(ByVal c As Char, ByVal count As
Integer)

Builds a String from a single character
repeated “count” times

New(value() As Char, start As Integer,
length As Integer)

Builds a String from part of an array of
Chars

Here are some examples:

' Build a String from characters

Dim s1 As New String("Hello")

' Build a String from a single Char
Dim c As New Char()

c = "A"c ' Upper-case 'a'
Dim s2 As New String(c)

You can also create a String reference, and then attach the actual String object to it using
an assignment:

' Create a String reference
Dim sref As String

' Point it at a string object
sref = "Hello"

Once you’ve built a String, you can find out how many characters it contains using the
Length property, and extract a character from the String using Chars:

Dim abc As New String("Hello")
Console.WriteLine("Character 1 is {0}", abc.Chars(1))

The sample code prints e because indexing starts from zero.

Comparing Strings

The Compare(), CompareOrdinal(), CompareTo(), and Equals() methods are used to
compare Strings. You met Equals() in the discussion of the Object class. It is implemented
for Strings to return true if the content of both Strings is the same.

Dim s1 As New String("Hello")

Dim s2 As New String("Hello")

' Prints 'Equal' because the string content is the same

If (s1.Equals(s2)) Then
 Console.WriteLine("Equal")

Else
 Console.WriteLine("Not Equal")

End If

Compare() and CompareOrdinal() both work the same way in that they both take two
Strings and return an int that tells you how they relate. The value returned will be zero if the
two Strings are the same, a positive integer if the first is greater than the second, and a
negative integer if the second is greater than the first. The difference between the two
functions is that Compare() has several overloads that can be used to include language and
culture information and case in the comparison, whereas CompareOrdinal() does not.

Here’s a simple example using Compare():

Dim s1 As New String("Hello")

Dim s2 As New String("Hello")

' Prints zero because the string content is the same
Console.WriteLine("Compare s1 and s2: {0}", String.Compare(s1,s2))

Note how Compare() is a static (shared) member of the String class, whereas Equals() is
an instance member. CompareTo() is equivalent to Compare() and returns the same
values, but is an instance member:

' Prints zero because the string content is the same
Console.WriteLine("Compare s1 and s2: {0}", s1.CompareTo(s2))

The static member Concat() is used to create a new String from one or more Strings or
objects and has several overloads. If you pass one or more Object references to Concat(),
the function will try to call the ToString() member of each class in order to obtain a String
representation for the object:

Dim n1 As New Name("Fred")

Dim n2 As New Name("Smith")
Dim ss As String

' Calls the ToString() method on the two String objects

ss = String.Concat(n1, " ", n2)

Join() is similar to Concat() in that it concatenates Strings. But in this case, the function
takes two arguments, an array of Strings to be joined and a separator String to use
between them.

Copying and Modifying Strings

Copy() can be used to make a copy of an existing String. Remember that this is different
from using = because the operator copies the reference without generating a new underlying
String object.

The Substring() function is used to extract a substring; the two overloads take a starting
index and optionally, a length:

Dim s1 As New String("Fred Smith")

' Print four characters starting at index 2 - prints 'ed S'

Console.WriteLine("{0}", s1.Substring(2,4))

The Insert(), Remove(), and Replace() functions can be used to modify a String.
Remember that they will return a new String object containing the modified content because
Strings cannot be changed. Insert() inserts a String at a given index, Remove() removes a
number of characters, and Replace() replaces all occurrences of one character with another.

PadLeft() and PadRight() can be used to provide padding to the right or the left of a String.
As you would expect, a new String object is constructed and returned. The opposite effect,
that of removing white space, is provided by the Trim(), TrimEnd(), and TrimStart()
functions.

ToUpper() and ToLower() return a new String containing an upper- or lowercase, as
appropriate.

Split() creates an array of strings by splitting a single string using a user supplied array of
separator characters to decide where to make the breaks:

' Here's a string that uses space and comma as separators

Dim sp As New String("one two,three,four five")

' Create an array of characters to represent the separators
Dim seps() As Char = {" "c, ","c}

' Split the string

Dim sarr() As String = sp.Split(seps)

' Print out the resulting array
Dim sa As String

For Each sa In sarr

 Console.WriteLine("token is {0}", sa)
Next sa

Searching Strings

IndexOf() and LastIndexOf() return the first or last occurrence of one or more characters or
a string within the target string. There are numerous overloads to these functions in order to
provide flexible searching capabilities:

Dim s1 As New String("Julian Templeman")

' Find the first occurrence of 'n'

Dim fpos As Integer = s1.IndexOf("n"c)
Console.WriteLine("First occurrence of 'n' is at {0}", fpos)

Console.WriteLine("Second occurrence of 'n' is at {0}", _
 s1.IndexOf("n"c, fpos+1))

The functions return a zero-based index, and -1 is returned if the character or string is not
found.

The IndexOfAny() and LastIndexOfAny() methods let you search for the first or last
occurrence of any character in an array.

StartsWith() and EndsWith() let you check whether a String starts or ends with a given
string or characters.

Converting Strings

Although the String class implements the IConvertible interface, you should use the shared
members of the Convert class to convert between Strings and other types. Using these
methods, it is possible to convert a String to any other standard type. Here’s an example:

Dim sbool As New String("True")
Dim b As Boolean = Convert.ToBoolean(sbool)

If the String has the value True or False , it will be converted to the appropriate Boolean
value. If it doesn’t contain one of these two values, you’ll get an exception thrown. The
Boolean class contains two properties, TrueString and FalseString, which can be used to
identify strings that are valid.

How Do I Represent and Use Dates and Times?

Dates and times are represented by two classes: System.DateTime and
System.TimeSpan. The System.DateTime class is used to represent dates and times, and
it also contains many functions to let you examine, manipulate, and format date and time
values. System.TimeSpan represents a period of time and can be used on its own or in
conjunction with DateTime.

This section shows how you can use these classes to perform common operations on dates
and times.

Creating TimeSpan Objects

TimeSpan objects represent periods of time, so you can construct them using day, hour,
minute, second, and millisecond values. You can also construct them using a raw tick count,
where a tick is 100 nanoseconds:

' Create a TimeSpan to represent one hour

Dim ts as New TimeSpan(1, 0, 0)

In addition, you can construct TimeSpan objects using a number of shared methods:
FromDays(), FromHours(), FromMinutes(), FromSeconds(), FromMilliseconds(), and
FromTicks() will construct a TimeSpan representing a period, whereas Parse() will attempt
to construct a TimeSpan from a String:

' Create a TimeSpan to represent ten minutes
Dim ts1 as TimeSpan

ts1 = TimeSpan.FromMinutes(10)

' Create a TimeSpan from a String
Dim ts1 as TimeSpan

ts1 = TimeSpan.Parse("1:20:00")

Querying TimeSpan Objects

There are a number of class properties that will return part of a TimeSpan object: Days,
Hours, Minutes, Seconds, Milliseconds, and Ticks will all return integers representing
how many whole days (minutes, etc.) the object represents. There is a matching set of
properties for all but ticks—TotalDays, TotalHours, and so on—that return a double
representing the exact values.

Manipulating TimeSpan Objects

A number of functions are available for working with TimeSpan objects, most of which don’t
require much in the way of explanation. The most common of these functions are
summarized in Table 3.6.

Table 3.6: Members of the TimeSpan class.

Function Shared
or
Instance
?

Description

Compare ,
CompareTo

S Compares two TimeSpans, returning 0 if they are the
same, 1 if the first is greater than the second, and -1 if
it is less

Equals, ==, != S Checks two TimeSpans for equality

+, -, Add,
Subtract

S Adds or subtracts two TimeSpans

<, <=, >, >= S Tests two TimeSpans

Duration I Returns the duration of the current object

Negate I Returns a new TimeSpan that has a negated value

Creating DateTime Objects

Like TimeSpan, the DateTime class has several overloaded constructors, enabling you to
create DateTime objects and initialize them in a number of ways. The following code sample
shows some of the most common constructions:

' Initialize to 28th February 2001

Dim dt as New DateTime(2001, 2, 28)

' Initialize to 28th February 2001, at 13:23:05
Dim dt as New DateTime(2001, 2, 28, 13, 23, 05)

' Initialize to 28th February 2001, at 13:23:05 and 47ms

Dim dt as New DateTime(2001, 2, 28, 13, 23, 05, 47)

Three other constructors mirror these, but take a Calendar as their final parameter, allowing
you to choose to interpret dates according to a different calendar. Only two calendars are
supplied with .NET (Gregorian and Julian), but it is possible to derive more from the
Calendar superclass.

If you want to obtain a DateTime object that represents the current instant, DateTime has
two shared properties that may be useful. The first, Now, returns a DateTime object
initialized to the current date and time:

Dim dt as DateTime = DateTime.Now

If the exact time is important to you, note that the accuracy of the value compared to the
current time depends on the operating system you are using: The timer resolution varies
from approximately 55 milliseconds on Windows 95/98 to 10 milliseconds on Windows NT
3.51 and later.

The second property, Today, returns the current date with the time section set to zero.

There are three other ways to create a DateTime: from an operating system file time, from
an OLE Automation Date, and from a String. If you obtain a file creation or modification
date/time using the Windows API, it is held in a format that is incompatible with DateTime (it
is actually the number of 100-nanosecond intervals since midnight on January 1, 1601, but
you probably don’t want to know that). The FromFileTime() function takes a file time and
converts it to a DateTime. Note that you do not need to use FromFileTime() if you use the
System.IO.File class because it returns its times as DateTime objects.

Automation, used a great deal with VB and C++ in the past, has a Date type that uses yet
another representation, so the FromOADate() function is provided to do a conversion for
you. The third way to create a DateTime takes a String containing a representation of a
date (and optionally a time) in the format for the current locale and converts it.

Printing Dates and Times

ToString returns a string containing the date and time in ISO 8601 format, which looks like
this:

26/02/2001 16:09

Querying DateTime Objects

DateTime supplies a number of properties and methods that provide query functions. These
functions are summarized in Table 3.7.

Table 3.7: Query properties and methods provided by the DateTime class.

Member Property
or
Method
?

Shared
or
Instance
?

Description

IsLeapYear M S Returns true if a given year
is a leap year

DaysInMonth M S Returns the number of
days in a month given a
month and year

Year P I Returns the year field of a
DateTime

Month P I Returns the month field of
a DateTime in the range
1–12

Day P I Returns the day field of a
DateTime in the range 1–
31

Hour P I Returns the hour field of a
DateTime in the range 0–
23

Minute P I Returns the minute field of
a DateTime in the range
0–59

Second P I Returns the second field of
a DateTime in the range
0–59

Millisecond P I Returns the millisecond
field of a DateTime

DayOfWeek P I Returns the day of the
week in the range 0
(Sunday) to 6 (Saturday)

DayOfYear P I Returns the day of the year
in the range 1-366

TimeOfDay P I Returns a TimeSpan
object representing the
time part

Ticks P I Returns the 100-
nanosecond tick count

Date P I Returns a copy of a
DateTime with the time
section set to zero

The IsLeapYear() and DaysInMonth() functions are static members of DateTime and need
to be passed a year, and a month and a year, respectively:

Console.WriteLine("2000 is a leap year: {0}",
DateTime.IsLeapYear(2000))

Operations on DateTime Objects

The DateTime class contains a number of members that make it easy to operate on dates
and times. Table 3.8 summarizes these functions.

Table 3.8: DateTime operations and operators.

Function Shared or
Instance?

Description

Compare S Compares two DateTime objects,
returning 0 if they are the same, 1 if
the first is greater than the second,
and -1 if the first is less than the
second

Equals, ==, != S Tests whether two DateTime objects
are the same

+ operator, Add S Adds a DateTime and a TimeSpan

- operator S Subtracts a TimeSpan from a
DateTime (giving a DateTime) or
subtracts two DateTimes (giving a
TimeSpan)

<, <=, >, >= S Compares two DateTimes, returning
true or false as appropriate

Here’s an example showing some of these methods in use:

' Initialize the Date to 28th February 2001, at 13:23:05
Dim dt as New DateTime(2001, 2, 28, 13, 23, 05)

' Create a TimeSpan representing 1 day, 1 hour and 22 minutes

Dim ts as TimeSpan = TimeSpan.Parse("1.01:22:00")

' Add the two
Dim dt2 As DateTime = dt1.Add(ts)

Console.WriteLine("dt2 is {0}", dt2)

How Do I Declare and Use Enumerations?

An enumeration is a collection of named constants; you create them in VB using the Enum
keyword:

Enum ErrorCodes

 BadFileName = 100
 NoPermission

 FileIsReadOnly
 SecurityError = 200

End Enum

Each member of the enum is represented by a name and optionally a positive or negative
integer value. The default value is zero for the first member and is incremented by one for
each succeeding member.

Once you have an enum, you can use the type to create variables and pass parameters to
functions:

Dim er As ErrorCodes

er = ErrorCodes.FileIsReadOnly

Values are specified using the type.member syntax. If you turn strict checking off in VB, you
can use the underlying values, as shown next, but this isn’t recommended:

' Sets er to NoPermission if strict checking is turned off

er = 101

In C#, enums are declared in a very similar way; you can choose which integer type you
want to use to represent the constant values:

enum ErrorCodes : uint

{
 BadFileName = 100

 NoPermission
 FileIsReadOnly

 SecurityError = 200
}

In this example, I’m using an unsigned integer; the default is a signed integer.

How Do I Find Out What Exception Has Occurred and Where?

All exception objects have to be members of a class that inherits from System.Exception.
This gives them a number of useful inherited properties, which are as shown in Table 3.9.

Table 3.9: Members of System.Exception that are inherited by all exception classes.

Property Description

HelpLink Gets or sets a reference to a URN or URL that
identifies an entry in a help file.

HResult Gets or sets the COM HRESULT assigned to an
exception.

InnerException Returns a reference to an inner exception object. If
none exists, this property is set to null, or Nothing in
the case of VB. (Read-only).

Message Retrieves the string identifying the error. (Read-only).

Table 3.9: Members of System.Exception that are inherited by all exception classes.

Property Description

Source Gets or sets the name of the application or object
that caused the error.

StackTrace Retrieves the string holding stack trace information.
(Read-only).

TargetSite Retrieves a reference to the method that threw the
object, in the form of a MethodBase object. You can
use the Name property of the MethodBase to obtain
the name of the method. (Read-only).

You can use these properties in VB code like this:

Catch ae As TestException
 Console.WriteLine("Exception message: {0}", ae.Message)

 Console.WriteLine(ÇException trace: {0}È, ae.StackTrace)
 Console.WriteLine(ÇTargetsite: {0}È, ae.TargetSite.Name)

You would expect to see output like this:

Exception message: My exception has been thrown

Exception trace: at VBTest.Tester.Thrower() in
C:\test\Tester.vb:line 3

 at VBTest.Module1.Main() in C:\test\Module1.vb:line 6
TargetSite: Thrower

Note that all of these properties except TargetSite are marked as Overridable, so you can
provide your own implementations to override or add to the inherited versions.

How Do I Use Inner Exceptions?

All exception classes have a constructor, inherited from Exception, that takes a reference to
another exception object as well as a message string. Once constructed, you can use the
InnerException property to obtain a reference to the original exception. Here’s an example
in VB where I define a new exception class, TestException, and then use it with an
embedded exception:

' First module defines the test program
Module Module1

 Sub Main()
 Dim t As New Tester()

 Try
 t.Thrower()

 Catch ae As TestException
 Console.WriteLine("Exception caught: {0}", ae.Message)

 Console.WriteLine("Inner exception message: {0}",
ae.InnerException.Message)
 End Try

 End Sub
End Module

' Second module defines the test class and an exception class

Public Class Tester
 Public Sub Thrower()

 Throw New TestException("Testing…", _
 New ArithmeticException("Inner"))

 End Sub
End Class

Public Class TestException

 Inherits ApplicationException
 Public Sub new(ByVal s As String, ByRef e As Exception)

 ' Call superclass constructor
 MyBase.New(s, e)

 End Sub
End Class

As you can see, I’m simply defining a class called Tester whose only job is to throw an
exception when its Thrower() method is called. The TestException class inherits from
ApplicationException because this is an application generated exception rather than a
system generated one. I want to use inner exceptions, so I have to define an override for the
constructor that takes a message string and a reference to an inner exception object.
Because there isn’t a constructor that only takes an inner exception reference, I have to
include the string as well. All I need to do in this constructor is to call the superclass
constructor and pass it the parameters.

Once I’ve done this, I can throw a TestException, passing in a reference to a new
ArithmeticException, which I want to use as its inner exception object. You can see that
the Catch clause in the main function can print out the messages associated with both the
outer and inner exceptions.

How do I know whether an inner exception exists? I simply test the InnerException property
to see whether it contains a null reference:

Catch ae As TestException

 Console.WriteLine("Exception caught: {0}", ae.Message)
 if ae.InnerException <> Nothing Then

 Console.WriteLine("Inner exception message: {0}", _
 ae.InnerException.Message)

 End If
End Try

You can use the same techniques in C# and Managed C++ with no significant differences.

How Are Console.WriteLine() and Console.Out.WriteLine()
Different?

Console.WriteLine() and Console.Out.WriteLine() aren’t really different. The Console
class contains a shared member called Out, a TextWriter object that is responsible for
actually doing the output. The Writeline() method actually belongs to the TextWriter class,
so you really need to call Console.Out.Writeline() in order to save a little time and typing.
However, the Console class implements a version of Writeline itself, which delegates to the
Out object.

The same is true of Console.Readline() and Console.In.Readline().

How Do I Produce Formatted Output?

Formatted output is produced by using a version of Console.WriteLine() that takes a string
containing a format plus zero or more objects that are going to be inserted into the output
string:

System.WriteLine(format, object1, …)

Formats contain static text plus markers that show where items from the argument list are to
be substituted and how they are to be formatted. In its simplest form, a marker is a number
in curly brackets—the number showing which argument is to be substituted:

"Hello world!" ' no argument
"The value is {0}" ' use the first argument

"{0} plus {1} = {2}" ' use the first three arguments

The more general form of a format marker looks like this:

{N[,M][:FormatString]}

N is the zero-based number of the argument to be substituted (as in the preceding example),
and it can optionally be followed by an integer specifying a field width. If the field width value
is negative, the value will be left justified within the field; if the field width value is positive, it
will be right justified.

' Output the first argument

Console.WriteLine("{0}", n)

' Output the first argument, left justified
' in a field eight characters wide

Console.WriteLine("{0,-8}", n)

You can also include a formatting specification, which consists of a character and optionally,
a precision specifier:

' Output the second argument as an integer,

' field width of 7, padded with zeros
Console.WriteLine("{0:D7}", n)

' Output in a field width of 15, in exponent notation with

' four decimal places

Console.WriteLine("d is >{0,15:E4}<", d)

If d is a Double with the value 14.337156, the statement will produce the following output:

d is > 1.4337E+001<

Table 3.10 shows the possible format characters. Note that they can be specified in either
uppercase or lowercase.

Table 3.10: Formatting characters used with System.Write and System.WriteLine.

Format
Character

Description Notes

C Locale specific
currency format

D Integer format If a precision specifier is given, for example
{0:D5}, the output is padded with leading
zeros.

E Exponent (scientific)
format

The precision specifier gives the number of
decimal places, which is six by default.

F Fixed-point format The precision specifier gives the number of
decimal places. Zero is an acceptable value.

G General format Uses whichever of E or F is most suitable.

N Number format Outputs a number with thousand separators,
for example, 32,767.

P Percent format Represents a numeric value as a percentage.

R Round-trip format Guarantees that numbers converted into
strings will have the same value when
converted back into numbers.

X Hexadecimal format If a precision specifier is given, for example
{0:X5}, the output is padded with leading
zeros.

Picture Formatting

If the standard formatting options don’t meet your needs, you can use picture formatting,
which uses format characters to build a picture of what the output should look like. Here’s an
example:

Dim d As Double = 14.337156

Console.WriteLine("d is {0:0000.00}", d)

The output from this is:

d is 0014.34

The picture format consists of “0000.00”, where a “0” denotes a placeholder for a digit or a
zero if there isn’t a digit available, and the “.” outputs a decimal point.

There are a number of picture format characters, the most common of which are shown in
Table 3.11.

Table 3.11: : Picture format characters for use with System.Write and
System.WriteLine.

Format
Character

Description Notes

0 Digit or zero placeholder Outputs a zero if a digit isn’t available

Digit placeholder Only outputs significant digits

. Decimal point Displays a “.”

, Number group separator Separates number groups, for example,
10,000

% Percent sign Displays the percent character used by the
current culture

The ToString() Method

Each .NET base data type (such as Int32, Double, and so on) has a ToString() method that
can be used to format objects in order to present them to users in a particular style, like this:

' Create an integer and format it up as a currency

Dim amt As Integer = 5000
Dim s As String = amt.ToString("C")

Console.WriteLine("amount is {0}", s)

Assuming that you are in the United States, the output from this will be

amount is $5,000.00

Note that I haven’t done anything to the underlying integer. I’ve only provided a string
representation with a new format. You may wonder whether this is any different than:

Console.WriteLine("amount is {0:C}", amt)

The answer is that it produces exactly the same output. So when is ToString() useful? The
answer lies in two of the other overloads of ToString(), both of which take an
IFormatProvider object as a parameter.

The IFormatProvider interface is implemented by several classes that generate culture-
dependent formatting information. As a result, if you have an appropriate object available, it
is quite possible to print out a sum of money as French Francs or Japanese Yen with all the
correct formatting.

How Do I Generate Random Values?

The System.Random class implements a pseudorandom number generator, which means
that it will always generate the same sequence of numbers if given the same integer “seed”
value.

Here’s an example of how to use Random to generate random integers:

Dim r As New Random(1200)
Dim i As Integer

For i = 1 To 10

 Console.WriteLine("Value is {0)", r.Next())
Next i

If you run this code, you’ll find that your output is similar to this:

Value is 1367131677

Value is 1974968700
Value is 1188871133

Value is 1481071999

…

The fact that Random uses a pseudorandom generator means that you’ll get exactly the
same output each time you run the program unless you vary the seed in the constructor.

One common way of making the selection of values more random is to use the current time
as a seed. This is a slightly involved procedure in VB because you need to do some rather
messy conversion, as shown in the following code:

' Get the current time as a Long

Dim currentTime As Long = DateTime.Now.Ticks()

' Extract the bottom part as an integer
Dim seed as Integer = CInt(currentTime And &HFFFF)

' Use it to initialize the Random object

Dim r As New Random(seed)

DateTime.Now.Ticks() uses the Now property of System.DateTime to return an object
representing the current time, and the Ticks property expresses that value as a 100-
nanosecond tick count. This comes back, not surprisingly, as a Long, but you can’t use that
to initialize the Random object because the constructor requires an Integer. You can extract
the bottom half of the Long using the CInt conversion, which uses the And (bitwise AND)
operator to mask off the top half of the Long and return the rest as an integer.

Note

This technique doesn’t return the bottom four bytes exactly because VB
always reserves the top bit for the sign, so you’re actually returning the
bottom 31 bits plus a sign bit.

If you run this code several times, you should get a different series of random numbers
generated each time. The code is pretty much the same in C#, as shown here:

' Get the current time as a Long

long currentTime = DateTime.Now.Ticks;

' Extract the bottom part as an integer
int seed = (int)(currentTime & 0xFFFF);

' Use it to initialize the Random object

Random r = new Random(seed);

The Random class also contains overloads to return integer values less than a maximum or
falling within a range, like so:

' Only return values between 1000 and 2000

Console.WriteLine("Value is {0)", r.Next(1000,2000))

There is another method that will return a double value between 0.0 and 1.0 (NextDouble)
and a method to fill a buffer with random bytes (NextBytes).

Chapter 4: The System.Collections Namespace

In Depth

by Julian Templeman

The System.Collections namespace, as its name implies, contains a selection of interfaces
and classes that define various collections of objects, such as arrays, lists, and dictionaries.
In this chapter, I’ll explain each object collection, and in the Immediate Solutions section, I’ll
show you how they are used in practice.

The following code diagram shows the hierarchy of classes and structs defined in
System.Collections as well as how they relate to each other:

System.Object

 ArrayList
 BitArray

 CaseInsensitiveComparer
 CaseInsensitiveHashCodeProvider

 CollectionBase
 Comparer

 DictionaryBase
 Hashtable

 NameObjectCollectionBase
 NameValueCollection

 Queue
 ReadOnlyCollectionBase

 SortedList
 Stack

 System.ValueType
 DictionaryEntry

The namespace also defines a number of interfaces, listed as follows:

ICollection
IComparer

IDictionary
IDictionaryEnumerator

IEnumerable
IEnumerator

IHashCodeProvider
IList

The System.Collections.Specialized namespace, as its name implies, contains various
more specialized collections, as follows:

System.Object
 System.ValueType

 BitVector32
 HybridDictionary

 ListDictionary
 NameObjectCollectionBase

 NameValueCollection
 StringCollection

 StringDictionary
 StringEnumerator

The System.Collections Interfaces

Interfaces are very important in the System.Collections namespace because very few of
the collection classes are related by inheritance, but many of them need to provide the same
functionality. A good example of this is the ability to iterate over the members of a collection;
moving from one element to another is the same no matter how the data is actually stored.
Moving from one element of an array to the next is the same logical idea as moving from one
element of a linked list to the next, but the way in which the collection navigates through its
data is completely different.

The way that you provide the same behavior in otherwise unrelated classes is to use
interfaces. If you haven’t come across interfaces and how they are implemented and used,
you may want to take a look at Chapter 3 before reading on.

The System.Collections namespace includes a number of interfaces that between them
define all the common behavior required of collection classes; I’ll explain each of these
interfaces and what they do. When discussing the classes, I’ll illustrate which interfaces they
implement so that you can see the extra methods they are going to provide.

IEnumerable

If a collection implements the IEnumerable interface, it signals that it can provide an
enumerator object that supports forward-only iteration over the collection. Because this
behavior is very common, this interface is implemented by approximately 100 classes.

IEnumerable only has one member, the GetEnumerator() method, which takes no
arguments and returns an enumerator object:

Function GetEnumerator() As IEnumerator

Note how the IEnumerable and IEnumerator interfaces work together. If a class implements
IEnumerable, then this method will return a reference to an object that implements
IEnumerator. You don’t have to know exactly what type the returned object is, only that you
can use it as an enumerator.

IEnumerator

IEnumerator is implemented by classes that support simple iteration over a collection. By
simple, I mean that you can only move forward from element to element, although you can
go back to the start at any time.

Enumerators are read-only because the object takes a snapshot of the collection when it is
created. This means that it is perfectly possible to have more than one enumerator with
access to the same collection. The underlying collection must not be changed while an
enumerator is active because its snapshot would then be out of date. If this happens, the
iterator will throw exceptions whenever you try to use it.

The IEnumerator interface has three members. The MoveNext() method advances the
iterator to the next element in the collection. Note that the initial position of the iterator is
before the first element in the collection, so you need to call MoveNext() once in order to
advance to the first element.

The function returns a Boolean value, which will be true if the iterator successfully advanced
to the next element, and false once it has passed the end. The Reset() method can be used
to set the iterator back to its initial position, that is, before the first element in the collection.

The Current property returns a reference to the current object in the collection. This property
will throw an invalid operation exception under two circumstances:
§ If the enumerator is positioned before the start or after the end of the collection
§ If the collection has been modified since the enumerator object was created

See the Immediate Solutions section for examples of enumerator usage.

ICollection

ICollection is a descendant of IEnumerable and defines size, enumerators, and
synchronization methods for collections. Like IEnumerable, it is implemented by a very large
number of classes, and because ICollection is based on IEnumerable, any class that
implements ICollection has to implement IEnumerable as well.

ICollection adds the following functionality to the GetEnumerator() method defined by
IEnumerable:
§ SyncRoot and IsSynchronized—These properties allow classes to implement thread

safe collections.
§ Count—This property returns the number of items in the collection.
§ CopyTo()—This method can be implemented to copy elements from a collection into a

one-dimensional array.

IList

The IList interface, a descendent of ICollection, is implemented by classes that represent
collections of objects that can be individually indexed, and it specifies all the properties and
methods that must be supported by such classes. This means that it is implemented by array
classes (such as System.Array and System.Collections.ArrayList) as well as other more
specialized classes. Implementations of IList fall into three types: read-only, fixed-size, and
variable-size.

The methods supported by IList are fairly self-explanatory:
§ Add() and Insert() can be used to add items to the list. Insert() takes a zero-based

index specifying where the item is to be inserted, whereas Add() appends the new item
to the end.

§ Remove() and RemoveAt() are used to remove items from the list. RemoveAt() takes
an index specifying which item is to be removed, whereas Remove() takes an Object
reference and removes that object. Clear() can be used to remove all entries.

§ IndexOf() and Contains() are used to search the list. Both take an Object reference.
Contains() returns a Boolean value, whereas IndexOf() returns a zero-based index.

§ The Item property is used to get or set the value at the specified index.
§ The IsFixedSize and IsReadOnly properties tell you whether the underlying collection

is fixed size, and whether it can be modified.

IComparer

The IComparer interface implements a single method that compares two objects and returns
a value indicating which one is greater:

Function Compare(ByVal x as Object, ByVal y As Object) As Integer

The function returns a negative value if x is less than y, zero if they are the same, and a
positive value if x is greater than y.

Objects passed to compare must implement the System.IComparable interface; if they
don’t, the function will throw an ArgumentException. You’ll find a discussion of the
System.IComparable interface in Chapter 3.

The default implementation of this interface is provided by the
System.Collections.Comparer class. This default implementation lets you easily create an
object with which to perform comparisons.

This interface is often used with the System.Array class when using its Sort() and
BinarySearch() methods. When using these methods, you can either use the default
ICompare implementations of the objects themselves or provide your own comparison
objects by implementing this interface.

IDictionary

A dictionary is a data structure consisting of a set of keyword/value pairs, where each value
is identified by an associated key. Keys and values can be any type of object; keys have to
be unique and non-null. IDictionary is implemented by over half a dozen classes including
two members of System.Collections—Hashtable and SortedList—which are discussed
under their own headers in the In Depth section.

The following list shows the properties and methods specified by IDictionary:
§ Add() adds an entry with a specified key and value to the dictionary.
§ The Item property retrieves the value corresponding to the specified key.
§ The Keys and Values properties return collections containing all the keys and values

respectively.
§ Contains() determines whether a value with a specified key exists in the dictionary.
§ Clear() removes all entries from dictionary, whereas Remove() removes the entry with

a specified key.
§ GetEnumerator() returns an IDictionaryEnumerator that you can use to walk through

the dictionary.
§ The IsFixedSize and IsReadOnly properties tell you whether the underlying collection

is fixed size, and whether it can be modified.

IDictionaryEnumerator

The IDictionaryEnumerator interface is based on IEnumerator and provides extra methods to
let you retrieve the key and/or value associated with an item.

You can use the standard enumerator methods, MoveNext() and Reset(). In addition, you
can use the Entry property to retrieve the key and value of the current item or the Key and
Value properties to retrieve them separately. Note that although the enumerator selects
items in the dictionary one after another, this does not imply any ordering of the data.

The Entry property returns a DictionaryEntry object. DictionaryEntry is a value type that
contains Key and Value public fields, each of which is an Object reference.

IHashCodeProvider

Objects are stored in a hash table using values known as “hash codes” as keys. The Object
class provides the default GetHashCode() method, which generates a default hash code.
But if this is not suitable, you can implement your own hash code-generating class by
implementing this interface and coding the one GetHashCode() method.

ArrayList

An ArrayList is a dynamically growable (and shrinkable) array, unlike System.Array objects
whose size is fixed at creation time. The following code shows the definition of the ArrayList
class:

Public Class ArrayList

 Implements IList, ICollection, IEnumerable

By default, instances of this class are resizable and writable, but the class provides two
shared methods that let you create read-only and fixed-size ArrayLists.

The capacity of an ArrayList is 16 elements by default, but this can be reset at any time
using the Capacity property. If you exceed the capacity when adding elements, it will
automatically be doubled. If your array is too large, you can reduce its capacity to match the
actual number of elements stored by calling TrimToSize().

The Add() method can be used to add an object to the end of the array, whereas Insert()
will insert an object at a zero-based index. The AddRange() and InsertRange() methods will
add or insert the elements of another collection, whereas SetRange() will copy the elements
of a collection over a range of elements in the array. There are three ways to remove
elements from an array: Remove() removes an object by reference, RemoveAt() removes
an object by index, and RemoveRange() removes a range of elements.

ArrayList also provides the Adapter() method, which lets you wrap any other IList object in
an ArrayList, so that you can use its BinarySearch(), Sort(), and Reverse() methods.

BitArray

It is very common to want to store a series of flags that simply have true or false (or on or
off) values. You could use an array of Boolean values, but it isn’t a very efficient way of
representing quantities that really only need one bit to store them. You can also use the
bitwise operators to switch the individual bits of integers on and off, but this can be tedious,
and these bitwise operations are not supported by all languages.

The solution in .NET is the BitArray, a data structure that stores true and false values, and
that implements several interfaces, as shown below:

Public Sealed Class BitArray
 Implements ICollection, IEnumerable, ICloneable

Precisely how it stores values does not matter, but you can be certain that it stores values as
compactly as possible. You can simply access the bits in the array just as you would any
other array elements.

Hashtable

A Hashtable represents a collection of associated keys and values organized in such a way
that values can be efficiently retrieved:

Public Class Hashtable
 Implements IDictionary, ICollection, IEnumerable, ISerializable,

 IDeserializationCallback, ICloneable

A hash key (or hash code) is an integer value that can be rapidly calculated from a data
item. A hash table contains a number of “buckets,” each of which can hold the data
associated with one hash key. An example of a hash table is shown in Figure 4.1.

Figure 4.1: A hash table.

For example, suppose that you had data consisting of a list of personal telephone numbers
keyed by the person’s name:

Ton Van Bergyk 631-884-9120
Dave Evans 142-777-2100

Leo Wijnkamp 660-122-0014
Dale Miller 123-321-4444

You can create a hash key based on each name. The hash key will determine which bucket
of the Hashtable will hold the data. When you want to retrieve a phone number, you simply
take the name and calculate its hash key, which will tell you where the data is located in the
Hashtable. The algorithms for generating hash keys are designed to be very fast, so looking
up entries in a Hashtable should be very quick. Note that the keys in a Hashtable have to
be unique, although it is possible for more than one key to end up with the same hash key.

If two or more items have the same hash key, a bucket in the Hashtable will contain more
than one value. In this case, once the bucket has been located, it will be necessary to
compare the keys of every item in the bucket in order to find the one you want. This
obviously slows down retrieval. Hashing algorithms are carefully designed to create a
uniform distribution of values with as little chance of duplication as possible.

The ratio of entries to buckets is called the hash table’s load factor, and smaller load factors
will give faster retrieval at the cost of increased memory consumption. The load factor also
determines how the size of the table is increased when all buckets have been filled.

The default load factor is 1.0, and other values can be specified when the Hashtable is
created.

The Object class contains a method for generating hash keys, and this is inherited by every
other .NET class. For many data structures, however, this default method will not create a
good distribution of hash keys. Therefore, if you want to store your data in a hash table, it
may be necessary to override GetHashCode() in order to implement your own hashing
function.

Hashtables are thread safe, and the shared Synchronized() method can be used to obtain
a thread-safe wrapper object.

NameValueCollection

NameValueCollection belongs to the System.Collections.Specialized namespace, and
implements a collection class that stores key/value pairs of strings in a hash table, but also
lets you access members by index as well as key. Unlike Hashtable, NameValueCollection
uses strings as keys and will let you use a null reference (Nothing in VB) for a key.
NameValueCollection inherits from NameObjectCollectionBase , extending it by allowing
duplicate keys:

Public Class NameValueCollection

 Inherits NameObjectCollectionBase

Public MustInherit Class NameObjectCollectionBase
 Implements ICollection, IEnumerable

Queue

A Queue is an ordered list where items are added at one end and removed from the other,
as shown in Figure 4.2. It is useful for processing items, such as messages, in the order in
which they were received:

Public Class Queue

 Implements ICollection, IEnumerable, ICloneable

Figure 4.2: A Queue.

The Queue class supports three standard operations: Enqueue() adds an object to the tail
of the Queue, Dequeue() removes an object from the head, and Peek() looks at the oldest
object without removing it.

Queues are thread safe, and the shared Synchronized() method can be used to obtain a
thread-safe wrapper object.

SortedList

A SortedList uses two arrays to store its data—one to hold keys and one to hold values, as
shown in Figure 4.3. Therefore, an entry in the list consists of a key/value pair. Duplicate
keys are not allowed, and a key cannot be a null reference (Nothing in VB), although values
can be null references:

Public Class SortedList

 Implements IDictionary, ICollection, IEnumerable, ICloneable

Figure 4.3: A SortedList.

As its name implies, the list maintains its entries in order, sorted on the keys, so adding an
item to a SortedList is a relatively expensive process.

A SortedList is similar to both a Hashtable and an ArrayList in that you can retrieve items
by key and also by index. It is slower in operation than a Hashtable because it needs to find
the index at which a new item is to be added in order to maintain the sorted order.

Static (shared) members of SortedLists are thread safe, and the shared Synchronized()
method can be used to obtain a thread-safe wrapper object.

Stack

A stack is a simple ordered collection of objects in which items can only be added or
removed from the top, as shown in Figure 4.4. In programming terminology, it is a LIFO (Last
In, First Out) Queue. The usual real-world illustration of a stack is that of a pile of plates in a
cafeteria. Another way to regard a stack is as a Queue where the Enqueue() and
Dequeue() operations occur at the same end:

Public Class Stack
 Implements ICollection, IEnumerable, ICloneable

Figure 4.4: A stack.

Stacks support three main operations: Push() adds a new item on the stack, Pop() removes
the top item from the stack, and Peek() looks at the top item without removing it.

Because stack implements ICollection, IEnumerable, and ICloneable, it has all the methods
associated with those interfaces: Clear(), Count(), Contains(), Clone(), and CopyTo().

Stacks support thread safety as well, and the Synchronized() method returns a thread
safety wrapper around the stack. The IsSynchronized property can be used to test whether
the stack is thread safe.

StringCollection and StringDictionary

StringCollection belongs to the System.Collections.Specialized namespace, and is a
special purpose IList used for storing strings by index. It has methods for adding, inserting,
and removing strings, removing a string by index, and copying part or all of the collection to
an array. The strings within a string collection do not have to be unique:

Public Class StringCollection
 Implements IList, ICollection, IEnumerable

StringDictionary, also part of the System.Collections.Specialized namespace, is a
dictionary that uses a String as a key.

Which Collection Should I Use?

How do you decide which collection to use for a given programming task? The following
points may help you decide:
§ If you want a fixed-size array, use System.Array.
§ If you want a dynamically sizable array, use ArrayList.
§ If you want to store a list of elements and always retrieve the last one you added first,

use a Stack.
§ If you want to store elements and retrieve them using a key, use a Hashtable. If you

also want to be able to access them by index, use a SortedList.
§ If you want to store a list of elements and always retrieve them in the order in which

you added them, use a Queue.
§ If you want to store a series of true/false (or on/off) flags, use a BitArray.
§ If you want to store a list of strings and refer to them by index, use a StringCollection.
§ If you want to store a list of strings and refer to them by key or index, use a

NameValueCollection.

Which Collections Are Thread Safe?

If you know what thread safety means, all you need to know is that ArrayList, Queue ,
Hashtable, SortedList, HybridDictionary, ListDictionary, and StringDictionary are
thread safe.

If you don’t, consider this brief explanation of thread safety. Nowadays, many programs are
written using multiple threads of execution. A thread (looking at it very simply) is a function
within a program that is executing at the same time as the rest of the code, and the
operating system schedules them against one other in the same way that it schedules whole
programs against one another. This is done by giving each thread (each function) a short
time slice, and then suspending it in order to give another thread a chance to run. If it is done
quickly and smoothly, it gives the illusion that functions are executing simultaneously.
Intelligent use of scheduling by the operating system can result in much smoother program
operation.

The problem, however, is that the scheduler can decide to suspend one thread while it is in
the middle of an operation, which can cause real problems with shared data structures.
Imagine that one thread has just started to retrieve item 5 from a collection when the
scheduler decides to swap to another thread, and that this new thread promptly removes
item 5. When control switches back to the original thread, the scheduler is not going to get
the data item it was expecting. Errors due to shared data being accessed by multiple threads
can be very hard to track down because of the unpredictability of the scheduler and when it
decides to swap between threads.

A thread-safe class is one in which critical methods, such as insertion, removal, and retrieval
of elements, are protected against being interrupted by another thread.

Consult Chapter 12 for more details on how to create and use threads and how to
synchronize use of objects.

How Do I Iterate over a Collection?

If the collection implements the IEnumerable interface, you can use an enumerator object
provided by the collection to iterate over the collection.

Collections that implement IEnumerable have a GetEnumerator() method that can be used
to retrieve the enumerator object. This will be an object that supports the IEnumerator
interface.

IEnumerator provides a simple way to iterate forward over a collection using three members:
§ MoveNext()—A method that moves the enumerator to the next element. It returns true

if the move was successful and false if the end of the collection has been reached. Note
that it is initially positioned before the first element, so you need to call it once in order to
position it at the first element.

§ Reset()—A method that sets the enumerator back to its starting position before the first
element.

§ Current—A property that retrieves the current element as an Object reference.

Note that you cannot modify the contents of a collection through an iterator because iterators
take a snapshot of the data.

The following code shows how to use an enumerator in VB:

' Create an array

Dim ar() As Integer = { 10, 11, 12, 13 }

' Create the elements an enumerator to work with it
Dim enm As IEnumerator = ar.GetEnumerator

' Use the enumerator to print each element

While enm.MoveNext = True
 Console.WriteLine(enm.Current)

End While

There are two things to note about this code: First, you ask the object for an enumerator, so
each collection class is responsible for providing its own enumeration objects. Second, you
access the object though IEnumerator, which isolates you from having to know exactly what
type of object it is.

As you might expect, the code is very similar in C#, as shown below:

// Create an array
int[] ar = { 10, 11, 12, 13 };

// Create an enumerator to work with it

IEnumerator enm = ar.GetEnumerator();

// Use the enumerator to print each element
while (enm.MoveNext() == true)

 Console.WriteLine(enm.Current);

How Do I Use an ArrayList?

An ArrayList is a dynamically resizable array that can hold any kind of object and is a useful
alternative to the fixed-size System.Array. Because ArrayLists are used quite heavily, I will
discuss them in some detail.

Creating and Filling ArrayLists

An ArrayList can be created in four ways:
§ As an empty array that has the default capacity of 16 elements
§ As an empty array that has a specified initial capacity
§ As an array containing elements copied from another collection
§ As an array initialized with n copies of the same value

You can get or set the capacity of an ArrayList using the Capacity property, and the Count
property will tell you how many elements an ArrayList currently contains.

The following example shows how to create and use ArrayLists in VB:

' Create ArrayList with default capacity

Dim al As New ArrayList()

' Add some values to the list
al.Add("zero")

al.Add("two")
al.Add("three")

al.Insert(1, "one")

' See what we have
Console.WriteLine("Capacity={0}, Count={1}, Item 1={2}", _

 al.Capacity, al.Count, al.Item(1))

' Create another initialized with ten elements, each
' containing the string "foo"

Dim al2 As ArrayList = ArrayList.Repeat("foo", 10)

Console.WriteLine("Capacity={0}, Count={1}, Item 1={2}", _
 al2.Capacity, al2.Count, al2.Item(1))

The Add() method adds a new object to the end of the list, whereas Insert() inserts an
object at the given index. So the first WriteLine() statement gives the result:

Capacity=16, Count=4, Item 1=one

The second ArrayList is initialized with 10 copies of a string, but it is still created with the
default capacity of 16 elements, so the second WriteLine() statement produces the
following:

Capacity=16, Count=10, Item 1=foo

If you want to remove the unused elements from the second ArrayList, you can use
TrimToSize(), which makes the capacity equal to the count:

al2.TrimToSize()

The AddRange() and InsertRange() methods let you insert the elements of a collection into
an ArrayList, whereas SetRange() lets you copy the elements of a collection over a range
of elements in an ArrayList. The following example shows InsertRange() at work. Notice
that native language arrays count as collections:

' Create an integer array
Dim intArr() As Integer = {1, 2, 3}

al.InsertRange(2, intArr)

This code inserts the integer array at index 2, giving the sequence:

zero one 1 2 3 two three

Additionally, the GetRange() method can be used to copy a range of elements from one
ArrayList to a new one:

' Create an ArrayList containing three elements from al2, starting

' at index 2
Dim al2 As ArrayList = al2.GetRange(2, 3)

Removing Items

The Remove() and RemoveAt() methods can be used to remove an item from an ArrayList
by reference and index respectively. Suppose that you have an ArrayList that contains the
following items:

one two foo three four bar

The following two statements can both be used to remove the third element in the list:

' Remove an element by reference

al.Remove("foo")

' Remove an element by zero-based index

al.RemoveAt(2)

If you supply an index that is out of range, you will get an ArgumentOutOfRange exception
thrown, and if you try to remove an element that doesn’t exist in the ArrayList, you will
receive an ArgumentException. A NotSupportedException will be thrown if the ArrayList
is read-only.

RemoveRange() can be used to remove a sequence of elements from the ArrayList:

' Remove two elements starting at index 3
al.RemoveRange(3, 2)

Operations on ArrayLists

Reverse() lets you reverse the order of all or part of an ArrayList, whereas Sort() will sort
all or part of a list into ascending order:

' Create ArrayList with default capacity

Dim al As New ArrayList()

' Add five entries
al.Add("dingo")

al.Add("aardvark")
al.Add("cheetah")

al.Add("emu")
al.Add("bison")

' Sort the list

al.Sort()

' Now reverse the order of the three entries
' starting at index 1

al.Reverse(1, 3)

If you print out the list after the Sort() and Reverse() operations are complete, you get the
following results:

After sort: aardvark bison cheetah dingo emu

After reverse: aardvark dingo cheetah bison emu

The Contains() method determines whether the ArrayList contains a particular object, and
IndexOf() and LastIndexOf() can be used to return the position at which an object lives in
the list:

al.Contains("dingo") ' returns true
al.Contains("elephant") ' returns false

al.IndexOf("cheetah") ' returns 2

al.IndexOf("lion") ' returns -1 (not found)

By default, IndexOf() and LastIndexOf() start from the beginning and end of the list
respectively, but there are overloads that let you set a starting index and a range to search.

BinarySearch() provides an efficient way to locate an object in a large ArrayList by using a
binary search algorithm. Note that in order for this to work, the ArrayList has to be sorted
because the algorithm assumes that all the values to one side of an element are less than—
and all values on the other side are greater than—the current element. If the array isn’t
sorted, then this assumption probably won’t be true, and you’ll get the wrong answer. Here’s
an example:

' Binary search
Dim al4 As New ArrayList()

Dim i As Integer ' loop index
Dim val As Integer ' value to search for

' Initialize random number generator

Dim r As Random = New Random(999)

' Put a lot of random values into the list, and save number 500 to
' look for later

For i = 1 To 10000
 If i = 500 Then

 val = r.Next
 al4.Add(val)

 Else
 al4.Add(r.Next)

 End If
Next

' Sort the array

al4.Sort()

' Look for the value and print it out
Console.WriteLine("Found it at {0}", al4.BinarySearch(val))

Using Wrapper Methods

The ArrayList class provides several shared methods that let you create ArrayList objects
of a particular type.

The FixedSize() method creates an ArrayList that cannot have members added or
removed. ReadOnly() creates an ArrayList whose members cannot be modified; this
obviously implies that the list is fixed size as well as read-only. Synchronized() creates an
ArrayList that is thread safe. The IsReadOnly and IsSynchronized properties can be used
to identify which lists are read-only and synchronized.

All three methods are used in the same way. You first create a standard ArrayList, and then
use these methods to create a wrapper with the desired properties. Here’s an example
showing how you could create a read-only ArrayList:

' Create a read-only ArrayList… start by creating a normal one
Dim al5 As New ArrayList()

' Put some values into the list

For i = 1 To 10
 al5.Add(2 * i)

Next

' Create a read-only wrapper
Dim alRO As ArrayList = ArrayList.ReadOnly(al5)

' Look for the value and print it out

Console.WriteLine("alRO is read-only: {0}", alRO.IsReadOnly)

How Do I Store Values by Key?

If you have data that can be identified by a key, such as a list of names and phone numbers,
you can use a Hashtable or SortedList to store them.

A Hashtable will be more efficient if you only want to search for and retrieve values by key.
A SortedList maintains the data items in sorted key order and lets you retrieve them by key
or index. SortedLists are not as efficient as Hashtables because of the need to maintain
the sort order of the list when adding items, but they basically work the same way.

In the following code examples, I’ll use a dataset consisting of names and (fictitious) phone
numbers, like this:

Emmett Chapman 441-999-1010

Tony Levin 208-337-4880
Bob Culbertson 655-422-9023

Greg Howard 213-101-8032

A Hashtable can use two helper objects: an object that implements IComparer and an
object that implements IHashCodeProvider. Because Hashtables don’t permit duplicate
keys, the table needs to be able to decide whether two key objects are equal. It can normally
do this using the key objects’ Equals() method, but if you want to do something special—
such as ignore case-sensitivity so that “smith” is equal to “SMITH”—you can implement an
IComparer object and let the Hashtable use it. Similarly, the table will use the key objects’
own GetHashCode() method unless you provide it a custom IHashCodeProvider, which it
will use to calculate the hash key.

Creating and Filling Hashtables

The Hashtable class lets you create objects in a number of ways:
§ As an empty Hashtable with a default or specified initial capacity

§ By copying the entries from another IDictionary
§ Specifying IComparer and IHashCodeProvider objects for both of the preceding ways

Note

If you don’t know how Hashtables work, before reading on, you may want to
look at the discussion in the In Depth section to find out about load factors
and how they influence the workings of a Hashtable.

The Hashtable class has 10 possible constructors.

Here’s an example showing how to create and fill a Hashtable in VB:

' Create a Hashtable
Dim ht As New Hashtable()

' Add some values to the table

ht.Add("Emmett Chapman", "441-999-1010")
ht.Add("Tony Levin", "208-337-4880")

ht.Add("Bob Culbertson", "655-422-9023")
ht.Add("Greg Howard", "213-101-8032")

In this case, I’ve used strings as keys, but you can use any type of object. Duplicate keys
aren’t allowed, so if you try to add one, you’ll get an ArgumentException.

You can also use the Item property to set the value associated with a key. If the key exists,
its value will be replaced; if it doesn’t exist, a new one will be created, so you could rewrite
the preceding code as:

' Add some values to the table using Item

ht.Item("Emmett Chapman") = "441-999-1010"
ht.Add("Tony Levin") = "208-337-4880"

ht.Add("Bob Culbertson") = "655-422-9023"
ht.Add("Greg Howard") = "213-101-8032"

In C#, Item is the indexer for the class, so you can use square-bracket notation if you prefer,
so we could write the preceding code like this:

// Add some values to the table using Item
ht["Emmett Chapman"] = "441-999-1010";

ht["Tony Levin"] = "208-337-4880";
ht["Bob Culbertson"] = "655-422-9023";

ht["Greg Howard"] = "213-101-8032";

Finding Keys and Values

You can find out whether the table contains a particular key or value using the
ContainsKey() and ContainsValue() methods. Because Hashtables are normally searched
by key, you can also use Contains() as a synonym for ContainsKey():

If ht.Contains("Greg Howard") = True Then

 Console.WriteLine("Table contains Greg Howard")
End If

If you want to know all the keys or all the values, the Keys and Values properties will return
an ICollection:

' Get an enumerator on the Keys collection and print them out
Dim keyEnum As IEnumerator = ht.Keys.GetEnumerator

While keyEnum.MoveNext
 Console.WriteLine(keyEnum.Current)

End While

You can retrieve the value associated with a key using the Item property:

Console.WriteLine("Phone number for Tony Levin is {0}", _

 ht.Item("Tony Levin"))

Remember that in C# you can use square-bracket notation if you prefer:

Console.WriteLine("Phone number for Tony Levin is {0}", ht["Tony
Levin"])

If you want to enumerate the entire table, the GetEnumerator() method will return an
IDictionaryEnumerator, which you can query to find out keys and values:

' Get an enumerator on the entire table and print it out
Dim en As IDictionaryEnumerator = ht.GetEnumerator

While en.MoveNext
 Console.WriteLine("Key='{0}', Value='{1}'", en.Key, en.Value)

End While

Removing Entries

The Remove() method removes an entry by key, whereas Clear() removes all the entries:

' Remove an entry
ht.Remove("Tony Levin")

' Clear the table

ht.Clear()

Removing a nonexistent key simply does nothing.

Using Wrapper Methods

The Synchronized() shared member creates a Hashtable that is thread safe, and the
IsSynchronized property can be used to identify which tables are synchronized.

You first create a standard Hashtable and then use these methods to create a wrapper with
the desired properties. Here’s an example showing how you can create a synchronized
Hashtable:

' Create a synchronized Hashtable

Dim ht1 As New Hashtable()

' Put some values into the list

ht1.Add("First", "First Item")
ht1.Add("Second", "Second Item")

ht1.Add("Third", "Third Item")
ht1.Add("Fourth", "Fourth Item")

' Create a read-only wrapper

Dim htSync As Hashtable = Hashtable.Synchronized(ht1)

' Look for the value and print it out
Console.WriteLine("htSync is read-only: {0}", htSync.IsSynchronized)

Using SortedLists

A SortedList is one of the three classes in System.Collections that is designed for storing
collections of key/value pairs, the others being Hashtable and NameValueCollection.

A SortedList maintains the data items in sorted key order and will let you retrieve them by
key or by index. SortedLists are not as efficient as Hashtables because they need to
maintain the sort order of the list when adding items, but they basically work the same way.
If you only want to retrieve your data by key, Hashtables will be more efficient than
SortedLists.

In order to be able to sort the entries, something has to be able to decide which relative
order two items should occupy in the list. This can be done in two ways: First, the objects to
be placed in the list can perform the comparison themselves. For this to work, the objects
must implement the IComparable interface with its one CompareTo() member. All the value
types, such as number and string classes, implement this interface, and it should be
implemented by any other user-defined types whose values can be ordered.

The second way to sort entries involves the use of an external sorting object that implements
the IComparer interface. This enables you to write a custom comparer object that
implements the one Compare() method and can be used to decide the order in which
objects should go into the list.

Creating and Filling SortedLists

A SortedList can easily be created and filled like this:

Dim sl As New SortedList()

' Add some items

sl.Add("two", 2)
sl.Add("three", 3)

sl.Add("one", 1)
sl.Item("zed") = 4

' See what we have

Console.WriteLine("Number of entries is {0}", sl.Count)
Console.WriteLine("Capacity is {0}", sl.Capacity)

There are several points to note about this code. Items can be added in two ways by using
the Add() method or the Item property, which is read/write and can be used on either side of
an equals sign. In this case, I’ve used integers as values, but you can use any object type.

Note

Keys have to be unique and cannot be null references (or Nothing in VB).
You can use null references as values, however.

The list is sorted as items are added, so that the actual order of the keys in the list is one-
three-two-zed rather than the order in which they were added. This means that adding items
to a SortedList is a time-consuming operation.

If you run this code, you’ll find that the count of items in the list is four—which is
reasonable—but that the capacity is 16 items, which may be surprising. The default capacity
of a SortedList is 16 items, and it will double in size each time the limit is reached. So, if I
add a 17th item, my list will grow to a capacity of 32; if I add a 33rd item, it will grow to 64;
and so on. If there is too much spare capacity in a SortedList, you can use the
TrimToSize() method to set the capacity to the actual number of elements.

Six constructors provide a number of ways in which you can construct SortedLists:
§ Create an empty list with the default capacity of 16 items.
§ Create an empty list with a specified capacity.
§ Create a list from entries copied from another IDictionary object.
§ Create an empty list with default capacity, and specify an IComparer object for sorting

items as they are added.
§ Create a list from entries copied from another IDictionary object, and specify a custom

IComparer object.
§ Create an empty list with a specified capacity, and specify a custom IComparer object.

Retrieving Elements

You can retrieve individual elements in the collection by key or by index, as shown in the
following code:

' Get a value by key
Console.WriteLine("Value for key 'one' is {0}", sl.Item("one"))

' Get a value by index

Console.WriteLine("Value for index 1 is {0}", sl.GetByIndex(1))

Indexes are zero-based, and you have to remember that the keys were sorted when you
added them to the list, so the index might not represent the key you think it ought to. In the
preceding example, index 1 represents the key “three” because it is the second one in the
list.

You can find the index for a given key or value by using the IndexOfKey() and
IndexOfValue() methods:

' Get the index of a key

Console.WriteLine("Index of key 'zed' is {0}", sl.IndexOfKey("zed"))

' Get the index of a value
Console.WriteLine("Index of value '3' is {0}", sl.IndexOfValue(3))

These functions will return -1 if the key or value doesn’t exist.

If you want to find out whether the list contains a particular key or value, you can use the
ContainsKey() and ContainsValue() functions.

Modifying Elements

You can modify values by key or by index. As well as letting you add new keys, the Item
property also lets you modify the value associated with an existing key:

' Store a new value with the 'zed' key

sl.Item("zed") = 50

If you want to modify a value by index, use the SetByIndex() method:

' Store a new value associated with key 1
sl.SetByIndex(1, 20)

Deleting Elements

The Remove() method removes a key/value pair by key, whereas RemoveAt() will do the
same by index:

' Remove the 'zed' key and its associated value
sl.Remove("zed")

' Remove the key at index 1 and its associated value

sl.RemoveAt(1)

Trying to remove a nonexistent key doesn’t do anything, but using an out-of-range index will
produce an ArgumentOutOfRangeException. As you might expect, the Clear() method
removes all items from the collection.

Using Thread-Safe SortedLists

The Synchronized() shared method creates a thread-safe wrapper class around a
SortedList, so that it is protected from improper access by multiple threads. The
IsSynchronized property tells you whether a given SortedList is synchronized or not:

Dim sl2 As New SortedList()

' Add some items
sl2.Add("A", "alpha")

sl2.Add("B", "bravo")
sl2.Add("C", "charlie")

' Create a thread-safe wrapper

Dim safeSL As SortedList = SortedList.Synchronized(sl2)

Console.WriteLine("safeSL is thread safe: {0}",
safeSL.IsSynchronized)

How Do I Access Items in the Same Order They Were
Received?

A Queue is a data structure that lets you recover items in the same order that they were
added. It maintains items in the list, and you use the Enqueue() method to add items onto
one end and the Dequeue() method to remove them from the other. Here’s how you can set
up and use a Queue in VB:

Dim qq As New Queue()

' Add some values to the queue
qq.Enqueue("first")

qq.Enqueue("second")
qq.Enqueue("third")

qq.Enqueue("fourth")
qq.Enqueue("fifth")

' See what we have

Console.WriteLine("Size is {0}, top element is {1}", qq.Count,
qq.Peek)

' Remove the element from the head
qq.Dequeue()

I’ve created the Queue with its default capacity of 32 items, and the default growth factor of
2.0. If I exceed the current capacity, the Queue’s capacity will be increased, and the new
capacity will be the current value times the growth factor. So, as I add more and more items
to this Queue, its capacity will grow from 32 to 64, to 128, to 256, and so on. It’s quite
obvious that the growth factor has to be at least 1.0, and the upper limit has been set to 10.0
to prevent Queues from growing too wildly.

Other constructors let you specify an initial capacity only or an initial capacity and a growth
factor. You can also initialize a Queue with the contents of another collection.

You add elements using the Enqueue() method and can then look at the top element using
Peek(). In this case, the element at the head of the Queue is “first” because it was the first
one added. You can use the Dequeue() method to remove the element at the head of the
Queue.

How Do I Use a Stack?

A Stack stores data so that the last object added is the first one to be retrieved; you can only
add and remove objects from the top of Stack. The following example shows a simple use of
a Stack in VB:

Dim s As New Stack()

' Add some values to the stack

s.Push(42)
s.Push(77)

s.Push(99)
s.Push(4)

s.Push(31)

' See what we have
Console.WriteLine("Size is {0}, top element is {1}", s.Count,
s.Peek)

' Remove a value

s.Pop()

Console.WriteLine("Size is {0}, top element is {1}", s.Count,
s.Peek)

I’ve created the Stack with its default capacity of 10 items. If I exceed the current capacity,
its capacity will be doubled every time more is needed. Other constructors let you specify an
initial capacity; you can also initialize a Stack with the contents of another collection.

Items are added to the Stack using the Push() method. You can add any object type to a
stack; if you add primitive data types, they will be boxed before they are added. You can use
the Peek() method to look at the top item on the Stack without removing it and the Count
property to see how many items the Stack currently contains.

The Pop() method is used to remove the top item from the Stack, returning an Object
reference. If you want to use this object, you’ll have to cast it into the appropriate type, like
this:

' Remove a value
Dim n As Integer = CType(s.Pop(), Integer)

The Stack class implements the ICollection, IEnumerable, and ICloneable interfaces, so it
has all the methods associated with those interfaces, such as Clear(), Count(), Contains(),
Clone(), and CopyTo(). The ToArray() method lets you copy the contents of the Stack to a
standard language array or a System.Array object.

How Do I Store Flags in a BitArray?

A BitArray provides a compact way of storing a series of bits and lets you access them as if
they are stored in an array. It provides you with compactness of storage without getting you
involved in bit twiddling.

You can create a BitArray in several ways. The simplest way is to specify the number of bits
you want to store in the array:

' Create a BitArray to hold five bits
Dim bt As New BitArray(5)

Elements in the array are initialized to false. There are several other constructors to let you
initialize the array in different ways:
§ By copying values from an array of Booleans
§ By copying bits from an array of 32-bit integers
§ By copying from another bit array
§ By copying bits from an array of bytes
§ By creating a sized array and initializing its elements to true

If you need to change the capacity of the array, you can use the Length property, which
allows you to get and set the capacity. The Count property tells you how many bits are
actually being used in the array.

Once you’ve created your array, you can access the bits using the Item property (or the []
indexer in C#):

' Set the second and fourth elements
bt.Item(1) = True

bt.Item(3) = True

Remember that as with all other index collections indexing starts from zero. As an alternative
to Item, you can use the Get() and Set() methods:

' Equivalent to the previous code

bt.Set(1, True)
bt.Set(3, True)

If you want to change everything, the SetAll() method can be used to set the entire array to
true or false.

The class implements a set of Boolean operations for working on BitArrays. The And(),
Or(), and Xor() methods perform bitwise operations on two BitArrays, returning a new
BitArray containing the result. The Not() method returns a BitArray containing the result of
inverting all the bits in a BitArray.

As an example, let’s use the five-element BitArray from the preceding code, where I’ve set
bits 1 and 3 to true. You can use an enumerator to list the values:

Dim ie as IEnumerator = bt.GetEnumerator
While ie.MoveNext = True

 Console.Write("{0} ", ie.Current)
End While

Console.WriteLine()

You will get the following output:

False True False True False

You can now define a second BitArray and use the And() method to produce a third
BitArray, which is the result of the logical and operation on the first two arrays:

' Create a BitArray to hold five bits
Dim bt1 As New BitArray(5)

' Set the second bit to true

bt1.Item(1) = True

Dim ie2 as IEnumerator = (bt.And(bt1)).GetEnumerator

Notice how I’m not saving the result of the And() operation, but simply getting an enumerator
back from it. The And() method creates a BitArray with ones where both source arrays
have ones, and zeros otherwise. Because only the second bit is set in both bt and bt1,
printing out the array elements would look like this:

False True False False False

Storing Strings in a StringCollection

A StringCollection is a special purpose array for storing strings, and is part of the
System.Collections.Specialized namespace. You can access the elements by index, and
add, remove, and insert items. StringCollections are not synchronized.

The StringCollection class implements the ICollection, IEnumerable, and IList interfaces,
so it has all the methods associated with those interfaces, such as Clear(), Count(),
Contains(), and CopyTo().

The following example shows how to use a StringCollection in VB:

' Import the Specialized namespace
Imports System.Collections.Specialized

Dim sc As New StringCollection()

' Add some values to the collection
sc.Add("Now is the time")

sc.Add("Now is the time")
sc.Add("For all good men")

sc.Add("To come to the party!")

' See what we have
Console.WriteLine("Size is {0}, first element is {1}", sc.Count,
sc.Item(0))

' Remove the duplicate at index 1

sc.RemoveAt(1)

' The size is now three elements
Console.WriteLine("Size is {0}", sc.Count)

The Add() method is used to add strings to the end of the collection, and the Item property
is used to locate an element by index. RemoveAt() is used to remove an element by index,
and you can also use Remove() to remove an element by value.

Contains() can be used to determine whether the collection holds a particular string, and
IndexOf() returns the zero-based index of the first occurrence of a string in the collection.

Using StringCollections in C# is very much the same as it is in VB, with the one exception
that Item is used as the class indexer, so you can use the [] notation to access elements in
the collection:

// See what we have (C# version)

Console.WriteLine("Size is {0}, first element is {1}", sc.Count,
sc[0]);

Storing Strings by Key in a NameValueCollection

If you want to store a collection of strings and be able to retrieve them by key or index, a
NameValueCollection is what you need, and you’ll find it in the
System.Collections.Specialized namespace.

Because NameValueCollection is based on Hashtable, it has the same variety of
overloaded constructors that let you create objects in a number of ways:
§ As an empty NameValueCollection with a default or specified initial capacity
§ By copying the entries from another NameValueCollection
§ By specifying IComparer and IHashCodeProvider objects for both of the preceding

ways

The default comparer is the CaseInsensitiveComparer, which (as its name implies) ignores
case when comparing strings. The default hash code provider is the
CaseInsensitiveHashCodeProvider.

Here’s a simple example showing how to create and use a NameValueCollection in VB:

' You need to import the namespace
Imports System.Collections.Specialized

…
Dim nv As New NameValueCollection()

' Add some values to the collection

nv.Add("one", "The first string in the collection")
nv.Add("two", "The second string")

Console.WriteLine("The collection has {0} key/value pairs",
nv.Count())

NameValueCollection has two slightly unusual properties. The first is that you are allowed
to add entries with duplicate keys, and when you retrieve by key, you get all the values back
in a comma-separated list. The second is that you are allowed to use a null reference as a
key, as shown here:

' Add an item with a null key

nv.Add(Nothing, "An item with a null key")

Remember that using a null key is different from using a zero-length string:

' Add an item with a zero-length string as a key

nv.Add("", "An item with a zero-length key")

Finding and Retrieving Entries

Entries can be retrieved by index or by key:

' Retrieve an entry by key
Console.WriteLine("Key 'one' has value '{0}'", nv.Item("one"))

' Retrieve an entry by index

Console.WriteLine("Entry 0 has value '{0}'", nv.Item(0))

New items are simply added onto the end of the collection, so the most recently added items
will have the highest indices. The Item() method is used to select an entry by key or index
and can be used on either side of the =, so you can add new entries like this:

' Add a value using Item()

nv.Item("three") = "Another string"

In C#, Item() is used as the indexer for the class, so you can refer to entries using array
notation:

// Add a value

nv["three"] = "Another string"

The GetKey() method returns the key at a particular index, whereas the AllKeys() property
returns an array of String objects containing all the keys in the collection.

' Retrieve a key by index

Console.WriteLine("Key 1 has value '{0}'", nv.GetKey(1))

' Write the list of keys
Dim keys() As String = nv.AllKeys()

Dim s As String

Console.WriteLine("Key list:")
For Each s In keys

 Console.WriteLine(s)
Next

In much the same way, you can use the All property to retrieve a collection of all the values
in the collection.

Removing Items

There are two methods for removing entries from a collection. The Remove() method
removes an entry by key, whereas Clear() removes all the entries:

' Remove an entry
nv.Remove("one")

' Clear the table

nv.Clear()

Removing a nonexistent key simply does nothing, whereas removing a duplicate key will
remove all the values associated with that key.

Note

There isn’t a way to remove an entry by index, only by key

How Do I Implement Custom Sorting?

Several classes in System.Collections and System.Collections.Specialized (such as
SortedList, Hashtable, and NameValueCollection) can use a “comparer” object in order to
sort entries. By default, the objects themselves provide a sort order through their
implementations of IComparable, but if you need to, it is possible to define a custom sorting
mechanism.

This is done by providing a class that implements the IComparer interface. This interface has
one member, Compare(), which takes two Object references, returning -1 if the first is less
than the second, 0 if they are the same, and 1 if the first is greater than the second.

The following example shows how this works by implementing a custom comparer object
that sorts strings into reverse order. Here’s the code for the custom comparer class:

' An example showing how to implement custom sorting for collections
Imports System.Collections

' A custom comparer class which implements IComparer, and which
sorts
' strings in reverse order
Public Class JComparer

 Implements IComparer

 ' Note the use of the square brackets around the function name.
This
 ' lets us use a VB keyword as a function name without the compiler

 ' objecting
 Function [Compare](ByVal first As Object, ByVal second As Object) _

 As Integer Implements IComparer.Compare

 ' we're only dealing with strings, so check the types…
 If Not (TypeOf first Is String And TypeOf second Is String) Then

 Throw New ArgumentException("Can't compare types that aren't
strings")

 End If

 ' handle null references
 If first Is Nothing And second Is Nothing Then

 Return 0
 ElseIf first Is Nothing Then

 Return -1
 ElseIf Second Is Nothing Then

 Return 1
 End If

 ' now we can compare…

 Dim i As Integer = String.Compare(CType(first, String), _
 CType(Second, String))

 Return i * -1

 End Function
End Class

The class implements IComparer and therefore has to provide the one Compare() function. I
run into an immediate problem here because compare is a keyword in VB. NET, so I can’t
use it as a function name. The solution is to enclose it in square brackets.

Compare() can be used to compare any object types, so I first check the types of both
arguments to determine if they are both strings. The definition of IComparer states that I can
throw an ArgumentException if I don’t like the arguments I’ve been passed, so that’s what I
do if they are not both strings. My next task is to deal with null references. The rules states
that a null reference is always “less than” an object, so I check the arguments for
“nothingness” and return an appropriate value.

The final task is to perform the comparison, and here I cheat slightly. The String class itself
already implements the Compare() function so I make it do the comparison for me, and
because I want to sort into reverse order, I simply invert the value it gives me in return.

Once I’ve got the comparer class defined, I can use it to sort items as I add them to a
SortedList:

Sub Main()

 ' Create a comparer object
 Dim cmp As New JComparer()

 ' Create a SortedList that uses this comparer

 Dim sl As New SortedList(cmp)

 ' Add items to the list…

 sl.Add("foo", "f")
 sl.Add("alice", "a")

 sl.Add("zebra", "z")
 sl.Add("codicil", "c")

 sl.Add("morph", "m")

 Console.WriteLine("Index 0 is {0}", sl.GetByIndex(0))
 Console.WriteLine("Index 4 is {0}", sl.GetByIndex(4))

End Sub

When the list is printed out, the items will appear in reverse order, with zebra first and alice
last.

How Do I Create My Own Collections?

The System.Collections namespace provides you with three classes that can be used to
create your own custom collection types. Two of these (CollectionBase and
ReadonlyCollectionBase) are related, being read/write and read-only versions of a class
that lets you store and manipulate a list of Object references. The third, DictionaryBase ,
lets you create custom Hashtable-like collections of keys and values.

You use all three of these classes in very much the same way, so I’ll use CollectionBase as
an example to show how to derive a custom collection. This class implements the IList,
ICollection, and IEnumerable interfaces, which means that it provides a complete selection
of the functionality needed by a custom collection including creating enumerators and
adding, modifying, and removing entries. Creating your own custom collection class is simply
a case of inheriting from this class, adding methods to handle your own data types.

You will first need a test class on which to base the collection, and this simple “Person” class
will do nicely. I’m going to use it to create a custom PersonCollection class, which will only
be able to hold and manipulate Person objects:

' Test Person class to store in our collection

 Public Class Person
 Private nameVal As String

 Private phoneVal As String

 Public Property Name() As String
 Get

 Name = nameVal
 End Get

 Set
 nameVal = Value

 End Set
 End Property

 Public Property Phone() As String

 Get
 Phone = phoneVal

 End Get
 Set

 phoneVal = Value
 End Set

 End Property
 End Class

The first step in defining a new collection class is to ensure that the right namespaces are
imported. In this case, you need System.Collections:

' Import the necessary namespaces
Imports System.Collections

Here’s the listing for the custom collection class itself:

' A custom collection of Person objects

Public Class PersonCollection
 Inherits CollectionBase

 ' Provide an Item property

 Default Public Property Item(ByVal index As Integer) As Person
 Get

 Item = CType(List.Item(index), Person)
 End Get

 Set
 List.Item(index) = Value

 End Set
 End Property

 ' Provide add and remove methods

 Public Function Add(ByVal p As Person) As Integer

 ' IList.Add returns the index at which the value was stored
 Return List.Add(p)

 End Function

 Public Sub Remove(ByVal p As Person)
 List.Remove(p)

 End Sub
End Class

There’s not much to it, really. The class inherits from CollectionBase , and then implements
three functions. The first is the Item property, which can be used to get and set items in the
collection by value. Many of the classes in the System.Collections namespace provide an

Item property, so it makes sense to provide one in this class. Note how it works with Person
objects: That’s what makes this a strongly typed class, you can only get and set Person
objects. The data is held by the CollectionBase base class in a list, and you can use the
inherited List property to interact with it.

Note also how Item is marked as “Default.” The default property is one that can be directly
invoked on an object without having to use the property name, so the following two lines of
code mean the same:

myCollection.Item(0)
myCollection(0)

I’ve also added Add() and Remove() methods for completeness. Although it would obviously
be easy to add any other functionality I might require, that’s all I need to be able to
demonstrate how useful this collection can be.

Here’s a simple test program to demonstrate the use of the custom collection (the complete
version of the code is included on the CD-ROM that accompanies this book):

Sub Main()

 ' Create and initialize a couple of Person objects
 Dim p1 As New Person()

 Dim p2 As New Person()

 p1.Name = "Fred"
 p1.Phone = "123-4567"

 p2.Name = "Bill"

 p2.Phone = "234-4321"

 ' Create a collection, and add the objects to it
 Dim coll As New PersonCollection()

 coll.Add(p1)
 coll.Add(p2)

 ' See how many items there are…

 Console.WriteLine("Number of items in the list: {0}", coll.Count)

 ' Enumerate the list…
 Dim p As Person

 For Each p In coll
 Console.WriteLine("Entry is {0}", p.Name)

 Next

 ' Get a value by index
 Console.WriteLine("Entry 1 is {0}", coll(1).Name)

End Sub

I start by creating and initializing a pair of Person objects and add them to a
PersonCollection object. Once I’ve done that, I can see how many items there are in the list
and enumerate over each item in the collection using For Each. If you’ve ever tried
implementing a custom collection in VB6, I’m sure you’ll agree that this is much simpler.

Chapter 5: The XML Namespaces

In Depth

by Julian Templeman

XML is very important in .NET because it provides a simple, structured way of storing and
communicating data that is very useful in the distributed environment. By making XML the
preferred way to communicate between the parts of distributed Web applications, Microsoft
has ensured that the .NET architecture is open and expandable.

You’ll get the most out of this chapter if you are somewhat familiar with XML. If you are
unfamiliar with XML, the next section provides a brief introduction. However, you’ll need to
read more about the complex world of XML and XML technologies if you want to use it in the
real world.

XML from 30,000 Feet

Before I get into the details of the .NET XML namespaces, I’ll present a brief introduction to
XML for those that haven’t used it.

XML is becoming very complex and I cannot hope to turn you into an XML expert—or even
cover everything you ought to know—in the course of a few pages. Therefore, I’ll discuss the
basics in enough detail so that you’ll be able to understand how to parse, use, and create
XML.

This section introduces you to the main features of XML and gives you enough information
to get started. It does not cover details of the more advanced technologies—such as
schemas and XSL. For more details, consult other XML texts, such as the XML Black Book,
2nd Edition, by Natanya Pitts (The Coriolis Group, Inc.).

What Is XML?

Nowadays, everyone is familiar with HTML and its use in creating Web pages; many people
have a passing acquaintance at least with the angle brackets and tags used in creating
HTML documents. Although HTML is very useful for its intended purpose—laying out Web
pages—people are finding that it is limited in that it only describes the layout of data and not
what the data represents. Consider the following HTML fragment:

<h1>Moby Dick</h1>
<h2>Herman Melville</h2>

The <h1> and <h2> tags denote first and second level headings, but there’s nothing in the
data that tells you what the data represents. From the content, you can probably guess that
it describes a book, but there’s nothing in the tags to tell you that. The fact is that HTML is
simply used to pass formatting information to a browser, and anything that you can glean
about the content is just extra information. In addition, the set of tags supported by HTML is
fixed, so it’s difficult to impart extra information in an HTML document without resorting to
nonstandard extensions.

XML arose from the realization that the increasing sophistication of the Web demanded a
richer way of marking up data than HTML could provide. There was a sophisticated general
solution for markup in existence called Standard Generalized Markup Language (SGML), but
it was far too complex for general use. SGML was invented in the 1970s, became an

international standard in 1986, and has achieved some success in the defense and
aerospace industries. But it is very large and complex, and mainly suited to markup of very
large documents, such as Boeing 747 engineering documentation.

In 1996, a working party at W3C (the Web standards body) started work on a subset of
SGML that would be suitable for Web use. The result in 1998 was XML 1.0, and it
represented a version of SGML stripped of obscure, difficult, and redundant features. Since
then, XML has been enthusiastically—sometimes too enthusiastically—adopted all over the
IT world. In fact, it is now being used in a very wide variety of applications including:
§ Document markup—Rather than storing textual material in HTML, Microsoft Word, or

PDF formats, an increasing number of people are storing text as XML, and then using
stylesheets to transform it into other formats as necessary. This means that you can
store a manual as XML and use stylesheets to produce an HTML version for online
viewing, another HTML version for viewing on a WAP device, or a PDF version for
printing.

§ Data exchange—XML can be used to exchange data between widely different
applications and architectures because it is easily produced, easily transmitted, and
easily parsed. XML’s hierarchical nature means that it is easy to represent structured
data, such as a database table. Several XML-based protocols have been developed
that let Remote Procedure Calls (RPCs) work across languages and platforms, and
through firewalls. Simple Object Access Protocol (SOAP) is particularly used in .NET,
and we’ll talk more about it in Chapter 14.

§ Data storage—XML provides a simple, standardized means of storing data, and many
applications are using XML so that their data can be easily exchanged with other
applications.

§ Database operations—Many databases, including Microsoft’s Access and SQL Server,
will now return the result of SQL queries as XML documents, which makes it easy to
work with the data in other applications. XML is also used with .NET to design database
schemas.

Structure of an XML Document

Let’s look at the HTML fragment rendered in XML:

<author>Herman Melville</author>

<title>Moby Dick</title>

Although the tags look the same, you can see an immediate difference—the tag names
describe what the data is, not just how to display it. This means that it is easy to search XML
to view, say, all the authors in a series of books. XML differs from HTML in that it is up to you
to decide which tags to use and what they mean. This ability to customize the tags is what
gives XML its extensibility and is the reason it is so widely used.

Note

An XML element consists of the tags plus the content.

Here’s a more complete example of an XML document:

<?xml version="1.0"?>
<!— My stocklist —>

<stocklist>
 <book>

 <author>Herman Melville</author>
 <title>Moby Dick</title>

 <publisher>White Whale Press</publisher>

 <category>fiction</category>
 <price>19.95</price>

 <stock>3</stock>
 </book>

 <book>
 <author>Bill Gates</author>

 <title>Linux Made Easy</title>
 <publisher>MS Press</publisher>

 <category>fiction</category>
 <price>40.00</price>

 <stock>5</stock>
 </book>

 <book>
 <author>Scott McNeally</author>

 <author>Bill Joy</author>
 <title>VB Programming</title>

 <publisher>Sun Publishing</publisher>
<category>fiction</category>

 <price>21.00</price>
 <stock>2</stock>

 </book>
</stocklist>

There are several important points that need to be discussed in this code. To start with, the
first line (which must appear in all XML documents) identifies this as an XML document.
Without it, many applications that can parse XML will refuse to go any further because they
don’t recognize a well-formed document.

This first line is called the XML declaration and is an example of a processing instruction
(PI). PIs are enclosed in <? and ?> markers and are intended as instructions to applications
that use XML rather than being part of the data. This line is a special processing instruction
intended for XML parsers, and it identifies what follows as an XML document. The second
line is a comment and shows that comments in XML are the same as in HTML.

An XML document consists of a hierarchical set of tags, and there can only be one
outermost tag—in this case <stocklist>—which is known as the root. Despite using a similar
tag mechanism, XML differs from HTML in that all tags must be well-formed, meaning that all
opening tags must have a matching end tag, and that tags must nest correctly. This means
that common HTML practices, such as using <p> and
 tags without end tags, won’t
work in XML, and you’ll need to supply a closing tag.

If an element has no content, XML lets you merge the opening and closing tags, so that the
following two lines of XML are equivalent:

<InStock></InStock>
<InStock />

Because tags must nest correctly, the following HTML is not well-formed:

<i>Bold and italic</i>

The bold and italic tags don’t nest correctly, and although most browsers are able to use this
line, it would be rejected by an XML parser.

Attributes

Similar to HTML, XML tags can contain attributes consisting of keyword/value pairs as in the
following example:

<person firstName="fred" lastName="smith">

Entities and CDATA Sections

Certain characters have special meanings within XML documents. Therefore, you cannot
arbitrarily scatter characters such as < throughout your XML data without causing confusion
to programs reading it. XML has a mechanism that lets you get around this limitation by
using entities.

Note

Entities can be quite complex and are used for a lot more than the simple
escape mechanism described here.

An entity reference is a string of characters that come between a “&” and a “;” character,
such as <. They are used in XML data as a general substitution mechanism. So, if you
want to use the following string in an XML document:

The start of an XML tag is denoted by <

you would have to code it as

The start of an XML tag is denoted by <

The parser will read the entity reference and substitute a < character, but will not treat it as
the start of a tag.

If you have a lot of data containing < and > characters, it becomes awkward to keep using
entities, which make the data far less readable. In that case, you may want to use a CDATA
section, which effectively escapes a whole block of text:

<someData>
<! [CDATA [

Unparsed data such as <this> and <this> goes here…
]]>

</someData>

The syntax of CDATA sections, with their multiple square brackets, has been inherited from
SGML.

XML Validation

You may be wondering how any order can be imposed if you can make up your own tags
and make them mean whatever you like. For example, how do I know what is valid to put in
the stocklist document and what isn’t? Can I have more than one author? On the other hand,
do I have to have an author at all?

The answer is that XML can be validated against other documents that describe the
structure of a particular type of XML document. There are three types of these descriptive
documents—Document Type Definitions (DTDs), schemas, and XDR Schemas:
§ DTDs are an older mechanism inherited from SGML for describing the content of XML

documents.
§ Schemas are a newer XML mechanism.
§ XDR Schemas are a Microsoft-specific mechanism.

All three of these mechanisms let you constrain the content of an XML document by
specifying:
§ What tags can appear in the document
§ Whether they are optional
§ Whether they can appear more than once
§ The order in which they have to appear
§ The way in which they have to be nested

Validation is supported in .NET through the System.Xml.XmlValidatingReader class.

Namespaces

You can run into problems when you try to use two XML documents together, because the
creators of the two documents may have used the same tag names, but be using them for
different purposes. Suppose you have one XML document that lists company employees
and has <address> elements holding postal addresses, and another that lists employees’
email addresses, also with an <address> tag, like this:

<!— In the employee file —>

<address>1207 Pleinmont Blvd., Nowhere</address>

<!— In the email file —>
<address>ed@trailingEdge.com</address>

If you want to merge the two sets of data, how are you going to distinguish between the two
different addresses? You could write some code to edit the data and change the email
address tags to <emailAddress> , but this is time-consuming and inefficient. Namespaces
offer a way around this problem by providing an extra level of naming for elements.

Note

The concept of using namespaces in this way will be familiar to C++
programmers; XML namespaces work in a similar way.

Here’s how you can fix the problem using namespaces:

<!— In the employee file —>

<emp:address>1207 Pleinmont Blvd., Nowhere</emp:address>

<!— In the email file —>
<email:address>ed@trailingEdge.com</email:address>

The parser (or any other application using this XML) can now tell which address is which by
looking at the namespace prefix on the tag:

<!— In the employee file —>

<emp:employees xmlns:emp="http://www.trailingEdge.com">
 …

 <emp:address>1207 Pleinmont Blvd., Nowhere</emp:address>
 …

</emp:employees>

A namespace is defined at the start of an element, and it applies to all nested elements. It is
defined as an attribute starting with “xmlns:”, which tells the parser that this is an XML
namespace declaration. The value of the namespace attribute is normally a URL, and is
simply there to provide a unique value to identify this namespace.

Note

Many people get confused about namespaces and think that a namespace
URL has to point somewhere … it doesn’t! The value doesn’t even have to
be a URL.

When working with XML elements, it is usually possible to retrieve the element name with or
without the namespace prefix and to find out what namespaces (if any) are in operation.

Processing XML

The XML examples I’ve shown thus far represent XML in its serialized form, as it is stored in
a disk file or sent across the Web. In order to work with the data, a program has to read the
XML and parse it. It would be possible for you to write your own code to do this, but it is such
a common task that many parsers have been written that can convert to and from XML’s
serialized form. Parsing in the Windows world is very easy because Microsoft’s XML parser,
MSXML, is part of the Internet Explorer distribution and therefore is available on just about
every Windows machine in the world. As you’ll see in the Immediate Solutions, .NET uses
MSXML for all its parsing needs.

There are two common ways of working with an XML document when using a parser. The
first is to get the parser to read the entire document, parse it, and build a tree in memory.
Once the tree has been built, you can traverse it at will and can also modify it, by adding,
deleting, reordering, and changing elements. The second way is to read the document line
by line, recognizing elements as they occur.

The W3C has produced a model of how an XML document is represented in memory, called
the Document Object Model (DOM). There are bindings to many languages to let you work
with a DOM representation of an XML document. In .NET, you can work with DOM
representations of XML documents using the System.Xml.XmlDocument class.

The DOM is very flexible, but it suffers from one limitation in that the amount of memory
needed to store the tree is directly proportional to the size of the XML document, which may
be prohibitive for large documents. It may also be the case that you don’t need to have the
whole structure in memory at once and can make do with traversing the tree one element at
a time from the top.

Many parsers implement ways to do simple, efficient, forward-only parsing of XML
documents. One de facto standard that is widely used is Simple API for XML Parsing (SAX),
where the parser reads the document element by element and uses callback functions that
you provide, which tells you when something interesting has occurred, such as the start of
an element, the end of an element, or the occurrence of a processing instruction. This is
called a “push” model because it is event driven and the parser calls you when it is ready.

Microsoft has implemented a forward-only parsing mechanism that is a “pull” model, so you
can ask the parser for the next element when you’re ready and skip elements you’re not
interested in, which you cannot do with SAX. Microsoft supports this model through the
System.Xml.XmlTextReader and System.Xml.XmlTextWriter classes.

XSL Transformations

The tags in an XML document describe the data, but do not provide information about how it
should be presented when displayed in a browser. It turns out that this is just a small piece
of a more general problem: XML is used to store and transport data, but it isn’t very valuable
unless it can be transformed into other useful forms, such as HTML for display by a browser,
PDF for printing, or even as input for a database update operation.

It’s always possible to write custom code to parse XML and transform it manually, but for
many tasks this is unnecessary. The transformation can be accomplished by applying a
stylesheet to the XML data in the same way that you would apply a stylesheet to a Word
document in order to get a particular look and feel. In the HTML world, a good parallel would
be CSS (Cascading Style Sheets), which lets you apply new styles to an HTML document. In
fact, CSS can be used with XML, but XSL provides a better way.

The XML Stylesheet Language (XSL) provides a way to apply stylesheets to XML files, and
it is used in many ways including:
§ Converting XML to HTML for display in a browser
§ Converting XML to different sets of HTML for display on different devices (WAP

phones, browsers, Pocket PCs, and so on)
§ Converting XML to other formats, such as PDF or RTF (rich text format)
§ Transforming XML into other XML formats

The idea is very simple: You match sets of elements in the document (such as “all the
authors” or “all books whose price is more than $30”), and then decide what to output. For
example, consider the author of one of the books in the previous example:

<author>Herman Melville</author>

I may decide that I want to output this as a level 2 HTML heading, like this:

<h2>Herman Melville</h2>

I could do this in XSL using the following fragment of XSL code:

<!— Match all authors —>
<xsl:template match="book/author">

 <h2><xsl:value-of select="." /></h2>
</xsl:template>

Note that XSL stylesheets are basically just XML documents and obey all the same rules.
XSL “commands” are qualified with the xsl: namespace, so that it is unambiguous
distinguishing between what is an XSL tag and what is part of the stylesheet data.

A “template” is used to match one or more elements in an XML document. In the preceding
example, I’m assuming that I’m at the <stocklist> level, and I want to match <author>
elements that are children of <book> elements, using the / to build hierarchies. Once a list of
candidate elements has been prepared, the body of the template is processed: Any XSL
commands are executed, and anything that isn’t recognized is passed through to the output.

In the example, the <h2> isn’t recognized as XSL, so it is passed through to the output. The
next element is an XSL command; it selects the value of the current element, which in this
case is “Herman Melville”, and echoes that. The final </h2> tag isn’t recognized and gets
passed through, so the final output is

<h2>Herman Melville</h2>

One important point to note is that even though the HTML tags are simply being echoed to
the output, they still need to be well-formed because they’re going to be parsed as part of
the XML stream. This means that if you want to output a
 tag, you’ll have to use
 in
order to make sure it is well-formed.

The “select” and “match” expressions in the XSL fragment are examples of XPath
expressions. XPath, the XML Path language, is a notation for describing sets of nodes in an
XML document and is similar to the idea of using regular expressions to match text in a text
editor.

The System.Xml Namespace

Now that you have some idea of what XML is and how it is used, let’s move on to see how
Microsoft supports XML in .NET. Much of the XML functionality in .NET is provided in the
System.Xml namespace, and classes in this namespace support many of the established
XML standards:
§ XML 1.0, including DTD support, via the XmlTextReader class
§ XML namespaces, both stream level and DOM
§ XML Schemas for schema mapping and serialization, and for validation using

XmlValidatingReader
§ XPath expressions via the XPathNavigator class
§ XSLT via the XslTransform class
§ DOM Level 2 via XmlDocument
§ SOAP 1.1

In this chapter, I concentrate on the first six XML standards, covering reading, writing,
validating, and transforming XML documents. SOAP and the use of XML for data transfer is
covered in Chapter 14.

XmlTextReader

XmlTextReader is a reader class that, according to the documentation, provides “fast,
noncached, forward-only stream access to XML data.” Instead of loading the entire
document into memory as is the case with DOM, XmlTextReader reads the XML one
element (one “node”) at a time. The properties of the XmlTextReader object reflect the
properties of the current node, and once a node has been read, you cannot go back and
read it again without starting from the beginning. This means that XmlTextReader is light on
resources because there need only be one node in memory at a time.

I’ve already mentioned that XmlTextReader uses a “pull” model, which means it is up to you
to access and get each new node as you want it. Other “one node at a time” forward-only
parsing models tend to be event-driven and use callback functions, so the parser calls back
into your code every time one of a standard set of events occurs. These include the start and
end of elements and processing instruction definitions. This is fairly simple to set up because
you only have to write a series of disconnected callback functions. But it makes it difficult to
control when these functions get called and what you get told about; it can be very hard to
keep track of state.

Table 5.1 and Table 5.2 show some of the important properties and methods of the
XmlTextReader class.

Table 5.1: Important properties of the XmlTextReader class.

Property Description

AttributeCount Returns the number of attributes on the
current node.

Depth Indicates the depth of the current node in the
element stack.

Encoding Indicates the document ’s encoding attribute.

EOF Returns true if the reader is at the end of the
input stream.

HasValue Returns true if the node has text.

IsEmptyElement Returns true if the current node is empty (e.g.,
<empty />).

Item Gets the value of an attribute.

LineNumber, LinePosition Indicates the current line number and
character position. Used mainly for error
reporting.

LocalName Indicates the name of the current node without
the namespace prefix.

Name Returns the name of the current node
including the namespace prefix.

Namespaces Gets or sets a value indicating whether
namespaces are to be supported.

NodeType Gets the type of the current node.

Prefix Gets the namespace prefix associated with the
current node.

ReadState Gets the state of the input stream.

Value Gets the text value of the node.

XmlLang Gets the xml:lang scope for the current node.

Table 5.2: Important methods of the XmlTextReader class.

Method Description

Close Closes the input stream

GetAttribute Gets the value of an attribute

MoveToAttribute Moves to the specified attribute

MoveToElement Moves to the element that contains the
current attribute

MoveToFirstAttribute, Moves to the first or last attribute

Table 5.2: Important methods of the XmlTextReader class.

Method Description

MoveToNextAttribute

Read Reads the next node from the stream

ReadAttributeValue Returns the value(s) associated with an
attribute

ReadBase64 Reads the text content of an element and
does a Base64 decode on it

ReadBinHex Reads the text content of an element and
does a BinHex decode on it

ReadChars Reads element text content into a char buffer

ReadInnerXML Reads all the content of the current node
including XML markup

ReadOuterXML Reads all the content of the current node and
all its children

ReadString Reads element text content as a string

The class also has 13 constructors, allowing you to create XmlTextReader objects that get
input from a number of sources including strings, files, and streams.

XmlTextReader is derived from the abstract XmlReader class, which provides basic reader
functionality for three classes: XmlTextReader, XmlValidatingReader, and
XmlNodeReader.

XmlValidatingReader

This class, System.Xml.XmlValidatingReader, is used to validate XML as it is being read.
It can use all three of the commonly available validation types:
§ Document Type Definitions (DTDs)
§ W3C standard schemas
§ Microsoft XDR Schemas

Note

W3C has only recently standardized Schemas, and while waiting for the
standard, Microsoft produced its own version, known as the XDR (XML Data
Reduced) Schema. Now that the standard is available, the use of XDR
should decrease, and you’re encouraged to use the W3C standard model
wherever possible.

XmlValidatingReader has a property, ValidationType , that determines which type of
validation is going to be used. See Table 5.14 in the Immediate Solution “Parsing a
Document with Validation” for details of the validation types that are supported.

When an XmlValidatingReader detects an error, it fires an event that contains information
about the error that it found. You provide an event handler to catch and act on error events,
and the Immediate Solution shows how to do this.

XmlTextWriter

If you want to write XML to a file or stream in serialized form, and you know exactly what you
require, the XmlTextWriter class provides a fast, noncached, forward-only way to write
XML. This class derives from the abstract XmlWriter base class, and you can provide your
own specialized XML writer classes if necessary.

Using XmlTextWriter, you make a series of calls that result in output being produced, so
you control what is output and when.

Table 5.3 and Table 5.4 list the important properties and methods of the XmlTextWriter
class.

Table 5.3: Important properties of the XmlTextWriter class.

Property Description

Formatting Indicates how the output is formatted

Indentation Gets or sets the indentation level

IndentChar Gets or sets the character to be used for indentation

Namespaces Gets or sets a value indicating whether to do
namespace support

QuoteChar Gets or sets the character to use to quote attribute
values

WriteState Gets the state of the stream

Table 5.4: Important methods of the XmlTextWriter class.

Method Description

Close Closes the output stream

Flush Flushes the output stream

WriteBase64 Writes bytes encoded as Base64

WriteBinHex Writes bytes encoded as BinHex

WriteCData Writes a CDATA block containing the
specified text

WriteChar, WriteChars Writes one or more characters

WriteComment Writes an XML comment

WriteDocType Writes a DocType declaration

WriteEndDocument Closes any open elements or attributes
and puts the writer back in the Start state

WriteEndElement Closes an element

WriteFullEndElement Closes an element, always writing a full
end tag

WriteName Writes a name

WriteProcessingInstruction Writes a processing instruction

WriteQualifiedName Writes a namespace-qualified name

Table 5.4: Important methods of the XmlTextWriter class.

Method Description

WriteRaw Writes raw markup

WriteStartAttribute, WriteEndAttribute Starts and ends an attribute definition

WriteStartDocument Writes an XML declaration

WriteStartElement Writes a start tag

WriteString Writes a String value

WriteWhiteSpace Writes white space characters

XmlDocument

The XmlDocument class represents an entire XML document as a DOM tree and can be
used to add, delete, and change nodes in the tree. DOM trees consist of nodes of different
types, as shown in Figure 5.1.

Figure 5.1: A DOM tree is a collection of nodes of different types.

Note how attributes and the text content of elements are nodes in their own right. The
document itself is represented by a Document node (often known as the document element),
and beneath this is an Element node that represents the root of the XML document, shown
shaded in gray in the figure. Table 5.5 lists the types of nodes that you may find in an
XmlDocument DOM tree.

Table 5.5: Node types in an XmlDocument DOM tree.

Class Description

XmlAttribute Represents an attribute on a node

XmlCDataSection Represents a CDATA section

XmlComment Represents a comment

Table 5.5: Node types in an XmlDocument DOM tree.

Class Description

XmlDeclaration Represents an XML declaration

XmlDocumentType Represents a DOCTYPE declaration

XmlElement Represents an element

XmlEntityReference Represents an entity reference

XmlProcessingInstruction Represents a processing instruction

XmlText Represents the text content of a node

XmlNode

All the node types listed in the previous section are ultimately derived from the abstract
XmlNode class, and it is this class that provides most of the functionality that you need
when working with DOM trees.

Note that the XmlDocument class also inherits from XmlNode , so that it has all the
methods and properties of a node. Because the XmlNode class is so important, I’ll start by
listing some of the properties and methods of the class in Tables 5.6 and 5.7.

Table 5.6: Important properties of the XmlNode class.

Property Description

Attributes Returns an XmlAttributeCollection object
containing the attributes of this node.

ChildNodes Returns an XmlNodeList that contains all the
children of this node.

FirstChild Returns the first child of this node, or null if
there are no children.

HasChildNodes Returns true if this node has children.

Item Retrieves a specified child node.

LastChild Returns the last child of this node.

Name, LocalName Returns the name of the node with or without a
namespace prefix.

NextSibling, PreviousSibling Returns the node immediately following or
preceding this node.

NodeType Returns the type of the node.

OwnerDocument Returns the XmlDocument to which this node
belongs.

ParentNode Returns the parent of this node. What this
returns depends on the node type.

Value Gets or sets the value of this node. What the
value is depends on the node type.

Table 5.7: Important methods of the XmlNode class.

Method Description

AppendChild, PrependChild Adds a node to the end or beginning of the list
of children for this node

Clone Clones this node and all its children

CloneNode Clones this node, choosing whether to include
children

CreateNavigator Creates an XPathNavigator to work with this
node and its children

GetEnumerator Gets an enumerator for a collection of nodes

InsertBefore, InsertAfter Inserts a node before or after another node

Normalize Normalizes the node by structuring the node
and its children so that there are no adjacent
text nodes

RemoveChild, RemoveAll Removes one or all child nodes

ReplaceChild Replaces one child node by another

SelectNodes, SelectSingleNode Selects one or more nodes using an XPath
expression

Supports Tests whether the DOM implementation
supports a feature

WriteContentTo Writes the node content to an XmlWriter

Notice how many of these methods can be used to set up and modify hierarchies of nodes.

XmlElement

As mentioned previously, all the node types derive from XmlNode , but there is one that I’ll
explain in more detail because it is the one that you’ll use most often: XmlElement, which
represents an element within a DOM tree.

XmlElement differs from XmlNode in that it contains several new methods, including a
number for getting, setting, and removing attributes, as shown in Table 5.8.

Table 5.8: Methods that XmlElement adds to those it inherits from XmlNode.

Method Description

GetAttribute Gets the value of a named attribute

GetAttributeNode Gets an XmlAttribute object representing
a named attribute

GetElementsByTagName Gets a list of child elements matching a
particular name

HasAttribute Checks whether an element has an
attribute

Table 5.8: Methods that XmlElement adds to those it inherits from XmlNode.

Method Description

RemoveAttribute Removes a named attribute from the
element

RemoveAllAttributes Removes all attributes from the element

RemoveAttributeAt Removes an attribute by index

RemoveAttributeNode Removes an attribute by reference to an
XmlAttribute object

SetAttribute Sets the value of a named attribute

SetAttributeNode Sets the value of an attribute using an
XmlAttribute object

XmlDocument Members

The XmlDocument class has a number of useful properties and methods, as summarized in
Tables 5.9 and 5.10.

Table 5.9: Important prope rties of the XmlDocument class.

Property Description

DocumentElement Returns the document element for this tree

DocumentType Returns the DOCTYPE information for this
document

IsReadOnly True if the current node is read-only

Name, LocalName Gets the name of the current node with or
without a namespace prefix

NodeType Gets the type of the current node as an
XmlNodeType

OwnerDocument Gets the XmlDocument that contains this
node

PreserveWhiteSpace Determines whether white space is preserved

Table 5.10: Important methods of the XmlDocument class.

Method Description

CloneNode Creates a duplicate of this node

CreateAttribute Creates an XmlAttribute object to
represent an attribute

CreateCDataSection Creates an XmlCDataSection object
representing a CDATA section

CreateComment Creates an XmlComment object
representing a comment

CreateDocumentType Creates an XmlDocumentType object

Table 5.10: Important methods of the XmlDocument class.

Method Description

representing a DOCTYPE declaration

CreateElement Creates an XmlElement

CreateEntityReference Creates an XmlEntityReference object
representing an XML entity reference

CreateNode Creates a node of a specific type

CreateProcessingInstruction Creates an XmlProcessingInstruction
object

CreateTextNode Creates an XmlText object representing
the content of an element

CreateXmlDeclaration Creates an XmlDeclaration node
representing an XmlDeclaration

GetElementByID Gets the XmlElement with the specified
ID

GetElementsByTagName Retrieves a list of elements with a
particular name

ImportNode Imports a node from another document

Load Loads XML from a file, stream or reader

LoadXml Loads XML from a string

Save Saves XML to a file, stream or writer

You can see that a number of methods create the various types of node that can exist within
a DOM tree—processing instructions, comments, elements, and so on. Also a general
CreateNode() element can be used to create any element type, as an alternative to using
the individual methods.

XSL and XPath

Support for XSL and XPath is provided by the System.Xml.Xsl and System.Xml.XPath
namespaces.

The XPath namespace contains the XPath parser and evaluation engine, although the most
useful member of the namespace is the XPathNavigator class (described in the next
section), which provides a useful way to navigate through documents.

XSL transformations are provided by the System.Xml.Xsl.XslTransform class, a simple
class that has only two methods: Load(), which is used to load the XSL stylesheet into the
processor object, and Transform(), which is used to perform the transformation.

Documents are processed as follows:
1. Create an XslTransform object.
2. Use the Load() method to load the stylesheet into the object.
3. Load the XML data into an XmlDocument, and wrap this in an XmlNavigator.
4. Use the Transform() method to transform the XML.

XPathNavigator

System.Xml.XPath.XPathNavigator provides a way to read data from a data store using a
cursor model.

Note

Using a cursor means reading one item at a time from a table or document.
You don’t see the entire dataset, but only the one currently under the cursor.

Datasets can be XML documents, or ADO DataSet objects. The “move” methods of the
navigator give you random, read-only access to data, and the properties of the navigator
reflect the properties of the current node in the dataset.

Table 5.11: Important properties of the XPathNavigator class.

Property Description

HasAttributes True if the current node has attributes

HasChildren True if the current node has child nodes

IsEmptyElement True if this node has no content

LocalName Returns the name of the current node with no
namespace prefix

Name Returns the full name of the current node

NodeType Gets the type of the current node.

Value Gets or sets the value associated with the current
node

Node types are specified in the XPathNodeType enumeration. For an XmlDocument, you
will commonly encounter the node types listed in Table 5.12.

Table 5.12: Common node types defined in the XPathNodeType enumeration.

Node Type Description

Attribute An XML attribute, e.g., name=“fred”.

Comment An XML comment.

Element An element node.

Namespace A namespace node.

ProcessingInstruction An XML Processing Instruction.

Root The root of the node tree.

Text The text content of an element. A Text node
cannot have children.

The XmlNavigator class has nearly 30 methods, giving you a rich set of options for
traversing a document. Table 5.13 summarizes the most important of these methods, and
the Immediate Solutions section provides examples showing how to use them.

Table 5.13: Important methods of the XPathNavigator class.

Method Description

Table 5.13: Important methods of the XPathNavigator class.

Method Description

Clone Returns a new XPathNavigator pointing to the
same node

ComparePosition Compares the position of the current navigator
with that of a second one

Compile Compiles an XPath expression for future use

Evaluate Evaluates an XPath expression and returns
the int, Boolean, or String value

GetAttribute Gets the value of the specified attribute on the
current node

IsDescendant True if the current navigator is a descendant of
another

IsSamePosition Compares the positions of two navigators

Matches Determines whether the current node matches
a given XPath expression

MoveTo Moves to the same position as another
navigator

MoveToAttribute Moves to a particular attribute on the current
node

MoveToFirst, MoveToNext,
MoveToPrevious

Moves to the first, next, or previous sibling of
the current node

MoveToFirstChild Moves to the first child of the current node

MoveToId Moves to the node with the given ID attribute

MoveToParent Moves to the parent of this node

MoveToRoot Moves to the root node

Select Selects a new set of nodes using an XPath
expression

SelectAncestors Selects all ancestor nodes

SelectChildren Selects all child nodes

SelectDescendants Selects all descendant nodes

The following solutions assume a basic knowledge of XML. If you haven’t encountered XML
previously, I recommend that you read the basic principles before continuing.

Which XML Class Should I Be Using?

There are a number of XML classes that you can use, depending on the tasks you need to
perform:
§ If you need simple, forward-only parsing of XML documents, use XmlTextReader.
§ If you need simple, line-by-line writing of XML documents, use XmlTextWriter.

§ If you want more complex parsing, consider using XPathNavigator.
§ If you want to build or modify XML documents in memory, use XmlDocument.
§ If you want to transform XML, use XslTransform.

Parsing an XML Document Using XmlTextReader

The XmlTextReader class provides a simple, forward-only way of parsing XML documents
that is memory efficient and fast. It is similar in concept to the SAX model, but differs from it
in that SAX uses a “push” model, whereas XmlTextReader uses a “pull” model. In practice,
this means that when using an XmlTextReader, you access and get the next node when
you are ready, whereas with SAX parsing, the parsing calls your code when it finds a node.
Therefore, when using an XmlTextReader, you are more in control of what you read and
when.

Let’s start with a sample XML document, which I’ll use throughout the Immediate Solutions:

<?xml version="1.0" encoding="utf-8" ?>

<dotnet_books>
 <book isbn="1861004877" topic="C#">

 <title>C# Programming with the Public Beta</title>
 <publisher>Wrox Press</publisher>

 <author>Burton Harvey</author>
 <author>Simon Robinson</author>

 <author>Julian Templeman</author>
 <author>Simon Watson</author>

 <price>34.99</price>
 </book>

 <book isbn="1861004915" topic="VB">

 <title>VB .NET Programming with the Public Beta</title>
 <publisher>Wrox Press</publisher>

 <author>Billy Hollis</author>
 <author>Rockford Lhotka</author>

 <price>34.99</price>
 </book>

 <book isbn="1893115860" topic="C#">

 <title>A Programmers' Introduction to C#</title>
 <publisher>APress</publisher>

 <author>Eric Gunnerson</author>
 <price>34.95</price>

 </book>

 <book isbn="073561377X" topic=".NET">

 <title>Introducing Microsoft .NET</title>
 <publisher>Microsoft Press</publisher>

 <author>David Platt</author>
 <price>29.99</price>

 </book>
</dotnet_books>

Creating a Reader

To parse the preceding document using an XmlTextReader, you first need to create a
reader object, as shown in the following code:

' You need to import System.Xml to get access to classes

Imports System.Xml

Module Module1

 Sub Main()
 Dim xtr As XmlTextReader

 Try

 ' Construct a reader to read the file. You'll need to edit
 ' the file name to point to a suitable data source

 xtr = New XmlTextReader("\XmlFile1.xml")
 Catch e As Exception

 Console.WriteLine("Error creating reader: " + e.ToString)
 End Try

End Sub

End Module

Visual Studio .NET imports many of the namespaces you need for a large number of
applications, but if you want to use System.Xml, you’ll have to import the namespace
manually.

Although this code reads the XML document from a file, the XmlTextReader class has a
number of other constructors that allow you to read data from other sources, such as:
§ From a TextReader object
§ From a Stream object
§ From a URL

Reading Elements

Once the reader has been created to access the data source, you can then parse the XML.
The following simple function parses the document and prints out the names of all the
elements it finds:

Public Sub readXml(ByRef xr As XmlTextReader)
 ' Read() reads the next node in the stream, and will fail when the

 ' end is reached
 While xr.Read()

 ' If it is an element, print its name
 If xr.NodeType = XmlNodeType.Element Then

 Console.WriteLine("Element: " + xr.Name)
 End If

 End While
End Sub

The preceding function can be called from the Main() routine by passing a reference to the
XmlTextReader object:

Try

 ' Construct a reader to read the file. You'll need to edit
 ' the file name to point to a suitable data source

 xtr = New XmlTextReader("\XmlFile1.xml")

 ' Parse the file
 readXml(xtr)

Catch e As Exception
 Console.WriteLine("Error creating reader: " + e.ToString)

End Try

Let’s look at the readXml() function in more detail. The XmlTextReader “pull” model means
that it is up to you to request the next node to be read from the file, which you do by calling
the Read() function. Note that you do not get a reference returned to a node: the
XmlTextReader object reads one node at a time, and the properties of the reader object
reflect those of the current node. So to find out the type of the current node, you use the
NodeType property and check it against the members of the XmlNodeType enumeration:

 If xr.NodeType = XmlNodeType.Element Then …

XmlNodeType.Element denotes an XML element, and you can access the name of the
element through the Name property. If the element in the XML document is <book>, the
Name property returns “book” without the angle brackets. Thus, if you run the program on an
XML document, you would expect to see output similar to the following:

Element: dotnet_books

Element: book
Element: title

…

Note that this code only matches the start tag for an element. If you want to keep track of
where you are in the document, you need to recognize the end tags as well. The following
code shows how the readXml() function can be modified to print the start and end tags with
indentation:

Public Sub readXml(ByRef xr As XmlTextReader)

 Dim level As Integer
 Dim istr As String

 level = 0

 ' Read() reads the next node in the stream, and will fail when the
 ' end is reached

 While xr.Read()
 ' If it is an element, print its name

 If xr.NodeType = XmlNodeType.Element Then
 istr = indent(level)

 Console.WriteLine(istr + "<" + xr.Name + ">")
 level = level + 1

 ElseIf xr.NodeType = XmlNodeType.EndElement Then
 level = level - 1

 istr = indent(level)
 Console.WriteLine(istr + "</" + xr.Name + ">")

 End If
 End While

End Sub

' Function to return a string representing the indentation level
Private Function indent(ByVal i As Integer) As String

 Dim s As String

 If i = 0 Then
 Return ""

 End If

 Dim n As Integer
 For n = 0 To i - 1

 s = s + " "
 Next

 Return s
End Function

You can see how the code now writes angle brackets around the node name and correctly
labels the end tag. An integer variable maintains the current indent level, and the indent()
function builds a string of blanks, which are used for indentation.

Working with Attributes

You can modify the part of readXml() that handles elements to read attributes like this:

While xr.Read()

 ' If it is an element, print its name
 If xr.NodeType = XmlNodeType.Element Then

 istr = indent(level)
 Console.WriteLine(istr + "<" + xr.Name + ">")

 level = level + 1

 ' Handle attributes
 If xr.AttributeCount > 0 Then

 Console.Write(istr)
 While xr.MoveToNextAttribute()

 Console.Write(" " + xr.Name + "=" + xr.Value)
 End While

 Console.WriteLine()
 End If

 ElseIf xr.NodeType = XmlNodeType.EndElement Then
 level = level - 1

 istr = indent(level)
 Console.WriteLine(istr + "</" + xr.Name + ">")

 End If
End While

The AttributeCount property tells you how many attributes the current element has. You
can also use MoveToNextAttribute() to iterate over the collection of attributes, printing out
the name and the value. Note that what is returned from Name and Value depends on the
type of item the XmlTextReader is currently looking at.

Handling Namespaces

XmlTextReader can work with XML documents that use namespaces. If you are not sure
what an XML namespace is, refer to the “Namespaces” section at the beginning of this
chapter.

A namespace can be declared by attaching a namespace attribute to an element, like this:

<!— Add namespace 'jt' —>
<jt:root xmlns:jt="http://www.foo.com">

The namespace is in scope within the element in which it is declared and can be attached to
any element within that scope using the appropriate prefix (in this case, “jt:”) before the
element name. The name of an element is composed of a prefix and a LocalName, so that
you can work with the whole name, or just the prefix or local name parts.

XmlTextReader uses the NamespaceURI property to return the URI of the current
namespace. It will be an empty string if no namespace is in scope. The following code
fragment shows how this can be used in code:

If xr.NamespaceURI.Length > 0 Then
 Console.WriteLine(istr + " namespace=" + xr.NamespaceURI)

 Console.WriteLine(istr + " name=" + xr.Name _
 + ", localname=" + xr.LocalName _

 + ", prefix=" + xr.Prefix)
End If

If you run this code against the sample <jt:root> element, you would see the following
output:

namespace=http://www.foo.com
name=jt:root, localname=root, prefix=jt

Parsing a Document with Validation

XmlTextReader doesn’t perform validation on XML as it reads it, and if you want to do
validation you’ll need to use the XmlValidatingReader class instead. The type of validation
the parser performs depends on the setting of the ValidationType property, which can take
one of the values from the ValidationType enumeration, as shown in Table 5.14.

Table 5.14: Members of the ValidationType enumeration.

Member Description

Auto The reader validates according to the validation
information found in the document.

DTD The reader validates using a DTD.

None The reader does no validation.

Schema The reader validates using a W3C standard schema.

XDR The reader validates using a Microsoft XDR Schema.

The parser fires an event if it finds a validation error in the document as it is parsing. Note
that the parser only stops if it encounters badly formed XML; it will not stop for well-formed
XML that violates the rules of a DTD or schema.

In order to handle validation events, define an event-handler function similar to the following:

Public Sub ValHandler(ByVal sender As Object, _
 ByVal args As ValidationEventArgs)

 Console.WriteLine("Validation error: " + args.Message)
End Sub

Note

If you are not familiar with how events work in .NET, consult Chapter 2.

As with all event handlers, the function has two arguments, the first of which is a reference to
the object that raised the event, and the second holds information about the error. In this
example, you don’t need to bother with the first argument because there is only one possible
event source, and that is the parser. The ValidationEventArgs class has two properties—
ErrorCode and Message—and I use the latter to display the error message.

Note

You’ll need to import the System.Xml.Schema namespace to get access to
ValidationEventArgs.

Before a handler can be called, it has to be registered with the event source, so I need to
add a call to AddHandler before I start parsing:

Try
 ' Construct a reader to read the file

 Dim xtr As XmlTextReader
 xtr = New XmlTextReader("\XmlFile2.xml")

 ' Create a validating reader to read from the TextReader
 Dim xvr As New XmlValidatingReader(xtr)

 ' Tell the parser to validate against a DTD

 xtr.Validation = Validation.DTD
 ' Register the event handler with the parser

 AddHandler xtr.ValidationEventHandler, AddressOf ValHandler

 ' If all is OK, read the file
 readXml(xtr)

Catch e As Exception
 Console.WriteLine("Error creating reader: " + e.ToString)

End Try

The validating reader validates the input as it is read by an XmlReader object, so I first
create an XmlTextReader and wrap it in an XmlValidatingReader. Before parsing, I set the
validation type I want to use—in this case, an inline DTD—and set up the event handler.

To test this out, I created a simple XML file containing an inline DTD, shown in the shaded
lines:

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE invoice [
<!ELEMENT invoice (customer, address)>

<!ELEMENT customer (#PCDATA)>
<!ELEMENT address (street, town)>

<!ELEMENT street (#PCDATA)>
<!ELEMENT town (#PCDATA)>

]>
<invoice>

 <customer>Acme, Inc</customer>
 <address>

 <street>2001, Acme Boulevard</street>
 <town>Anytown</town>

 </address>
</invoice>

The data that follows the DTD is correct, so it parses without error. If I change the data so
that the <town> element is outside <address> , the data is no longer valid because the DTD
states that <address> must consist of <street> and <town>:

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE invoice [

<!ELEMENT invoice (customer, address)>
<!ELEMENT customer (#PCDATA)>

<!ELEMENT address (street, town)>
<!ELEMENT street (#PCDATA)>

<!ELEMENT town (#PCDATA)>
]>

<invoice>
 <customer>Acme, Inc</customer>

 <address>
 <street>2001, Acme Boulevard</street>

 </address>
 <town>Anytown</town>

</invoice>

When I run the program again, I see the following output, including two validation errors:

<invoice>

 <customer>
 </customer>

<address>
 <street>

 </street>
Validation error: Element 'address' has incomplete

 content. Expected
 'town'. An error occurred at file:///c:/dev/XmlFile2.xml(13,5)

 </address>
Validation error: Element 'invoice' has invalid content. Expected

 ''. An error occurred at file:///c:/dev/XmlFile2.xml(14,6)
 <town>

 </town>
</invoice>

These errors tell me that the content of <address> is incomplete (because <town> is
missing), and that it doesn’t expect to see <town> as part of <invoice>.

Related solution: Found on page:

Creating and Using
Events

78

Writing an XML Document Using XmlTextWriter

The XmlTextWriter class provides you with a toolkit for writing XML in its serialized form,
complete with angle brackets, processing instructions, and all the other elements you see in
XML documents. This class lets you concentrate on the logical structure of your XML, and
frees you from having to worry about the formatting.

Here’s a simple program showing how XmlTextWriter can be used to construct a simple
XML document:

' Import the namespace so we can use all the XML stuff.

Imports System.Xml

Module Module1

 Sub Main()
 ' Create an XML writer to write to foo.xml, and use

 ' the default UTF-8 encoding
 Dim xtw As New XmlTextWriter("\foo.xml", _

 Nothing)

 ' Choose indented formatting (as opposed to none)
 xtw.Formatting = Formatting.Indented

 ' Write the XML declaration for a standalone document

 xtw.WriteStartDocument(True)

 xtw.WriteStartElement("books")
 WriteBook(xtw)

 xtw.WriteEndElement() ' matches WriteStartElement

 xtw.Flush()
 xtw.Close()

 End Sub

 Public Sub WriteBook(ByRef xw As XmlTextWriter)

 xw.WriteStartElement("book")
 xw.WriteAttributeString("ISBN", "1-123-123456")

 xw.WriteStartElement("title")
 xw.WriteString("Moby Dick")

 xw.WriteEndElement()
 xw.WriteEndElement()

 End Sub

End Module

Here’s the output that the program produces:

<?xml version="1.0" standalone="yes"?>

<books>
 <book ISBN="1-123-123456">

 <title>Moby Dick</title>
 </book>

</books>

XmlTextWriter isn’t a very complex class, and this example shows all the essentials you
need to know in order to use it. You first need to import the System.Xml namespace, so that
the compiler can find the XmlTextWriter class.

An XmlTextWriter object can be constructed to output to one of three types of destinations.
In this case, I’m specifying a file name, but you can also output to a TextWriter or a Stream.

Note

See Chapter 6 for details on TextWriter, Stream, and other classes in the
System.IO namespace.

As well as a file name, you need to specify a character encoding. Character encodings are
ways of representing character sets, and there are several to choose from. If you have no
reason to choose a particular encoding, put a null reference in this field, and you’ll get the
UTF-8 (UCS Transformation Format, 8-bit) encoding that XML uses by default.

Note

Encodings are part of the System.Text namespace, which is discussed in
Chapter 12.

The Formatting property of the XmlTextWriter has been set to Indented in order to
produce XML output in typical indented form. The default indentation is two spaces, but you
can use the Indentation property to set another value. You can even use the IndentChar
property to choose a character other than a space to use for indentation.

The WriteStartElement() method writes a standard XML declaration as the first line of the
file. Because all XML documents have to start with an XML declaration, this will usually be
the first call you make when writing out an XML document.

You then need to write the start of the <books> element in, so put in a call to
WriteStartElement() to put in the opening tag, passing the element name as the parameter.
Because you are writing the XML document line by line, you have to remember to put in a
call to WriteEndElement() in order to write the closing tag. The XmlTextWriter object can
figure out which element to close, but you have to remember to make the call, as follows:

xtw.WriteStartElement("books")

' put content in here
xtw.WriteEndElement() ' matches WriteStartElement

As an alternative to doing it this way, you can use the XmlDocument class to build a tree in
memory representing an XML document, and then have the tree written out to disk, which
takes care of all the formatting for you. See the Immediate Solution “Creating and Using
DOM Trees Using XmlDocument” for more details.

I’ve used a function to write the <book> element within <books> , which takes the
XmlTextWriter as its only argument. The <book> element is written in exactly the same
way. This time I’ve added an attribute via a call to WriteAttributeString() and have provided
some text content for the element using WriteString(). Note that attributes in XML are
always strings.

Element content is always written out as a string, so if you want to use other data types you’ll
have to do the conversion to a string yourself. As an example, here’s how you can write out
a date that’s been stored in a System.DateTime object:

' Set a DateTime to today's date
Dim dt As DateTime = DateTime.today

xtw.WriteStartElement("date")

xtw.WriteString(dt.ToShortDateString())
xtw.WriteEndElement() ' matches WriteStartElement

The code produces XML output similar to this:

<date>06/07/2001</date>

One final note about the sample program is that you need to call Flush() and Close() in
order to make sure that the XML is correctly written out to the file. If you don’t do this, you
may well find that some or all of the data is missing from the output file.

Adding Processing Instructions and Comments

The XmlTextWriter class contains methods that let you easily write processing instructions
and comments into the output stream, as shown in the following code fragment:

xtw.WriteStartDocument(True)
xtw.WriteProcessingInstruction("proc", "an instruction")

xtw.WriteStartElement("books")
xtw.WriteComment("The book collection")

WriteBook(xtw)
xtw.WriteEndElement()

The result is as follows:

<?xml version="1.0" standalone="yes"?>

<?proc an instruction?>
<books>

 <!—The book collection—>
 <book ISBN="1-123-123456" Value="3.55">

 <title>Moby Dick</title>
 <date>2001-05-22</date>

 </book>
</books>

Handling Namespaces

You can include namespace information when you write an element start tag using
WriteStartElement(). The following code fragment shows how to define a namespace for an
element:

xw.WriteStartElement("jt", "book", "http://www.thingy.com")

This line of code associates the namespace prefix “jt” with the URI “http://www.thingy.com”
and results in the following start tag being output:

<jt:book xmlns:jt="http://www.thingy.com">

You can see how the method has added the prefix to the element name and declared the
namespace URI. Although the XmlTextWriter object automatically puts the prefix onto the
closing tag when you write it, you need to include the namespace information on any nested
elements; otherwise, they won’t be correctly prefixed. For example, if you want to write the
<book> element that declares the “jt” namespace prefix, and then nest <title> inside it, you’ll
have to code it like this:

xw.WriteStartElement("jt", "book", "http://www.thingy.com")

xw.WriteStartElement("jt", "title", "http://www.thingy.com")
…

xw.WriteEndElement() ' for book
xw.WriteEndElement() ' for title

Here’s the result:

<jt:book xmlns:jt="http://www.thingy.com">
 <jt:title>

 …
</jt:title>

</jt:book>

Note how the namespace isn’t added to the tag if it is already in scope, although you have to
declare it in every call to WriteStartElement().

Using XPathNavigator

The XPathNavigator class provides you with another way of reading XML documents. It is
similar to the XmlTextReader class in that it uses a cursor model, so that an
XPathNavigator object is always pointing to one node in a tree, and you read the properties
of the current node. Essentially, XPathNavigator gives you another way of interacting with a
DOM tree, which frees you from many of the housekeeping details.

Creating a Navigator

XPathNavigator is an abstract class, so you don’t create XPathNavigator objects directly.
Instead, the XPathDocument, XmlDataDocument, and XmlDocument classes provide
methods to create navigator objects for you.

Here’s how you can set up an XPathNavigator to work with an XmlDocument, using the
same .NET books file that I introduced in the “Which XML Class Should I Be Using?”
solution:

' Need to import System.Xml and System.Xml.XPath
Imports System.Xml

Imports System.Xml.XPath

Module Module1

 Sub Main()
 Try

 ' First create a document
 Dim doc As New XmlDocument()

 doc.Load("\XMLFile1.xml")

 ' Now create a navigator to work with it
 Dim nav As XPathNavigator = doc.CreateNavigator()

 Catch e As XmlException
 Console.WriteLine("Exception: " + e.ToString())

 End Try
 End Sub

End Module

The code creates an XmlDocument, loads it with an XML document from a file, and then
creates an XPathNavigator to work with it. If anything goes wrong in the parsing process,
an XmlException will get thrown, so it is a good idea to be prepared to catch them.

Moving around the Tree

Using an XPathNavigator is rather different from using an XmlTextReader because you
aren’t limited to reading forward through the tree. In fact, the XmlNavigator uses an
XmlDocument to hold its data, so that you are free to traverse the tree as you wish. This
means that you need to point the navigator at a node before you can start using it: A good
place to start is with the document element at the top of the tree, which you can access as
shown in the following code:

nav.MoveToRoot()

Console.WriteLine("name=" + nav.Name + ", type=" _
 + nav.NodeType.ToString() _

 + ", value=" + nav.Value)

The MoveToRoot() element method tells the navigator to position itself at the root element
of the tree. You can access the name of the node using the Name property, the type of the
node using the NodeName property, and the value of the node using Value . In the case of
the node at the very top of the document, there is no name and the type is Root. The value
of a node depends on what type of node it is, and for an element, it is the value of the
element and all other child elements, so the value of the root is the concatenated text of all
the nodes beneath it.

MoveToRoot() moves you to the very top of the tree, so you have to go down one level to
get to the root element, like this:

nav.MoveToRoot()
Console.WriteLine("root name=" + nav.Name + ", type=" _

 + nav.NodeType.ToString() + ", value=" + nav.Value)

nav.MoveToFirstChild()
Console.WriteLine("first child: name=" + nav.Name + ", _

 type=" + nav.NodeType.ToString())

Run this code, and you’ll find that the first child is <dotnet_books> .

If you want to print out the details of all four children of <dotnet_books> , here’s how you
would do it:

' Move to the root

nav.MoveToRoot()
Console.WriteLine("root name=" + nav.Name + ", type=" _

 + nav.NodeType.ToString() + ", value=" + nav.Value)

' Move to <dotnet_books>
nav.MoveToFirstChild()

Console.WriteLine("dotnet_books: name=" + nav.Name + ", _

 type=" + nav.NodeType.ToString())

' Move to first book
nav.MoveToFirstChild()

Console.WriteLine("book: name=" + nav.Name + ", type=" _
 + nav.NodeType.ToString())

' Iterate over the remaining book elements

While nav.MoveToNext()
 Console.WriteLine("next: name=" + nav.Name + ", type=" _

 + nav.NodeType.ToString())
End While

The first MoveToFirstChild() moves to the first child element, which is the root
<dotnet_books> . The second MoveToFirstChild() moves to the first child of
<dotnet_books> , which is the first book. After printing out the details of the first book
element, MoveToNext() moves to the next sibling element, and the While loop prints details
of sibling elements until there are no more, when MoveToNext() returns false.

You have seen three Move…() methods in use in this section, and there are a number of
others that can be used in the same way, such as:
§ MoveToFirst(), which moves to the first sibling of the current node
§ MoveToPrevious(), which moves to the previous sibling of the current node
§ MoveToParent(), which moves to the parent of the current node

The Clone() method can be used to create another independent XPathNavigator working
with the same document, and it will be set to point to the same position in the tree.

If you have two navigators open on the same document, IsSamePosition() returns true of
they are positioned at the same place, and MoveTo() moves the first one to the same
position as the second.

Navigating over Attributes

Attributes are held as nodes in the tree in the same way as elements, processing
instructions and the other parts of an XML document.

Once you are positioned on an element, the HasAttributes property tells you whether there
are any attributes. You can then use MoveToFirstAttribute() to position yourself at the first
attribute, or MoveToAttribute() to move to a particular attribute by name. The following code
shows how I iterate over the immediate children of <dotnet_books> and print out their
attributes:

' Move to the root

nav.MoveToRoot()

Console.WriteLine("root name=" + nav.Name + ", type=" _
 + nav.NodeType.ToString() + ", value=" + nav.Value)

' move to <dotnet_books>
nav.MoveToFirstChild()

Console.WriteLine("dotnet_books: name=" + nav.Name + _
 ", type=" + nav.NodeType.ToString())

' move to first book

nav.MoveToFirstChild()
Do

 Console.WriteLine("next: name=" + nav.Name + ", type=" _
 + nav.NodeType.ToString())

 ' do attributes
 If nav.MoveToFirstAttribute() Then

 ' there is at least one
 Console.WriteLine(" att: " + nav.Name + "=" + nav.Value)

 While nav.MoveToNextAttribute()
 Console.WriteLine(" att: " + nav.Name + "=" + nav.Value)

 End While
 End If

 ' go back from the attributes to the parent element
 nav.MoveToParent()

Loop While nav.MoveToNext()

After moving to the first book, I use a Do loop to print out the details of each book. The
While clause at the end of the loop moves to the next book, and will terminate the loop when
there are no more to process. Within the loop I use MoveToFirstAttribute() to start looking
at the attributes, and MoveToNextAttribute() to iterate over the attribute list. Note the call to
MoveToParent() at the bottom of the loop: Attributes are children of an element, so before I
can process the next element, I have to move up a level to get back to the parent:

name=book, type=Element

 att: isbn=1861004877
 att: topic=C#

name=book, type=Element
 att: isbn=1861004915

 att: topic=VB
name=book, type=Element

 att: isbn=1893115860
 att: topic=C#

name=book, type=Element
 att: isbn=073561377X

 att: topic=.NET

Creating and Using DOM Trees Using XmlDocument

The XmlDocument class implements the W3C DOM model for working with XML
documents in memory. In this Immediate Solution section, I’ll use the same
<dotnet_books> document that was featured in the “Parsing an XML Document Using
XmlTextReader” solution: Take a look at that section to see a listing of the file.

Loading an Existing XML Document

The XmlDocument class will parse XML from several types of input sources:
§ From strings, using LoadXml()
§ From URLs, using Load()
§ From streams, using Load()
§ From TextReaders, using Load()
§ From XmlReaders, using Load()

The following code shows how to load an XML document from a file into an XmlDocument
object:

' Import System.Xml to get access to the XML classes
Imports System.Xml

Module Module1

 Sub Main()

 ' Create a new XmlDocument object
 Dim xd As New XmlDocument()

 Try

 ' Load a document from a file
 xd.Load("\XmlFile1.xml")

 Console.WriteLine("Document loaded OK")

 Catch e As XmlException
 Console.WriteLine("Exception caught: " + e.ToString)

 End Try
 End Sub

End Module

Before using XmlDocument, you need to import the System.Xml namespace. The Load()
method causes the XmlDocument object to parse the file and build the tree. If the method
encounters any problems during parsing, it will throw an XmlException, so it is wise to be
prepared to catch these. If you get past the Load() call without getting an exception, then the
XML was well-formed and has been parsed.

If you want to load XML from a string instead, use the LoadXml() method:

Dim myXml As String = _

 "<?xml version='1.0'?><root><a>bbb</root>"
xd.LoadXml(myXml)

In this code fragment, the myXml variable holds an entire XML document in a string, which
is passed to the XmlDocument object for parsing by calling LoadXml().

Navigation

The root of a DOM tree is called the document element, and you can obtain a reference to
this node using the DocumentElement property. The following code shows how you acquire
the document element once you’ve parsed the file:

' Now we've parsed the file, get the Document Element
Dim doc As XmlNode = xd.DocumentElement

The document element is of type XmlNode , as is everything in a DOM tree. If you receive a
node reference and you want to find out what kind of node it is, the NodeType property will
return one of the members of the XmlNodeType enumeration.

Once you have a node, the properties and methods of XmlNode enable you to find out
information about the current node and navigate through the tree.

Working with Child Nodes

Because the nodes in an XML document are arranged in a tree, you need to process child
nodes in order to move from level to level. The following code shows how to read all the
nodes in a DOM tree and print it out in XML format:

' Import System.Xml and add a project reference to it

Imports System.Xml

Module Module1

 Sub Main()
 Dim xd As New XmlDocument()

 Try
 ' Create a new XmlDocument object

 xd.Load("\XmlFile1.xml")
 Catch e As XmlException

 Console.WriteLine("Exception caught: " + e.ToString)
 End Try

 ' Now we've parsed the file, get the Document Element

 Dim doc As XmlNode = xd.DocumentElement

 ' Process any child nodes
 If doc.HasChildNodes Then

 processChildren(doc, 0)
 End If

 End Sub

 Private Sub processChildren(ByRef xn As XmlNode, ByVal level As
Integer)
 Dim istr As String

 istr = indent(level)

 Select Case xn.NodeType
 Case XmlNodeType.Comment

 ' output the comment
 Console.WriteLine(istr + "<!—" + xn.Value + "—>")

 Case XmlNodeType.ProcessingInstruction
 ' output the PI

 Console.WriteLine(istr + "<?" + xn.Name + " " + xn.Value + "
?>")
 Case XmlNodeType.Text

 ' output the text
 Console.WriteLine(istr + xn.Value)

 Case XmlNodeType.Element
 ' Get the child node list

 Dim ch As XmlNodeList = xn.ChildNodes
 Dim i As Integer

 ' Write the start tag

 Console.Write(istr + "<" + xn.Name)

 ' Process the attributes
 Dim atts As XmlAttributeCollection = xn.Attributes

 If Not atts Is Nothing Then
 Dim en As IEnumerator = atts.GetEnumerator

 While en.MoveNext = True
 Dim at As XmlNode = CType(en.Current, XmlNode)

 Console.Write(" " + at.Name + "=" + at.Value)
 End While

 End If
 Console.WriteLine(">")

 ' recursively process child nodes

 Dim ie As IEnumerator = ch.GetEnumerator

 While ie.MoveNext = True
 Dim nd As XmlNode = CType(ie.Current, XmlNode)

 processChildren(nd, level + 2)
 End While

 Console.WriteLine(istr + "</" + xn.Name + ">")
 End Select

 End Sub

 ' Function to return a string representing the indentation level
 Private Function indent(ByVal i As Integer) As String

 Dim s As String

 If i = 0 Then
 Return ""

 End If

 Dim n As Integer
 For n = 0 To i - 1

 s = s + " "
 Next

 Return s
 End Function

End Module

In this code, I start in Main() by using the HasChildNodes property to check whether there
is anything to be done. HasChildNodes returns the number of children of the current node
and will obviously return zero if there are none. If there are child nodes, processChildren()
is called. This routine maintains an indentation level so that the output can be printed to look
like properly indented XML. I first call the private indent() function to create a string that can
be prepended to lines to maintain the indentation.

Once that has been done, a Select Case statement is used to match the node type. I am not
checking for every possible node type, but I am processing the most common ones.
Comments and processing instructions have their values printed out enclosed in suitable
tags, whereas text is printed out as is. XML elements are more interesting because they can
have both attributes and child elements of their own. Attributes are represented by a
collection of name/value pairs called an XmlAttributeCollection, whereas child nodes are
represented by a list called an XmlNodeList.

I use the ChildNodes property to get a list of the children as an XmlNodeList, and write the
starting angle bracket < and the node name.

If there are any attributes for this node, I’ll need to put them between the name and the
closing angle bracket, so I get the attributes as an XmlAttributeCollection. If there aren’t
any attributes for this node, a null reference is returned. If there are attributes, the
GetEnumerator property gets an enumerator to walk over the collection, and I can then use

the Name and Value properties on each node to output the attribute. Once all the attributes
have been output, I can write the closing angle bracket for the start tag.

Because all the children are XmlNodes as well, I can process them by making a recursive
call to the processChildren() function, increasing the indent level for each nested call.

When you compile and run the program, you’ll find that the output looks very similar to the
input, differing only on minor points of formatting.

Creating and Modifying Nodes

It is possible to modify the nodes in a DOM tree, or even create a tree from scratch. Doing
either of these tasks involves creating elements of the appropriate type and inserting them
into the DOM tree. The following program shows how this can be done:

'Import the System.Xml namespace
Imports System.Xml

Module Module1

 Sub Main()

 Dim xd As New XmlDocument()

 ' Create an XML declaration and add it to the document
 Dim decl As XmlDeclaration = xd.CreateXmlDeclaration("1.0", "",
"")
 xd.AppendChild(decl)

 ' Add a comment
 Dim cmt As XmlComment = xd.CreateComment("A comment")

 xd.InsertAfter(cmt, decl)

 ' Add an element
 Dim el As XmlElement = xd.CreateElement("root")

 xd.InsertAfter(el, cmt)

 ' Set an attribute using an XmlAttribute

 Dim att1 As XmlAttribute = xd.CreateAttribute("foo")
 att1.Value = "bar"

 el.SetAttributeNode(att1)

 ' Set a second attribute directly into the element
 el.SetAttribute("one", "two")

 ' Add some children

 Dim ch1 As XmlElement = xd.CreateElement("child1")
 Dim ch2 As XmlElement = xd.CreateElement("child2")

 el.AppendChild(ch1)
 el.AppendChild(ch2)

 ' Add some text

 Dim tx1 As XmlText = xd.CreateTextNode("content")
 ch1.AppendChild(tx1)

 ' Write the tree out…

 Dim writer As XmlTextWriter = New XmlTextWriter(Console.Out)
 writer.Formatting = Formatting.Indented

 xd.WriteTo(writer)
 writer.Flush()

 Console.WriteLine()
 End Sub

End Module

As with all the solutions in this chapter, the first task is to import the System.Xml
namespace. Next, create a new XmlDocument object, which at this point is completely
blank.

The first line in an XML file has to be an XML declaration, so I create an XmlDeclaration
object. This has three parameters, one for the version, one for encoding, and one for
standalone attributes: The first has to be “1.0” because it is the only version of XML currently
supported. I’ve left the other two parameters blank because I don’t require those attributes in
this example. Once the object has been created, I add it as a child of the document.
Remember that XmlDocument inherits from XmlNode , so all the operations you can
perform on a node can be performed on a document.

In the next few lines, I create a comment and add it after the XML declaration. I then insert
an element called <root> after the comment. Note that I’m using InsertAfter() because I
want to add these elements on the same level as each other.

There are two ways to add attributes to an element. You can either create an XmlAttribute
object, set its value, and then add it to the element, or you can use the SetAttributeNode()
function to add the attribute information directly to an element. You can see examples of
both approaches in use in the code sample.

Child elements can be linked into the tree by creating elements of the appropriate type and
then using AppendChild() to add them as children of a node. In the example, I add two child
nodes, and then add a text node to one of the children to add some content.

Note

AppendChild() adds a node to the end of the list of children for a node. You
can also use PrependChild() to add a node to the start of the list of
children.

Finally, I write the DOM tree out to the console, so that I can see what has been built. A
simple way to do this is to use the WriteTo() method, which is used to tell a node to pass its
content to an XmlWriter for output. In this example, I create an XmlTextWriter, and then
call WriteTo() on the document, treating the entire tree as a single node. After I’ve called
WriteTo(), I need to call Flush() and Close() on the XmlTextWriter in order to make sure
that all output is flush and appears on the screen. Here’s the output that the program
produces:

<?xml version="1.0"?>

<!—A comment—>
<root foo="bar" one="two">

 <child1>content</child1>
 <child2/>

</root>

The RemoveChild() and ReplaceChild() functions can be used to remove an existing node
from the tree and replace a node by another.

Using XPath

XPath provides you with a “language” for selecting sets of nodes within an XML document,
such as “all the books with more than one author” or “the book with the highest price.” If you
are unfamiliar with XPath, I suggest you consult a good XML book, such as the XML Black
Book, 2nd Edition, by Natanya Pitts (The Coriolis Group, Inc.).

You use the XPathNavigator class to work with XPath in .NET, using the Select() method.
You call Select() with an XPath expression that defines the set of nodes you want to
retrieve, and it returns you a collection of nodes that match the expression.

The following program returns the titles of the books in an XML document (see the solution
“Parsing an XML Document using XmlTextReader” for a listing of the document):

Imports System.Xml
Imports System.Xml.XPath

Module Module1

 Sub Main()

 Try
 Dim doc As New XmlDocument()

 doc.Load("\XMLFile1.xml")

 ' create the navigator
 Dim nav As XPathNavigator = doc.CreateNavigator()

 nav.MoveToRoot()

 Console.WriteLine("At root")

 ' Select all the books
 Dim ni As XPathNodeIterator = nav.Select("//book/title")

 Console.WriteLine("Retrieved " + ni.Count.ToString() + " nodes")

 While ni.MoveNext
 Dim nav2 As XPathNavigator = ni.Current

 nav2.MoveToFirstChild()
 Console.WriteLine("title: " + nav2.Value)

 End While
 Catch e As Exception

 Console.WriteLine(e.ToString())
 End Try

 End Sub
End Module

I first create an XmlDocument, wrap it in an XPathNavigator, and point the navigator at the
root element. The Select() method takes an XPath expression and evaluates it: In this case,
the expression //book/title matches all <title> elements that are children of <book>
elements that occur at any depth in the hierarchy (indicated by the //).

The Select() method returns a reference to an XPathIterator that you use to navigate over
the collection of nodes that match the expression. The Count property tells you how many
elements the collection contains, and in this case the value is 4. XPathIterator supports all
the usual properties and methods you’d expect from an iterator, including MoveNext() and
Current, although you use it in a slightly different way to other iterators. As you can see from
the code, the Current property returns you another XPathNavigator, and this is because
the XML node that you’re referring to at this point—the current node—may well have child
elements, attributes, and other XML structure. So Current returns you an XPathNavigator
to help you navigate the structure of the current element. Note that before you can work with
the title, you have to call MoveToFirstChild().

If you run the program, you’ll see output similar to this:

At root

Retrieved 4 nodes
title: C# Programming with the Public Beta

title: VB .NET Programming with the Public Beta
title: A Programmers' Introduction to C#

title: Introducing Microsoft .NET

Compiling XPath Expressions

The Compile() method lets you take an XPath expression and precompile it, so that it is
more efficient when used in a Select(). The following code is equivalent to the simple
Select() statement in the previous example:

Dim x As XPathExpression

x = nav.Compile("//book/title")
nav.Select(x)

I don’t gain anything by compiling the expression when I’m only using it once, but if I was
going to use the same Select() several times, I could save having to parse the expression
every time.

Some XPath expressions don’t evaluate to a set of nodes, but may return a string, numeric,
or Boolean value. In this case, the Evaluate() method returns an object representing the
result. Here’s how you would count the number of book elements in the <dotnet_books>
document:

' Move back to the root
nav.MoveToRoot()

' Count the number of books…

Dim num_books As Integer
num_books = CType(nav.Evaluate("count(//book)"), Integer)

Console.WriteLine("Number of books is " + num_books.ToString())

The XPath expression “count(//book)” tells the XPath processor to count the number of book
child nodes, and the resulting expression is converted to an Integer and printed out.

Transforming XML Using XslTransform

Using XSL to transform XML isn’t hard at all with .NET because the
System.Xml.Xsl.XslTransform class gives you all the functionality you need with only two
methods. The following example shows how to use an XSL stylesheet with an
XslTransform object:

' Import the System.Xml namespaces
Imports System.Xml

Imports System.Xml.XPath
Imports System.Xml.Xsl

Module Module1

 Sub Main()

 Try
 ' Create the document and the navigator

 Dim doc As New XmlDocument()
 doc.Load("c:\dev\book\ch6-xml\vbxsl\XMLFile1.xml")

 ' create an XPathNavigator

 Dim nav As XPathNavigator = doc.CreateNavigator()

 nav.MoveToRoot()

 ' Create the XSL object
 Dim xt As New XslTransform()

 xt.Load("c:\dev\book\ch6-xml\vbxsl\style.xsl")

 ' Create a writer to write output to the console
 Dim writer As New XmlTextWriter(Console.Out)

 ' Do the transform

 xt.Transform(nav, Nothing, writer)
 Catch e As XmlException

 Console.WriteLine("XML Exception:" + e.ToString())
 Catch e As XsltException

 Console.WriteLine("XSLT Exception:" + e.ToString())
 End Try

 End Sub

End Module

The first step is to make sure that all the correct imports are included. In this program, I need
three namespaces: System.Xml, System.Xml.XPath (for XPathNavigator), and
System.Xml.Xsl.

An XslTransform object needs an XPathNavigator to represent the document, so I create
the XML document object and use it to initialize a navigator, and then use MoveToRoot() to
point the navigator at the root element of the document. Once the XslTransform object has
been created, I call Load() to load the stylesheet: This way I can use the same XSL object to
process many XML files without having to reload the stylesheet every time.

I also need an object to do the output. In this case, I’ve used an XmlTextWriter, which
writes the resulting HTML to the console. Once everything is set up, a call to Transform()
does the transformation, sending the output to the TextWriter. The XmlDocument and
XPathNavigator classes may throw XmlExceptions, and the XslTransform may throw an
XsltException, so it is wise to catch these.

Here’s a sample XSL stylesheet that selects all the book titles from the <dotnet_books>
document and formats them as HTML:

<?xml version="1.0" encoding="utf-8" ?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match="/dotnet_books">
 <html>

 <head><title>DotNet Books</title></head>
 <body>

 <xsl:for-each select="book">

 <xsl:value-of select="title"/>
 </xsl:for-each>

 </body>

 </html>
 </xsl:template>

</xsl:stylesheet>

If you run this program on the <dotnet_books> document, you should see output similar to
the following (note that I’ve inserted new lines to make it readable):

<?xml version="1.0"?>
<html>

<head><title>DotNet Books</title></head>
<body>

 C# Programming with the Public Beta

 VB .NET Programming with the Public Beta
 A Programmers' Introduction to C#

 Introducing Microsoft .NET

</body>
</html>

Chapter 6: The I/O and Networking Namespaces

In Depth

By Julian Templeman

This chapter introduces you to three important .NET namespaces: System.IO, System.Net,
and System.Net.Sockets.

System.IO is the namespace that contains all the classes needed for text and binary I/O as
well as classes to represent files, directories, and streams. System.Net contains all the
classes needed to write networking code including tasks such as working with IP addresses
and URLs, and using sockets. There’s a lot of very advanced material in System.Net, so in
this chapter I’ll provide an overview of what you can do with it and concentrate on using
sockets, which are part of the System.Net.Sockets namespace.

Streams

Streams are objects that you use to perform I/O, such as reading text from a file or writing
binary data to a piece of shared memory. The .NET Framework contains a number of
Stream classes that cover almost any type of I/O you’ll need to do, and in this section I’ll
describe each class, how they relate, and what they can do.

The Stream Class

The abstract Stream class contains a number of properties and operations that are needed
by streams, and they’re listed in Tables 6.1 and 6.2.

Table 6.1: Properties of the Stream class.

Property Description

CanRead True if the current stream supports reading

CanSeek True if the current stream supports seeking

CanWrite True if the current stream supports writing

Length Returns the length of the stream in bytes

Position Returns the current position for streams that support
seeking

Table 6.2: Important methods of the Stream class.

Method Description

BeginRead, EndRead Begins or ends an asynchronous read operation

BeginWrite , EndWrite Begins or ends an asynchronous write operation

Close Closes the stream

Flush Flushes the stream

Read Reads a sequence of bytes from the stream

ReadByte Reads one byte from the stream

Table 6.2: Important methods of the Stream class.

Method Description

Seek Sets the position within the stream

SetLength Sets the length of the stream

Write Writes a sequence of bytes to the stream

WriteByte Writes one byte to the stream

Asynchronous Operations

The Stream class supports asynchronous I/O operations through the BeginRead(),
EndRead(), BeginWrite(), and EndWrite() methods.

As the name implies, asynchronous I/O means that when you issue a read or write request,
the call returns immediately, and .NET does the operation asynchronously so that your code
can continue with other tasks. This is in contrast with the normal synchronous I/O where the
read or write call blocks until the operation is completed.

Seeking

The idea of seeking within a file will be familiar to C programmers, but for those who are
unfamiliar with seeking, I’ll provide a brief explanation. Some streams let you position a seek
pointer that governs where the next read or write operation will occur. The CanSeek
property will be true for these streams, and you can use the Seek() method to set the
position of the pointer. Seek() takes two arguments: a number of bytes representing the
distance to move the seek pointer and a position relative to which the pointer will be moved.
The positions are members of the SeekOrigin enumeration and can be one of the following:
§ SeekOrigin.Begin (the beginning of the file)
§ SeekOrigin.Current (the current position)
§ SeekOrigin.End (the end of the file)

The following examples show you how seeking works:

' Move to 200 bytes from the start of the stream
aStream.Seek(200, SeekOrigin.Begin)

' Move to the end of the stream

aStream.Seek(0, SeekOrigin.End)

' Move 20 bytes back from where we currently are
aStream.Seek(-20, SeekOrigin.Current)

FileStream

FileStream is a direct descendent of Stream. FileStream objects can read from and write to
files, and can handle bytes, characters, strings, and other data types. It is also used to
implement the standard input, standard output, and standard error streams that will be
familiar to programmers in C and other C-type languages.

Note that FileStream isn’t often used on its own as it is a little too low level. Because it only
reads and writes bytes, you have to manually convert the strings, numbers, and objects into
bytes in order to pass them through the FileStream. For this reason, FileStream is usually
wrapped in other classes, such as BinaryWriter or TextReader, which deal in higher level
constructs.

The FileStream class has no fewer than nine constructors, which allow you to construct
FileStreams based upon combinations of:
§ File name
§ File handle, an integer representing the handle of the file
§ Access mode, which is one of the members of the FileMode enumeration
§ Read/write permission, which is one of the members of the FileAccess enumeration
§ Sharing mode, which is one of the members of the FileShare enumeration
§ Buffer size

Tables 6.3, 6.4, and 6.5 explain the access modes, access permissions, and sharing modes.

Table 6.3: File access modes defined in the FileMode enumeration.

Mode Description

Append If the file exists, it is opened and data added to
the end. If the file doesn’t exist, it is created.

Create Specifies that a new file should be created. If one
already exists, it is overwritten.

CreateNew Specifies that a new file should be created. If one
already exists, an IOException is thrown.

Open Opens an existing file. An exception is thrown if
the file doesn’t exist.

OpenOrCreate Opens an existing file or creates a new one if the
file doesn’t exist.

Truncate Opens an existing file and overwrites it from the
start of the data.

Table 6.4: File access permissions de fined in the FileAccess enumeration.

Permission Description

Read Data can be read from the file.

Write Data can be written to the file.

ReadWrite Data can be read and written.

Table 6.5: F i l e- sharing flags defined in the FileShare enumeration.

Flag Description

None This file cannot be opened again by any other process
(including the current one) until it has been explicitly
closed.

Read This file can be opened for subsequent read access.

Write This file can be opened for subsequent write access.

Table 6.5: F i l e- sharing flags defined in the FileShare enumeration.

Flag Description

ReadWrite This file can be opened for subsequent read and write
access.

The following code fragment shows how to create a file that has shared read access:

' Create a FileStream to write to c:\temp\foo.txt
' Create the file if it doesn't already exist, and

' grant shared read access
Dim ds As New FileStream("c:\temp\foo.txt", FileMode.Create, _

 FileAccess.Read)

FileStreams can be created in synchronous or asynchronous mode and the class adds an
IsAsync property to the five it inherits from Stream. It also adds the four methods listed in
Table 6.6.

Table 6.6: Methods that FileStream adds to those it inherits from the Stream class.

Method Description

Finalize Closes the FileStream and any associated disk files
when the object is garbage collected

GetHandle Returns the operating system file handle for the
underlying file

Lock Prevents access by other processes to all or part of the
file

Unlock Removes a previous lock

The GetHandle() method returns an identifier that can be used with native operating system
functions (e.g., ReadFile() in Win32), but you need to use it carefully. If you use the file
handle to make any changes to the underlying file and then try to use the FileStream on the
same file, you risk corrupting the file’s data.

MemoryStream

MemoryStream is also a direct descendent of Stream. It uses memory to store the stream
rather than a file, but its workings are very similar to FileStream. It holds data in memory as
an array or unsigned bytes and can be used to replace the need for temporary files in
applications.

Like FileStream, MemoryStream has a number of constructors. A MemoryStream tends to
expand if you write at the end of the stream, but if you use one of the constructors that maps
the stream onto an existing byte array, you obviously cannot extend it because arrays
cannot be resized.

MemoryStream adds the Capacity property to the ones it inherits from Stream. The
Capacity property tells you how many bytes are currently allocated for a stream. This is
useful when you are using a stream based on a byte array, as Capacity will tell you the size
of the array, whereas Length will tell you how many bytes are being used.

MemoryStream doesn’t implement the asynchronous read/write methods because I/O to
memory doesn’t require that facility. However, it implements three extra methods:
§ GetBuffer()—Returns a reference to the byte array underlying the stream
§ ToArray()—Writes the entire content to a byte array
§ WriteTo()—Writes the content of the stream to another Stream

Other Stream Classes

BufferedStream improves read and write performance by caching data in memory and
reducing the number of calls that need to be made to the operating system. BufferedStream
isn’t used on its own, but instead is wrapped around certain other types of streams, in
particular, the BinaryWriter and BinaryReader classes described as follows.

The BinaryWriter and BinaryReader classes are used to read and write primitive data
types rather than raw bytes. In reality, these classes convert between primitive types and
raw bytes, so they need to work with a basic Stream object—such as FileStream or
MemoryStream—that handles the I/O of the bytes. The BaseStream property of both of
these classes lets you get a reference to the underlying Stream object. Table 6.7 lists the
methods of the BinaryWriter class.

Table 6.7: The methods of the BinaryWriter class.

Method Description

Close Closes the BinaryWriter and releases any resources
associated with it.

Flush Causes any unwritten data that remains in the
BinaryWriter’s buffers to be written.

Seek Moves the seek pointer.

Write Writes a value to the stream. See the following details of
this method.

Write7BitEncodedInt Writes a 32-bit integer in a compressed format.

The Write() method has no fewer than 18 overloads that handle writing .NET basic types,
such as:
§ The integer types (Int16, Int32, Int64, and their unsigned equivalents)
§ Bytes and arrays of bytes
§ Single and double floating-point numbers
§ Char and arrays of Char
§ Strings

The BinaryReader has very nearly the same functionality, but the reading methods are not
overloads of one function. For example, in BinaryWriter, you have Write(Int16) and
Write(Char), whereas in BinaryReader, you have ReadInt16() and ReadChar(). The
reason is clear when you think about it: when writing, the writer object can deduce what it
has to write from the type of the argument to Write(). When reading, faced with a stream of
bytes, the reader does not know how it is supposed to put them together. You need to tell
the reader how to put the stream of bytes together by calling a particular function. See the
Immediate Solutions section for an example of using these classes to perform binary I/O.

And, finally, although it isn’t part of the System.IO namespace, the
System.Net.Sockets.NetworkStream class lets you perform stream-based I/O using
network sockets.

Text I/O Using Readers and Writers

Thus far, I’ve discussed binary I/O, where data is represented as a series of bytes. I’ll now
go on to discuss the classes that are available for character I/O.

TextWriter Classes

TextWriter is an abstract base class that has a number of subclasses:
§ HtmlTextWriter for writing HTML to browser clients
§ HttpWriter for writing text to the HTTP response object in ASP.NET pages
§ IndentedTextWriter for writing text with indentation control
§ StreamWriter for writing characters to a stream
§ StringWriter for writing characters to a string

Note

For C programmers, StreamWriter is analogous to printf() or fprintf(), and
StringWriter is analogous to sprintf().

TextWriter has three properties: Encoding, which returns the character encoding in which
the output is written; FormatProvider, which gets a reference to the object that controls
formatting for the text; and NewLine ,which returns the line terminator string used on the
current platform. This is “\r\n” (carriage return followed by line-feed) by default, but could also
be “\r” or “\n”.

The class has several methods, as shown in Table 6.8. The Write() method has 17
overloads that write .NET types (Char, Boolean, Int32, etc.) to the stream. There is a
matching set of WriteLine() methods that do the same thing, but also append a newline
character.

Table 6.8: The methods of the TextWriter class.

Method Description

Close Closes the TextWriter and releases any resources
associated with it.

Dispose Releases the resources associated with the TextWriter.

Flush Causes any unwritten data that remains in the

TextWriter’s buffers to be written.

Synchronized Creates a thread safe wrapper around the TextWriter
object.

Write Writes data to the stream.

WriteLine Writes data to the stream followed by a newline
sequence.

Note

You may think that the name of the WriteLine() method seems familiar. It is
because the Console class implements a TextWriter for its Out and Error
members, so you’ve been using TextWriter’s Write() and WriteLine()
functions all along.

The shared Synchronized() method provides thread safety for TextWriters by creating a
thread-safe wrapper around a TextWriter, so that two threads trying to use the same
TextWriter won’t interfere with one another.

StreamWriter

StreamWriter is a subclass of TextWriter designed to write characters to a stream using a
particular encoding method. The default encoding is UTF-8, which gives good results for
Unicode characters on localized versions of the operating system. If you want to use another
encoding method, you can use the ASCII and UTF-7 encodings provided in the
System.Text namespace or create your own based on System.Text.Encoding. Details on
creating your own encodings are outside the scope of this book.

When constructing a StreamWriter, you can specify a file name or an existing stream, and
optionally an encoding. The following code fragment shows how to create a StreamWriter to
write to a file:

' Create a FileStream to write bytes to the file

Dim ds As New FileStream("c:\temp\foo.txt", FileMode.Create)

' Create a StreamWriter to do the output, and connect
' it to the FileStream

Dim writer As New StreamWriter(ds)

The FileStream object is created to write to the foo.txt file, and it will create the file if it
doesn’t already exist or overwrite the file if it does. FileStream wants to output bytes, so I
wrap it in an object that is going to take text data and output it as bytes. In other words, the
StreamWriter converts characters to bytes and pipes them to the FileStream.

StreamWriter adds an AutoFlush property to TextWriter, which if true causes the object to
flush its buffer every time it does a Write() operation. This ensures that the output is always
up-to-date, but isn’t as efficient as allowing the StreamWriter to buffer its output. The
BaseStream property provides access to the underlying Stream object.

The StreamWriter class doesn’t add any methods to those it inherits from TextWriter, but it
does overload the Write() methods for writing characters and strings to the stream.

StringWriter

StringWriter is designed to write its output to a string. Because this string is being modified,
the output is written to a StringBuilder rather than a String because Strings are immutable.
It has a set of Write() methods as well as GetStringBuilder() and ToString() methods to
help handle the buffer that is being built.

Note

For C programmers, StringWriter provides some of the functionality of the
sprintf() function from the C Standard Library.

The following example shows how to create and use a StringWriter:

' Create a StringWriter

Dim sw As New StringWriter
Dim n As Integer = 42

' Write some text to the string

sw.Write("The value of n is {0}", n)
sw.Write("… and some more characters")

' Print out the content of the StringWriter

Console.WriteLine(sw.ToString())

TextReader Classes

As you might expect, there’s also a TextReader class that has the subclasses
StreamReader and StringReader. This class has fewer methods than TextWriter, although
it works in the same way. The methods are summarized in Table 6.9.

Table 6.9: The methods of the TextReader class.

Method Description

Close Closes the TextReader and releases any resources
associated with it

Peek Looks at the next character without removing it from the
input stream

Read Reads characters into a character array

ReadBlock Reads characters into a character array and blocks until
the right number has been read or the end of the file has
been reached

ReadLine Reads a line of characters and returns it as a string

ReadToEnd Reads to the end of the stream and returns the
characters as a single string

Synchronized Creates a thread safe wrapper around the TextReader

StreamReader

The StreamReader class provides character-oriented input from streams, so it is this class
that is used to read lines of text from files. StreamReader can use any character encoding
you choose to give it, but will use UTF-8 by default, as this handles Unicode characters
properly.

The class has 10 constructors that let you create StreamReaders in a number of ways,
including:
§ From a file name with or without a character encoding specified
§ From a Stream reference with or without a character encoding specified

The class has two properties, BaseStream, which returns a reference to the Stream being
wrapped by this object, and CurrentEncoding, which returns the current encoding being
used by the reader.

StreamReader has several methods that read data. ReadLine() reads a single line,
returning it as a string. ReadToEnd() reads the entire stream, returning it as a (possibly very
large) string. There are also two Read() methods, the first of which returns the next
character from the stream (or -1 if the end of the stream has been reached), and the second
reads a specified number of characters into a character array. In addition, the Peek() method
lets you look at the next character without removing it from the stream, so that it will be
available to a subsequent Read() call. This is useful when you are parsing input character by

character and won’t know that you’ve reached the end of (say) a number until you find the
next white space character.

StringReader

StringReader lets you read characters from a string, either one at a time, a number at a
time, or a line at a time. It doesn’t provide any formatting ability and is useful if you want to
treat a string as if it was a text file.

Files and Directories

Files and directories are represented in .NET by six classes in the System.IO namespace:
§ FileSystemInfo—Base class for FileInfo and DirectoryInfo
§ File—Contains shared (static) methods used to manipulate files
§ FileInfo—Used to represent a file and manipulate it
§ Directory—Contains static methods to manipulate directories
§ DirectoryInfo—Used to represent a directory and manipulate it
§ Path—Used to manipulate path information

The FileSystemInfo Class

FileSystemInfo is the base class for the FileInfo and DirectoryInfo classes, which are
used to manipulate files and directories. It provides a number of methods and properties that
are common to both files and directories.

The fields and properties provided by FileSystemInfo are summarized in Tables 6.10 and
6.11. File attributes are represented by the FileAttributes enumeration, whose commonly
used members are listed in Table 6.12. (See the Immediate Solutions section for an example
of how to use the FileAttributes enumeration.) The FileSystemInfo class only has two
methods, which are summarized in Table 6.13.

Table 6.10: Fields of the FileSystemInfo class.

Field Description

FullPath The fully qualified path to the directory or file

OriginalPath The original relative or absolute path specified by the
user

Table 6.11: Properties of the FileSystemInfo class.

Property Description

Attributes Gets or sets the attributes of the object, using a
FileAttributes object

CreationTime Gets or sets the creation time of an object

Exists True if the file or directory exists

Extension Retrieves a file name extension

FullName Retrieves the full name of the file or directory

LastAccessTime Gets or sets the last access time of an object

LastReadTime Gets or sets the last read time of an object

Table 6.11: Properties of the FileSystemInfo class.

Property Description

Name Gets the name of the file or directory

Table 6.12: Commonly used members of the FileAttributes enumeration.

Member Description

Archive Indicates that a file’s archive status is set

Compressed Indicates that a file is compressed

Directory Indicates that the object is a directory

Encrypted Indicates that the object is encrypted

Hidden Indicates that the file or directory is hidden

Normal Indicates that the file has no other attributes set, and so
must be used alone

Offline Indicates that the file is offline; that is, the file’s content is

not immediately available

ReadOnly Indicates that the file or directory is read-only

System Denotes a system file

Temporary Denotes a temporary file

Table 6.13: Methods of the FileSystemInfo class.

Method Description

Delete Deletes a file or directory

Refresh Used to update the attribute information for an object

The File Class

All the methods in the File class are shared (“static” for C# and C++ programmers). This
means that you don’t create File objects, but simply call the shared methods.

Note

Security checks are applied to all methods in the File class. If you want to
perform a lot of operations on the same file, it is more efficient to create a
FileInfo object to work with the file because a FileInfo object does not apply
security to every call.

Table 6.14 lists the methods provided by the File class. Most of these methods are self-
explanatory: Refer to sections earlier in the chapter for details of the various Stream and
Writer classes and how to use them. Remember that they are all shared methods, so you
have to call them using the class name:

bOK = File.Exists("myfile.txt")

Table 6.14: Methods of the File class.

Method Description

Table 6.14: Methods of the File class.

Method Description

AppendText Opens a StreamWriter for appending text to a new or
existing file

Copy Copies an existing file to a new file

Create Creates a new file

CreateText Creates a new text file

Delete Deletes a file

Exists Returns true if a file exists

GetAttributes Returns a FileAttributes structure representing a file’s
attributes

GetCreationTime Gets a DateTime representing the file’s creation time

GetLastAccessTime Gets a DateTime representing the file’s last access time

GetLastWriteTime Gets a DateTime representing the file’s last write time

Move Moves a file to a new location

Open Opens a file, returning a FileStream

OpenRead Opens a file for read-only access, returning a
FileStream

OpenText Opens a text file for reading, returning a StreamReader

OpenWrite Opens a file for writing, returning a FileStream

SetAttributes Uses a FileAttributes structure to set the file attributes

SetCreationTime Uses a DateTime to set the creation time attribute

SetLastAccessTime Uses a DateTime to set the last access time attribute

SetLastWriteTime Uses a DateTime to set the last write time attribute

The FileInfo Class

FileInfo is used to represent a path to a file. Unlike the File class, all members are
nonshared. Although some functionality is only offered by one class or the other, in some
cases, you have a choice of methods to use. FileInfo inherits methods and properties from
its parent class, FileSystemInfo.

Note

The path represented by a FileInfo doesn’t have to exist.

The properties and methods of the FileInfo class are listed in Tables 6.15 and 6.16.

Table 6.15: Properties of the FileInfo class.

Property Description

Table 6.15: Properties of the FileInfo class.

Property Description

Directory Gets a DirectoryInfo representing the parent directory
for this file

DirectoryName Gets a string representing the full path to this file

Exists True if the file exists

Length Retrieves the length of the file in bytes

Name Gets the name of the file

Table 6.16: Methods of the FileInfo class.

Method Description

AppendText Gets a DirectoryInfo representing the parent directory
for this file

CopyTo Copies the file to another location

Create Creates a new file

CreateText Creates a new text file

Delete Deletes the file

MoveTo Moves the file to a new location

Open Opens a file, returning a FileStream

OpenRead Opens a file for read-only access, returning a
FileStream

OpenText Opens a text file for reading, returning a StreamReader

OpenWrite Opens a file for writing, returning a FileStream

ToString Returns the fully qualified path as a string

The Directory Class

The System.IO.Directory class provides you with static methods to help you operate on
directories and contains routines for creating, deleting, moving, copying, and enumerating
directories. A Directory object represents a path that may name an existing directory or that
can be used to create a new one.

Table 6.17 lists the shared methods provided by the Directory class. Note that you have to
have the proper security settings (in particular, FileIOPermission) if you want to do anything
that will affect the file system.

Table 6.17: Shared methods in the Directory class.

Method Description

CreateDirectory Creates a new directory

Delete Deletes a directory and possibly subdirectories and files

Table 6.17: Shared methods in the Directory class.

Method Description

Exists Returns true if a directory exists

GetCreationTime Gets a DateTime representing the file’s creation time

GetCurrentDirectory Gets the current directory as a string

GetDirectories Returns the names of the subdirectories of a given
directory

GetDirectoryRoot Gets the root of a directory path

GetFiles Gets a list of the files in a given directory

GetFileSystemEntries Gets a list of the files and directories in a given directory

GetLastAccessTime Gets a DateTime representing the last access time

GetLastWriteTime Gets a DateTime representing the last write time

GetLogicalDrives Gets a list of the logical drives

GetParent Gets the parent directory of a specified path

Move Moves a directory to a new location

SetCreationTime Uses a DateTime to set the creation time attribute

SetCurrentDirectory Sets the current directory

SetLastAccessTime Uses a DateTime to set the last access time attribute

SetLastWriteTime Uses a DateTime to set the last write time attribute

Tip

See Chapter 7 for more details on security in .NET.

The DirectoryInfo Class

The System.IO.DirectoryInfo class is used to represent directories. A DirectoryInfo object
represents a path that may name an existing directory or that can be used to create a new
one. DirectoryInfo inherits methods and properties from its parent class, FileSystemInfo.
Tables 6.18 and 6.19 list the commonly used properties and methods of the DirectoryInfo
class.

Table 6.18: Properties of the DirectoryInfo class

Property Description

Exists True if the directory exists.

Name Gets the name of the directory.

Parent Retrieves the parent of this directory as a string. Returns
null if the directory is a root directory already.

Root Retrieves the root portion of a path.

Table 6.19: Methods of the DirectoryInfo class.

Method Description

Create Creates a new directory

CreateSubdirectory Creates one or more new subdirectories

Delete Deletes the directory and optionally subdirectories and
files

GetDirectories Returns the names of the subdirectories of a given
directory

GetFiles Gets a list of the files in a given directory

GetFileSystemInfos Gets a list of FileSystemInfo objects describing the
contents of a given directory

MoveTo Moves the file to a new location

ToString Returns the fully qualified path as a string

The Path Class

The System.IO.Path class lets you process file and directory path names in a cross-platform
manner. All methods in this class are shared, so you don’t create Path objects in order to
call them. Tables 6.20 and 6.21 list the fields and methods provided by this class.

Table 6.20: Fields of the Path class.

Field Description

AltDirectorySeparatorChar The platform-specific alternate directory separator
character (which is slash ‘/’ on Windows and the Mac,

and backslash ‘\’ on Unix)

DirectorySeparatorChar The platform-specific directory separator character

(which is backslash ‘\’ on Windows, colon ‘:’ on the Mac,

and slash ‘/’ on Unix)

InvalidPathChars Returns an array of characters that can’t be used in

pathnames, such as ‘?’, ‘*’ and ‘>‘

PathSeparator The path separator character, which is semicolon ‘;’ in

Win32

VolumeSeparatorChar The volume separator character, which is colon ‘:’ for

Win32 and the Mac, and slash ‘/’ for Unix

Table 6.21: Methods of the Path class.

Method Description

ChangeExtension Changes the file extension

Combine Combines two file paths

Table 6.21: Methods of the Path class.

Method Description

GetDirectoryName Returns the directory path for a file

GetExtension Returns the extension for a file

GetFileName Returns the name plus extension for a file

GetFileNameWithoutExtension Returns the name only for a file

GetFullPath Returns a fully expanded path

GetPathRoot Returns the root of a path

GetTempFileName Returns a unique name for a temporary file

GetTempPath Returns the path to the system’s temp file folder

HasExtension Returns true if the file has a given extension

IsPathRooted Returns true if a path contains the root

Here are a few examples of how these functions can be used:

Path.IsPathRooted("c:\temp\foo.txt") ' returns true

Path.GetExtension("c:\temp\foo.txt") ' returns '.txt'
Path.GetPathRoot("c:\temp\foo.txt") ' returns 'c:\'

Path.GetDirectoryName("c:\temp\foo.txt") ' returns 'c:\temp'

Note

When you use the Path class functions in Visual Basic, you’ll have to qualify
them with their full name because of a naming conflict, for example,
System.IO.Path.IsRooted.

FileSystemWatcher

FileSystemWatcher is an extremely useful class that lets you watch for changes to the files
and subdirectories of a specified directory. The directory you’re watching can be on the local
machine, on a network drive, or on a remote machine.

Note

You can’t watch directories on remote machines that aren’t running
Windows 2000 or Windows NT. 4.0. In addition, you can’t watch a remote
Windows NT 4 machine from another Windows NT 4 machine. You also
can’t log events for DVD and CD sources because their timestamps can’t
change.

You can create a FileSystemWatcher to watch a whole directory or a particular file type
within the directory, and you can set up filters to narrow down the range of files that a
watcher will report on.

As you might expect, FileSystemWatcher works by raising events when files or directories
change, and client code needs to implement handlers for events of interest. Table 6.22 lists
the events that can be raised by the FileSystemWatcher class.

Table 6.22: Events raised by the FileSystemWatcher class.

Event Description

Changed Raised when a file or directory is changed

Created Raised when a file or directory is created

Deleted Raised when a file or directory is deleted

Error Raised when the internal buffer of the
FileSystemWatcher overflows

Renamed Raised when a file or directory is renamed

The System.Net Namespace

The classes in the System.Net namespace provide a simple programming interface to many
of the protocols found on networks and the Internet. Table 6.23 lists the major classes in the
namespace.

Table 6.23: Major classes in the System.Net namespace.

Class Description

Cookie Provides a set of methods and properties used to
manage cookies

Dns Provides simple domain name resolution functionality

EndPoint An abstract class representing a network address

FileWebRequest Interacts with URI’s that begin ‘file://’ in order to access
local files

FileWebResponse Provides read-only access to a file system via ‘file://’
URIs

HttpWebRequest Enables clients to send requests to HTTP servers

HttpWebResponse Enables clients to receive responses from HTTP servers

IPAddress Represents an IP address

IPEndPoint Represents an IP endpoint (an IP address plus a port
number)

IPHostEntry Associates a DNS entry with an array of aliases and
matching IP addresses

WebClient Provides common methods for sending data to and
receiving data from a URI

WebException An exception thrown when using network access

IPAddress, IPEndPoint, and Dns Classes

IPAddress, IPEndPoint, and Dns classes are used to represent IP addresses and to
perform DNS lookups.

Every machine on a TCP/IP network has an IP address, which can be expressed in one of
several ways. The most basic is to use the dotted quad notation, which consists of four
numeric values ranging from 0 to 255 separated by dots, for example, 255.1.64.9. These
values aren’t very easy for humans to remember, so there’s usually an equivalent name,
such as www.foo.com.

The IPAddress class represents an IP address. The easiest way to create one is to use the
Parse() method, which takes a dotted quad address as a string:

Dim ip As IPAddress = IPAddress.Parse("217.49.2.77")

If you want to get the IPAddress object to tell you what dotted quad address it holds, use
ToString().

TCP/IP server processes listen on ports on server machines, so if you want to talk to a
server, you’ll need to specify the IP address of the machine and the port the server is
listening on. This combination is called an IP endpoint and is represented by the IPEndPoint
class. The constructors for IPEndPoint take a port number and an IP address, either as a
string or as a reference to an IPAddress object.

Provided that you have access to a Domain Name server, the Dns class will let you perform
DNS lookups and operate on the result. Here’s how Dns is commonly used:

Dim ipa As IPHostEntry = Dns.GetHostByName("www.microsoft.com")

The static GetHostByName() function takes a hostname and returns the IPHostEntry
initialized with the IP address and port number. The GetHostByAddress() method does the
same thing; it takes a dotted IP address (such as 127.0.0.1) either as a string or an
IPAddress. GetHostName() returns the DNS hostname of the local machine as a string,
and IpToString() converts an IP address in the form of a long integer into a dotted quad
address returned as a string.

The WebRequest and WebResponse Classes

Several of the classes in System.Net help you write software to talk to Web servers, and
they’re all based on the WebRequest and WebResponse superclasses.

The FileWebRequest and FileWebResponse classes are designed to let you work with
URIs that represent local files, and as such, they start with file://.

Of more interest are the HttpWebRequest and HttpWebResponse classes, which allow
you to interact with servers using HTTP. Creating an HttpWebRequest object allows you to
send requests to a Web server using HTTP. In order to make this job easier, the class
contains a number of properties that correspond to fields in the HTTP header sent to the
server, a few of which are listed in Table 6.24.

Table 6.24: A selection of HTTP header properties of the HttpWebRequest class.

Property Description

AllowAutoRedirect True if the resource should automatically follow
redirection requests from the server. The default is true.

ContentLength Gets or sets the ContentLength header, which indicates
how many bytes are to be sent to the server. The default
is -1, meaning there is no request data.

ContentType Gets or sets the ContentType header, which indicates

Table 6.24: A selection of HTTP header properties of the HttpWebRequest class.

Property Description

the media type of the request.

IfModifiedSince Gets or sets the date in the IfModifiedSince header,
which is used to control when cached pages are
updated.

KeepAlive If true, tells the server that you want a persistent
connection.

Timeout Represents the time in milliseconds before the request
times out.

UserAgent Gets or sets the UserAgent header, which tells the
server the type of client sending the request (e.g.,
Internet Explorer).

The GetResponse() method makes a synchronous request to the server and returns an
HttpWebResponse object containing the response. If you want to work asynchronously, you
can use the BeginGetResponse() and EndGetResponse() methods.

The System.Net.Sockets Namespace

The classes and enumerations in the System.Net.Sockets namespace provide an
implementation of the popular Windows Sockets (Winsock) interface for use with .NET
languages.

What Are Sockets?

The original sockets were developed as part of the Unix operating system, and they have
been widely used as a simple way to pass data between programs. They are widely used on
the Internet and can be used between programs on a single machine as well.

Sockets are similar to telephone communications between people working for different
companies. If I’m going to contact you from my phone, I need to know your company phone
number and your extension. In socket communication, the “phone number” is the IP address
of the machine you want to talk to. You may know this as a dotted IP address of the form
123.123.1.65 or as a more humanly friendly representation of foo.xyz.com.

Just as everyone in an office has an extension on the same phone number, every program
on a machine that wants to use sockets uses a unique port number. Port numbers range
from zero upwards: Those in the range 0 to 1024 are reserved for official use and are used
by programs such as Web servers and mail servers. You are free to use port numbers above
1024 for your own use.

A server process can reserve a port number and then sit on it waiting for incoming calls. A
client process makes a call by opening a socket and specifying the IP address and port
number it wants to connect to. If the address and port number are correct, the two processes
will be connected.

How Do You Use Sockets?

Although the System.Net.Sockets namespace contains a Socket class that will do
everything you want, Microsoft recommends that you use the two classes that it supplies to
represent either end of a socket connection. TcpClient represents the client end, whereas
TcpListener represents the server end.

At the client end, you create a TcpClient, passing it the IP address of the machine you want
to connect to and the port that the server process is using.

Note

If you are connecting to a server process on the local machine, the IP
address to use is either “localhost” or “127.0.01”.

Alternatively, you can create an unconnected TcpClient, and then use the Connect()
method to make the connection:

' Create a TcpClient
Dim tpc As New TcpClient()

' Connect to port 9999 on the local machine
tpc.Connect("localhost", 9999)

The TcpClient class has a number of useful methods and properties that can help manage
the session. They are summarized in Table 6.25.

Table 6.25: Methods and properties of the TcpClient class.

Member Description

Active True if a connection has been made

Client Gets or sets the underlying Socket object

Close() Disposes of the TCP connection

Connect() Connect to a TCP host

GetStream() Gets the stream used for reading and writing through the
socket

ReceiveBufferSize Gets or sets the size of the receive buffer (default =
8192)

ReceiveTimeout Gets or sets the receive timeout in milliseconds (default
= 0)

SendBufferSize Gets or sets the size of the receive buffer (default =
8192)

SendTimeout Gets or sets the send timeout in milliseconds (default =
0)

When the connection has been established, the GetStream() method returns a reference to
a Stream object, which is used to read and write through the socket:

Dim theStream As Stream = tpc.GetStream()

The Stream’s Read() and Write() methods can be used to pass data through the socket, but
because they use bytes, it is necessary to convert character data into bytes before sending.
See the Immediate Solution “Using Sockets” for details on how to do this. As an alternative,
you can use the Send() and Receive() methods that TcpClient inherits from Socket, which
also work with byte arrays.

TcpListener implements a parallel set of functionality that helps implement the server side
of a socket connection. The main methods and properties of the TcpListener class are
summarized in Table 6.26.

Table 6.26: Methods and properti es of the TcpListener class.

Member Description

AcceptSocket() Waits for a client to connect, returning a Socket

AcceptTcpClient() Waits for a client to connect, returning a TcpClient

Active True if a connection has been made

LocalEndpoint Gets the active endpoint (IP address plus port number)
for the listener socket

Pending() Returns true if there are pending connection requests

Server Gets the underlying Socket object

Start() Start listening for network requests

Stop() Stop listening for network requests

A TcpListener is created to listen on a particular socket, which obviously has to match the
ones that clients will be calling in on:

' Create a TcpListener on port 1999

Dim tcl As New TcpListener(1999)

Once created, the Start() method starts the object listening for network connections. There
are two ways in which a listener can connect to incoming clients. One way is to call
AcceptSocket() or AcceptTcpClient(), both of which will block until a client connects.
Alternatively, the server can periodically call the TcpListener’s Pending() method, which
returns true if any clients are waiting to connect. If there are clients waiting, calls to
AcceptSocket() or AcceptTcpClient() will connect immediately.

Calls to AcceptSocket() or AcceptTcpClient() return a Socket reference, so the server
code can use the Send() and Receive() methods to pass data through the connection. Once
the conversation is finished, the Stop() method stops the TcpListener from listening for
network traffic.

Using Binary I/O with Streams

The BinaryReader and BinaryWriter classes are used for binary I/O; this section shows
how to use them with files.

Note

If you want to read about text I/O rather than binary I/O, see the solution
“Reading and Writing Text Files.”

The following sample program shows how to write data to a file in binary format, and then
read it again:

' You need to import System.IO so that you can use file, reader and
' writer classes

Imports System.IO

Module Module1
 Sub Main()

 Try
 ' Create the FileStream to create a file

 ' Open it for read/write access
 Dim ds As New FileStream("\test.dat", _

 FileMode.Create, FileAccess.ReadWrite)

 ' Wrap it in a BinaryWriter
 Dim bw As New BinaryWriter(ds)

 ' Write some data to the stream

 bw.Write("A string")
 bw.Write(142)

 bw.Write(97.4)
 bw.Write(True)

 ' Open it for reading

 Dim br As New BinaryReader(ds)
 ' Move back to the start

 br.BaseStream.Seek(0, SeekOrigin.Begin)

 ' Read the data
 Console.WriteLine(br.ReadString())

 Console.WriteLine(br.ReadInt32())
 Console.WriteLine(br.ReadDouble())

 Console.WriteLine(br.ReadBoolean())

 Catch e As Exception
 Console.WriteLine("Exception:" + e.ToString())

 End Try
 End Sub

End Module

I start by importing the System.IO namespace, which contains all the I/O functionality. Note
that you don’t need to add a reference to the project because the classes themselves are in
the default DLLs loaded for every project.

I then create a FileStream to operate on the file. The second parameter determines how the
file will be opened; and in this case, it is set to FileMode.Create , which will create a new file
or overwrite the file with the same name if it already exists. The third parameter controls the
file access; in this example, because I’m going to read and write the file, I need to use
FileAccess.ReadWrite.

It’s good practice to put the creation of the FileStream in a Try…Catch block, as there are a
lot of things that can go wrong when opening and writing to files. Rather than enclosing just
this call in Try…Catch, I’ve placed the Try around the entire code so that I can handle any
exception that occurs in one place. In a larger program, you would probably want to split
your exception handling rather than use one Try…Catch.

FileStream reads and writes bytes, which is seldom very convenient, so a FileStream is
normally wrapped in another class that handles the conversion to and from bytes. In this
case, I’m using a BinaryWriter, which takes .NET primitive types and converts them into
bytes. These bytes can then be passed to the FileStream.

BinaryWriter has a lot of overloaded Write() methods, one for each of the primitive types. In
this example, you can see four in use, writing out a string, an integer, a floating-point value,
and a Boolean.

If I wanted to terminate the program at this point, I could insert code similar to the following
after the calls to Write():

' Flush output and close the file
bw.Flush()

bw.Close()

These two calls would cause any unwritten data to be written to the stream, and the call to
close would close the stream as well as the underlying file. I’m not going to close the file
because I want to read the data I’ve just written. I can do this because I opened the stream
in ReadWrite mode, so I create a BinaryReader to read from the FileStream.

Before I can use the BinaryReader, I have to move back to the beginning of the file.
Whenever you are using a stream, the seek pointer marks the point at which the next read or
write operation will occur. I’ve been writing to the stream, so the seek pointer is at the end of
the file, ready to write the next item. If I want to read something earlier in the file, I need to
reposition the seek pointer. You can see how this is done: The BaseStream property gets a
reference to the FileStream inside the BinaryReader, and I then call the Seek() method to
reposition the FileStream. Seek() takes two parameters—an offset in bytes and a position
from which to calculate the offset. I’ve used SeekOrigin.Begin, which denotes the start of
the file, so an offset of zero bytes puts me back to the beginning of the file. Other possible
values are SeekOrigin.End (the end of the file) and SeekOrigin.Current (the current
position). You can use negative offsets as well as positive offsets, so you can easily position
yourself relative to the end of the stream. You also don’t have to read from the start of the
file, so if you know where to position yourself, you can start reading data at any arbitrary
point in the file.

Once positioned, it is easy to read data from the file. As before, the FileStream only reads
and writes bytes, so the BinaryReader converts them into .NET types. Unlike BinaryWriter,
BinaryReader has a number of separate methods for reading, one for each basic type; you
can see four of them used in the preceding example. You need to be sure that you use the
correct methods. I wrote an integer out, so I need to use ReadInt32() to input it again.
Likewise, 97.4 is a Double, so I need to use ReadDouble() to input it.

Reading and Writing Text Files

Working with text files is very easy using the StreamWriter and StreamReader classes. In
this solution, I’ll show you how to write text files, and then open them and read them.

Writing a File

I start by creating a normal VB Console application, which I’ve called VBTextWriter. Here’s
the listing of a simple program to write a text file:

' You need to add this Imports statement at the top
Imports System.IO

Module Module1

Sub Main()

 Try
 ' Create the FileStream

 Dim fs As New FileStream("\test.txt", FileMode.Create)

 ' Wrap it in a StreamWriter
 Dim wr As New StreamWriter(fs)

 ' Write some lines

 wr.WriteLine("line one")
 wr.WriteLine("line two")

 ' Flush and close the file

 wr.Flush()
 wr.Close()

 Catch e As Exception
 Console.WriteLine("Exception: " + e.ToString())

 End Try
End Sub

End Module

I first need to import the System.IO namespace into the project to save myself from having
to qualify all the class names.

Once that’s been done, I create a FileStream object. FileStream is a class that is used to
create and perform I/O on disk files; it has several constructors. In the constructor used in
this example, I pass it the file name and the access mode. There are several access modes
you can use, and they are listed in Table 6.3. I’m using Create mode, which creates the file if
it doesn’t exist and overwrites it if it does.

The problem with using FileStream is that it reads and writes bytes, and I want to use
character-based I/O. The solution is to wrap the FileStream in a StreamWriter, a class that
accepts text as strings and characters, and converts it to bytes. The StreamWriter then
passes these bytes to the FileStream, which writes them out to disk. You can see that the
only argument to the StreamWriter constructor is the FileStream it is going to work with.

It’s good practice to put the creation of the FileStream in a Try…Catch block, as there are a
lot of things that can go wrong when opening and writing to files. The documentation for
FileStream lists six different exceptions that can be thrown by the constructor:

§ ArgumentException—The path was an empty string
§ ArgumentNullException—The path was a null reference (Nothing in VB)
§ SecurityException—You don’t have permission to operate on this file
§ FileNotFoundException—The file can’t be found
§ IOException—Some other I/O error has occurred, such as specifying an invalid drive

letter
§ DirectoryNotFoundException—The directory doesn’t exist

Because of the number of things that can go wrong, it is a very good idea to trap these
errors with a Try block. I’ve wrapped the entire code in a Try block and have caught the
most general type of exception so that I can catch any type of error.

Related solution: Found on page:

How Do I Catch
Exceptions?

92

How Do I Generate
Exceptions?

93

Once the file is open for writing, I can write something to it. You’ll probably recognize the
WriteLine() function because it is the one that is used by Console. The Console class uses
a StreamWriter, but instead of writing its content to a file, it writes it to the screen. So, if
you’ve done any .NET programming, you probably know how to use StreamWriter.

The two main methods used for output are WriteLine() and Write(). They are both pretty
much the same, but WriteLine() adds a new line to the end of what it writes, whereas
Write() doesn’t. Both functions have numerous overloads for writing different types of output.
The overloads for WriteLine() are shown in Table 6.27.

Table 6.27: Commonly used overloads of the WriteLine() method.

Overload Description

WriteLine() Writes a newline

WriteLine(Char) Writes a single character

WriteLine(Char()) Writes an array of characters

WriteLine(Char(), Integer,
Integer)

Writes part of an array of characters

WriteLine(String) Writes a string

WriteLine(Boolean) Writes a Boolean value as “true” or “false”

WriteLine(Decimal) Writes a decimal value

WriteLine(Double) Writes a double value

WriteLine(Integer) Writes an integer

WriteLine(Long) Writes a long integer

WriteLine(Object) Calls ToString() on the object

WriteLine(Single) Writes a single precision floating-point value

WriteLine(String, Object) Writes a formatted string containing one object

Table 6.27: Commonly used overloads of the WriteLine() method.

Overload Description

WriteLine(String, Object,
Object)

Writes a formatted string containing two objects

WriteLine(String, Object,
Object, Object)

Writes a formatted string containing three objects

WriteLine(String,
ParamArray Object())

Writes a formatted string containing a number of objects

Related solution: Found on page:

How Do I Produce
Formatted Output?

147

When I’ve finished with the file, I flush it and close it. Flushing it ensures that any data not
yet written gets flushed from memory onto disk. StreamWriter has an AutoFlush property
that you can set to true, in which case it will flush the output after each write operation. This
ensures that you won’t lose any data if your program crashes—because it will all be safely
stored on disk—but it does slow down output.

Reading a File

Reading a text file is also a simple operation. The following sample program opens a text file
and reads all the lines, copying each one to the console as it is read:

' You need to add this Imports statement at the top
Imports System.IO

Module Module1

Sub Main()

 Try
 ' Create the FileStream to open an existing file

 Dim fs As New FileStream("\test.txt", FileMode.Open)

 ' Wrap it in a StreamReader
 Dim rd As New StreamReader(fs)

 ' Read lines from the file and echo them

 Dim s As String

 s = rd.ReadLine()
 While Not s Is Nothing

 Console.WriteLine(s)
 s = rd.ReadLine()

 End While

 ' Close the file
 rd.Close()

 Catch e As Exception

 Console.WriteLine("Exception: " + e.ToString())
 End Try

End Sub
End Module

This program works in a way that is very similar to the file writing example in the previous
section. This time the FileStream is created using FileMode.Open, which opens an existing
file. The FileStream object is then used to initialize a StreamReader, which takes the bytes
read by the FileStream and converts them into characters.

StreamReader has four ways of reading text from the file:
§ ReadLine()—Reads up to the next end-of-line and returns a string
§ Read()—Reads one or more characters, returning the result as a single character or a

character array
§ ReadBlock()—Reads a number of characters and returns them in a char array

(inherited from TextReader)
§ ReadToEnd()—Reads to the end of the stream, returning the result as one long string

In this example, I’m using ReadLine() to read each line from the file and print it out. Note
how the while loop works: ReadLine() will return a null reference when it has run out of lines
to read, so I read one line, and then enter the loop. If the file is empty, the loop will never be
entered, and nothing will be printed; otherwise, each line will be printed and the next one
read.

How Can I Work with Files and Directories on a Disk?

The File and Directory classes provide a high-level interface to disk filing systems and
make it easy to browse, move, delete, and otherwise work with and organize the items on
your disk.

In this solution, I’ll show you how to write a simple file browser, which uses many of the
features of the File and Directory classes, and which you can use as a basis for further
experimentation.

Creating the Project

Start off by creating a normal VB Windows application, which in my case I’ve called
VBDirList. Import the System.IO namespace into the project:

' You need to add this Imports statement
Imports System.IO

Next, add the UI components to the form, as shown in Figure 6.1. Table 6.28 lists all the
components that appear on the form, together with their identifiers and the functions they

perform in the program. Delete the value in the Text property of all the controls before going
any further.

Figure 6.1: The user interface for the VBDirList project.

Table 6.28: The components of the VBDirList program user interface.

Type Name Description

ComboBox ComboBox1 Holds the drive letters.

Label CurrentPathLabel Shows the currently selected path.

Button MoveToParentBtn Moves up a level in the directory tree.
Does nothing if you are already at the
root.

ListBox DirList Holds a listing of the current directory.

ListBox FileList Displays the properties of the item
selected in the DirList control.

Getting the List of Drive Letters

The first serious coding task that needs to be done is to find all the logical drives on the
machine and load their names into the ComboBox. The following function shows how to do
this:

Private Sub Init_Drives()
 ' Fill a ComboBox with drive information

 Dim drives() As String
 drives = Directory.GetLogicalDrives()

 Dim ie As IEnumerator = drives.GetEnumerator

 While ie.MoveNext
 ComboBox1.Items.Add(ie.Current)

 End While

 ' Don't set a selection
 ComboBox1.SelectedIndex = -1;

End Sub

After declaring an array of strings, the first call is to GetLogicalDrives(), a shared (static)
member of Directory. This function returns the name of each logical drive as a String in the
form “C:\”.

Note

Physical drives are hardware, and on PCs, physical drives can be divided
into more than one logical drive. On my main PC, the one hard disk is
divided into the C: and D: logical drives.

The easiest way to add each String to the ComboBox is to set up an enumerator and use
the MoveNext() method and the Current property to access each string in turn.

The final task is to set the selection in the ComboBox. I’ve chosen not to have an initial
selection, but you could search the list of strings for “C” and choose that one.

Place a call to this function immediately before the end of the form’s constructor:

Public Sub New()
 …

 InitializeComponent

 Init_Drives()
End Sub

Handling a Change of Drive

Because the user is going to use the ComboBox to select a drive letter, you need to handle
this selection process. The ComboBox raises a SelectedIndexChanged event when
someone chooses an item, so you need to add a handler for this event to the Form class. In
the Visual Studio Designer, you can do this by double-clicking on the ComboBox object:

Protected Sub ComboBox1_SelectedIndexChanged(ByVal sender _

 As System.Object, ByVal e As System.EventArgs) _
 Handles ComboBox1.SelectedIndexChanged

 ' Check we have a selection
 If ComboBox1.SelectedIndex <> -1 Then

 ' Get the selected item as a String
 Dim s As String = CType(ComboBox1.SelectedItem, String)

 ' Process it…
 Get_Content(s)

 End If
End Sub

The If statement checks whether there is a selected object in the ComboBox. If there isn’t,
the property will have the value of -1, and there’s nothing more to do.

If there is a selection, it is retrieved as a string. I need to use the CType function because
SelectedItem returns an Object reference, and VB won’t let me assign an Object reference
directly to a String reference.

Once I have the string, I pass it to the Get_Content() method, which fills the DirList control
with the contents of the drive’s root directory.

Processing a Directory

The Get_Content() function takes the full path to a directory, reads the contents of the
directory, and puts the names of all the items into the DirList ListBox. It gets called on two
occasions:
§ When the user selects a new drive from the ComboBox
§ When the user double-clicks on an entry in the DirList control and that entry is a

directory

I first need to construct a DirectoryInfo object to represent the path that has been passed
in, and because I’ll want to use this later in other functions, I need to add a reference to the
class:

Public Class Form1

 Inherits System.Windows.Forms.Form
 ' A Directory object that represents the current path

 Dim curDir As DirectoryInfo
 …

End Class

Here’s the listing for the Get_Content() function:

Private Sub Get_Content(ByRef dirPath As String)

 ' Create a DirectoryInfo object to represent the path
 Try

 curDir = New DirectoryInfo(dirPath)
 Catch e As Exception

 MessageBox.Show("Error getting content for '" _
 & dirPath & "'")

 Return
 End Try

 ' Display the current path in the Label

 CurrentPathLabel.Text = curDir.FullName

 ' Clear previous items from the ListBox
 DirList.Items.Clear()

 ' Get the directory content

 fse = curDir.GetFileSystemInfos()

 ' Add the names to the ListBox

 Dim ie As IEnumerator = fse.GetEnumerator
 While ie.MoveNext

 DirList.Items.Add(ie.Current)
 End While

End Sub

Although the code is straightforward, there are a couple of points to note about this routine.
The first is that creating the Directory object is enclosed in a Try block. Although it is very
unlikely that the path that is passed will be invalid, it is a good idea to code defensively and
be sure that the code can handle that event.

The second point involves the fse variable. This variable holds the list of entries in the
current directory and is an array of FileSystemInfo references. Because I want to refer to
this list again in another routine, I’ve added it as a member of the class:

Public Class Form1

 Inherits System.Windows.Forms.Form
 ' A Directory object that represents the current path

 Dim curDir As Directory

 ' The contents of the current directory path
 Dim fse() As FileSystemInfo

 …
End Class

Both the FileInfo and DirectoryInfo classes derive from FileSystemInfo, so an array of
FileSystemInfos can hold references to both FileInfo and DirectoryInfo objects, and that’s
just what I need to hold the mixture of items that are found in directory listings. Because fse
is an array, I can use an enumerator to walk over it and add its contents to the DirList
control. Note how I simply pass ie.Current to the Add() function: This will get a string
representation of the FileSystemInfo, which is the full path.

Displaying Details of Files and Directories

When the user clicks on an entry in the DirList control, I want to be able to display some
details about the file or directory in the other ListBox. Like ComboBoxes, ListBoxes raise a
SelectedIndexChanged event when someone selects an entry, so I need a handler for that
event. In the following code, I’ve added a representative selection of details on the selected
item. You should find it fairly easy to amend the code to add the details you need:

Protected Sub DirList_SelectedIndexChanged(ByVal sender _
 As System.Object, ByVal e As System.EventArgs) _

 Handles DirList.SelectedIndexChanged
 ' Check we have a selection

 If DirList.SelectedIndex <> -1 Then

 ' Clear any existing details
 FileList.Items.Clear()

 ' Get the index of the selected item

 Dim idx As Integer = DirList.SelectedIndex

 ' Use the index to get the item from the FileSystemInfo array
 Dim entry As FileSystemInfo = CType(fse.GetValue(idx),
FileSystemInfo)

 ' Now start displaying details - start with the type

 If CType(entry.Attributes() And _
 FileAttributes.Directory, Boolean) = True Then

 FileList.Items.Add("Type: Directory")
 Else

 FileList.Items.Add("Type: File")
 End If

 ' Display last access time. I'm using the default time

 ' format, but you can easily change it
 Dim latime As DateTime = entry.LastAccessTime()

 FileList.Items.Add("Last Access: " & latime.ToString())

 ' Process the attributes, building up a string
 Dim s As New String("Attributes: ")

 If CType(entry.Attributes() And _

 FileAttributes.Archive, Boolean) = True Then
 s = s & "Archive "

 End If

 If CType(entry.Attributes() And _
 FileAttributes.System, Boolean) = True Then

 s = s & "System "
 End If

 If CType(entry.Attributes() And _

 FileAttributes.ReadOnly, Boolean) = True Then
 s = s & "R/O "

 End If

 ' Add the attribute string to the list…

 FileList.Items.Add(s)
 End If

End Sub

Let’s look at what is going on in this code. After checking that there is a selection, I clear any
existing information out of the ListBox. Next, I get the index of the selected item and use it to
retrieve the FileSystemInfo for the selected item from the fse array. This is why I saved the
FileSystemInfo array in Get_Content(), so that I could refer to it here.

GetValue() retrieves an entry from the array, but it gets returned as a generic Object
reference, so I need to use CType to convert it to a FileSystemInfo.

I want to list some of the attributes associated with the class, which I do using the
Attributes() method. This function returns an integer whose bits are set to represent the
attributes associated with the item. I can tell whether the item has a particular attribute by
using the And operator to perform a logical AND between the attributes’ integer and the
constant representing the attribute I want to test. If the result is true, I can then add that
attribute to a string that I’m building. Note once again how I have to use CType to convert
the result of the And to a Boolean so that I can use it in an If statement.

I start with Directory to determine whether the item is a file or a directory and add a suitable
string to the ListBox.

Note

The methods and properties of FileSystemInfo, FileInfo, and
DirectoryInfo are listed in Tables 6.10 through 6.19 in the In Depth section.

Next, I use the LastAccessTime() method to obtain the date and time the item was last
accessed as a DateTime object and add it to the ListBox. I’m using the default formatting
provided by the ToString() function, but there are several other formatting options provided
by DateTime.

Changing Directory

Users can navigate through the directory tree by clicking on directory entries in the DirList
control. When this happens, I simply extract the path from the selected entry and call
Get_Content() to load the new directory:

Protected Sub DirList_DoubleClick(ByVal sender _

 As System.Object, ByVal e As System.EventArgs) _
 Handles DirList.DoubleClick

 ' Check we have a selection
 If DirList.SelectedIndex <> -1 Then

 ' Get the index of the selected item
 Dim idx As Integer = DirList.SelectedIndex

 ' Use the index to get the item from the FileSystemInfo array

 Dim entry As FileSystemInfo = CType(fse.GetValue(idx),
FileSystemInfo)

 ' Don't do anything if the item is a file
 If CType(entry.Attributes() And FileAttributes.Directory, _

 Boolean) = True Then
 FileList.Items.Clear()

 Get_Content(entry.FullName)
 End If

 End If
End Sub

There’s nothing in this code that you haven’t already seen: I get the index of the selected
item and use it to get the FileSystemInfo. If the user has clicked on a directory (not a file), I
clear the existing details and call Get_Content() with the full path of the directory.

Moving Up a Level

I’ve handled moving down the tree, but how is the user to navigate back up? I can think of
two ways: The first would be to add a “..” entry to the top of the DirList control and handle
that specially. The second, and the one I use in the following code, is to add a Back button.
This is probably a better solution because it parallels the Back button found in the standard
File Open and Save dialogs, so the idea will be familiar to users:

Protected Sub MoveToParentBtn_Click(ByVal sender _
 As System.Object, ByVal e As System.EventArgs) _

 Handles MoveToParentBtn.Click
 ' Get the parent of the current directory

 Dim parent As DirectoryInfo = curDir.Parent

 ' If the parent is null, we're at the top level
 If parent Is Nothing Then

 Beep()
 Return

 End If

 FileList.Items.Clear()

 Get_Content(parent.FullName)
End Sub

Once again, this is quite a simple function, and the only new element is the use of the
Parent property to get the parent of the current directory. If you are already at the top level
of a directory tree (e.g., at C:\), the Parent is set to Nothing. If that’s the case, I issue a
beep, and then return; otherwise, I call Get_Content() to display the content of the parent
directory.

And that’s it! Figure 6.2 shows the program in action.

Figure 6.2: The VBDirList program in action.

How Can I Monitor Changes to Files and Directories?

The System.IO.FileSystemWatcher class is provided precisely for this task. You can set a
FileSystemWatcher object to watch a given directory, and it raises events when things—
such as creations, deletions, and changes—happen to the files and subdirectories within the
nominated directory.

In this solution, I’ll show you how to write an application that logs accesses to anything in a
nominated directory.

Creating the Project

I start by creating a normal VB Windows application, which in this case I’ve called
VBWatcher. Then, I import the System.IO package into the project:

' You need to import System.IO
Imports System.IO

Next, I add a FileSystemWatcher reference to the Form class:

Public Class Form1

 Inherits System.Window.Forms.Form

 ' The watcher object
 Private fs As FileSystemWatcher

 Public Sub New()

 …

When the user tells the application to start logging, a FileSystemWatcher object is created
and attached to the reference.

Creating the User Interface

You should add controls to the form so that you end up with a user interface similar to the
one shown in Figure 6.3. The TextBox is used to enter the name of the directory to be
watched, whereas the ListBox holds the logging messages. The two buttons are used to
start the logging process and to clear the entries from the ListBox.

Figure 6.3: The user interface for the VBWatcher application.

Using the Components tab on the toolbox, add a FileSystemWatcher component, which
appears in the nonvisual components area at the bottom of the Designer window. Select this
component in the designer, and change its name from the rather long FileSystemWatcher1
to something more manageable, such as fsw . You can then set some of its properties in the
Property Browser:
§ Set the value of the Filter property to *.txt, which will watch for changes to text files

only. If you want to watch all files, leave this property blank.
§ Set the value of the NotifyFilter property to LastAccess, which will filter the

notifications coming from the file system and only let the “last access time” notifications
through.

§ Do not set the Path property because it is will be chosen by the user at runtime.
§ Make sure that the EnableRaisingEvents property is set to true, so that events will be

generated.

Add a handler for the Clear button by double-clicking on it; in the body of the function, clear
the entries from the ListBox as follows:

Private Sub ClearButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles ClearButton.Click
 ' Clear all text items from the ListBox

 ListBox1.Items.Clear()
End Sub

The handler for the Watch button is where the FileSystemWatcher object is created, has its
parameters set, and is told to start logging. Here’s the code:

Private Sub WatchButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles WatchButton.Click

 ' Check that we have a path to watch
 If TextBox1.Text.Length = 0 Then

 MessageBox.Show("Please enter a directory path")
 Return

 End If

 ' Point the FileSystemWatcher object at the

 ' nominated directory
 fsw.Path = TextBox1.Text

End Sub

After checking that the user has entered a path into the TextBox, you need to use the
FileSystemWatcher’s Path property to tell it which directory to watch.

The FileSystemWatcher can log several different types of events:
§ Change events—Occur when files or directories are changed in some way
§ Deletion events—Occur when files or directories are deleted
§ Creation events—Occur when files or directories are created
§ Renaming events—Occur when files or directories are renamed
§ Error events—Occur when the FileSystemWatcher has a problem, such as an internal

buffer overflow

You can also choose which events you want to log from the following list:
§ Attributes—Changes to the attributes of the file or directory
§ CreationTime—The time the file or folder was created
§ DirectoryName—The name of the directory
§ FileName—The name of the file
§ LastAccess—Changes to the time the file or directory was last opened
§ LastWrite—Changes to the time the file or directory was last written
§ Security—Changes to the security settings of the file or directory
§ Size—Changes to the size of the file or directory

You choose the events you want by assigning a value to the NotifyFilter property of the
FileSystemWatcher object, using members of the NotifyFilters enumeration. If you don’t
set the NotifyFilter property, the default is to log the LastAccess events. You can choose
more than one event type by ORing the values together using the Or operator.

You can provide further filtering by assigning a string, which describes the file or files you
want to monitor, to the Filter property. This is a typical wild card file string, so “*.txt” will
watch all text files.

I’ve already mentioned that the FileSystemWatcher object communicates by raising events,
so you need to provide handler functions for the events you need to handle. I’ve chosen to
monitor the Changed and Deleted events, so I’ve added two event handlers, as shown in
the following code:

' Log Changed events to the ListBox

Private Sub fsw_Changed(ByVal sender As System.Object, _
 ByVal e As FileSystemEventArgs) _

 Handles fsw.Changed
 ListBox1.Items.Add(New String(_

 "File: " & e.FullPath & _
 " " & e.ChangeType.ToString()))

End Sub

' Log Deleted events to the ListBox

Private Sub fsw_Deleted(ByVal sender As System.Object, _
 ByVal e As FileSystemEventArgs) _

 Handles fsw.Deleted
 ListBox1.Items.Add(New String(_

 "File: " & e.FullPath & _
 " " & e.ChangeType.ToString()))

End Sub

Note

I’m using the Handles keyword as an alternative to the AddHandler method
discussed in Chapter 2. Handles statically associates an event handler with
an event, whereas AddHandler (and the matching RemoveHandler call) is
dynamic and can be used to attach and remove handlers at runtime.

Also note that the body of both functions is exactly the same, so I could have used the same
handler function to log both events. When an event is fired, I get passed notification of the
object that fired it—which isn’t of any interest in this case—and a FileSystemEventArgs
object that contains details of the event.

FileSystemEventArgs doesn’t have many members; the ones you’ll find most useful are:
§ FullPath—Contains the full path to the file or directory that triggered the event
§ Name—Only contains the name of the file or directory
§ ChangeType—Tells you the type of change

ChangeType is useful if you’re handling more than one event type in a single handler
routine. In this case, it isn’t very useful because it only tells me whether I have a Deleted or
a Changed event, and I already know that!

If you build and run the application, you should see output similar to Figure 6.4.

Figure 6.4: The VBWatcher application running.

Using Sockets

The sample program creates a pair of applications—a client and a server—that
communicate using sockets. The client program invites the user to type a series of strings
and sends them to the server program, which displays them on the console. This read-send-
display behavior continues until the user enters a string that starts with a “.”, and then both
programs terminate.

The code assumes that both applications are running on the same machine. However, you
should be able to run them on different machines without any trouble, providing that TCP/IP
networking is installed correctly.

Writing a Socket Client

Here’s the socket client code:

' Import the namespaces needed by the program

Imports System.Net.Sockets
Imports System.IO

Module Module1

 Sub Main()

 Try
 ' Create a TcpClient, passing a hostname and a port.

 ' You can also use IPAddress in here instead of a string
 Console.WriteLine("Connecting to 1999 on localhost")

 Dim myClient As New TcpClient("localhost", 1999)

 ' Get the stream for I/O, and set the send buffer size
 Dim myStream As Stream = myClient.GetStream()

 myClient.SendBufferSize = 256

 ' Invite the user to enter lines, and read the first one
 Console.WriteLine("Input lines:")

 Dim s As String = Console.ReadLine()

 While True
 ' Turn the string into a byte array

 Dim bbuff As Byte() = System.Text.Encoding.ASCII.GetBytes(s)

 ' Write it to the stream
 myStream.Write(bbuff, 0, bbuff.Length)

 ' Clear the array ready for the next read

 System.Array.Clear(bbuff, 0, bbuff.Length)

 ' If the string started with a '.', we're done
 If s.StartsWith(".") Then

 Goto done

 End If

 ' Get the next string from the user, and loop around
 s = Console.ReadLine()

 End While

 done: Console.WriteLine("Done")

 Catch e As Exception
 Console.WriteLine("Exception: " + e.ToString())

 End Try
 End Sub

End Module

I start by importing the two namespaces needed in the program: System.Net.Sockets for
the socket classes and System.IO so that I can use streams. You don’t need to add a
reference to the project for either of these namespaces.

Setting Up the Socket

Although you can use the raw Socket class, Microsoft has provided the TcpClient and
TcpListener subclasses to manage the client and server ends of socket connections and to
do some of the housekeeping that you would otherwise need to handle yourself. Because
I’m writing the client side in this program, I create a TcpClient object, which is initialized with
the hostname and the port I want to connect to.

Note

If you’re going to run both programs on one machine, use “localhost” as the
hostname, as in the example. If you’re going to use another machine, you’ll
need to find out its IP address, and enter that as a string, for example,
154.14.65.123.

I’ve decided to use port 1999 in this program. Port numbers are always positive integers.
Values ranging from 0 through 1024 are reserved for “official” use by programs such as Web
and mail servers. Port numbers above 1024 can be used by any application as long as the
client knows which one it is.

The constructor for TcpClient can also use the IPEndPoint and IPAddress classes from
the System.Net namespace to specify where you want to connect. An IPAddress object
represents an IP address, and the Parse() method can be used to create an IPAddress
object from a numeric address:

Dim ipa As IPAddress = IPAddress.Parse("198.162.1.5")

An IPEndPoint is a combination of an IPAddress and a port number:

Dim ipep As New IPEndPoint(ipa, 1999)

The TcpClient constructor will make the call; if it returns without throwing an exception, the
connection has been established.

Getting the Stream

Once the connection has been made, I use getStream() to return a stream that I can use to
communicate to the socket at the server end. The stream performs buffered I/O, and the
default buffer size is 8192 bytes. Because I don’t need a buffer that big, I can use the
SendBufferSize property to adjust it to a smaller value, such as 256 bytes.

Writing Data to the Socket

By using Console.ReadLine(), getting a string from a user is simple. In order to write the
string to the socket, I need to convert it to an array of bytes. The System.Text namespace
(discussed in Chapter 12) contains a lot of useful utility functions; I use the GetBytes()
method to take a string and convert it to an array of bytes.

Once it has been converted, the stream’s Write() method takes the bytes and passes them
to the server on the other end of the socket connection. The arguments to Write() specify
the byte array, the starting position, and the number of bytes to write. In this case, because I
specified a buffer size of 255, my byte array is always going to be 255 bytes long.

After writing the byte array through the socket, I clear the array using a call to
System.Array.Clear(), which fills it with zeros. This is necessary because data stays in the
array and is simply overwritten by the next lot of input: If the next string is shorter, there will
be extra data on the end.

The code loops around, reading strings, converting them to bytes, and sending them until
the user enters a string that starts with a single period. This is recognized as the “end of
input” marker, so I jump out of the loop and the program exits.

Writing a Socket Server

Once you have completed the client code, you can focus on the server code:

' Import the namespace
Imports System.Net.Sockets

Module Module1

 Sub Main()

 Console.WriteLine("<Creating listener on 1999>")
 ' Create a listener on port 1999

 Dim myListener As New TcpListener(1999)

 ' Start listening for network traffic
 myListener.Start()

 ' Program blocks on Accept() until a client connects.

 Console.WriteLine("<Waiting for client…>")
 Dim mySocket As Socket = myListener.AcceptSocket()

 ' When this call returns, we've connected

 Console.WriteLine("<Client connected>")

 ' Get a line of text
 Dim bbuff(255) As Byte

 mySocket.Receive(bbuff, bbuff.Length, SocketFlags.None)
 Dim str As String = System.Text.Encoding.ASCII.GetString(_

 bbuff, 0, bbuff.Length).Trim(_
 Microsoft.VisualBasic.ChrW(0))

 ' A line consisting of just a '.' finishes things

 While Not str.StartsWith(".")
 ' Print the line

 Console.WriteLine(str)
 ' Get the next one

 mySocket.Receive(bbuff, bbuff.Length, SocketFlags.None)
 str = System.Text.Encoding.ASCII.GetString(_

 bbuff, 0, bbuff.Length).Trim(_
 Microsoft.VisualBasic.ChrW(0))

 End While

 ' Stop listening for network traffic
 Console.WriteLine("<Done>")

 myListener.Stop()
 End Sub

End Module

You should first import the System.Net.Sockets namespace, and create a TcpListener,
which wraps the server end of a socket connection. TcpListener’s constructor only requires
a port number on which to listen.

Note

Only one server program can use a port at a time; you’ll get a
SocketException if you try to create a second TcpListener to listen to the
same socket.

Once the TcpListener has been created, it starts listening for network traffic when I call its
Start() method. Once started, I can call AcceptSocket() to wait for calls from clients. This
function blocks until a client calls in, so servers don’t have to poll or wait in a loop checking
for clients to connect. When this method returns, I know that a connection has been
established, so I can start the conversation.

Note

A real-life server application would use threads to handle multiple clients,
creating a new thread to handle each call. See Chapter 12 for more details
on threading.

When the connection has been established, the program starts reading arrays of bytes from
the socket and converting them to characters. As with the client program, a utility method
from the System.Text.Encoding class is used for conversion, but this time there’s an extra
step involved. The whole buffer—all 255 characters—is sent over, and the unused portion is
padded with nulls. A call to the String class’s Trim() function can be used to eliminate these
nulls, but you need to tell the function which Unicode character or characters to trim. In order
to specify a null character, you can use the Microsoft.VisualBasic.ChrW() function to
convert an integer value to a Unicode character.

The converted and trimmed line is printed out, and then the code loops around, reading and
displaying lines until a line appears that starts with a “.”. At this point, the Stop() call tells the
socket to stop listening for network traffic, and the program terminates.

Chapter 7: .NET Security
By Julian Templeman

In Depth

.NET has its own security mechanism that provides a high degree of control over what code
assemblies can and can’t do, and which is especially useful in controlling which operations
code from different sources (loaded as part of a distributed application) can perform.

This security mechanism is quite complex, and for many—if not most—applications, you
won’t need to concern yourself with the details or make any changes, as the .NET security
mechanisms provide adequate default settings. This section discusses the security
mechanism in some detail to give you a flavor of how it works and to give you a start if you
do want to provide custom security settings.

The security namespaces consist of the following:
§ System.Security provides the underlying structure for the .NET security system.
§ The three System.Security.Cryptography namespaces provide cryptographic

services, including secure encoding and decoding and message authentication.
§ System.Security.Permissions defines permission classes that control access to

resources and operations.
§ System.Security.Policy contains classes that implement code groups, membership

conditions, and evidence, which are used by the Common Language Runtime (CLR)
security system to enforce security policy.

§ System.Security.Principal defines classes that represent the security context under
which code is running.

This chapter focuses on the System.Security, System.Security.Permissions,
System.Security.Policy, and System.Security.Principal namespaces, because they are
the ones you’ll use most from day to day.

The .NET Security Model

Secure computing means that you usually need to know some essential information:
§ Who originated a component
§ Whether someone should be allowed to perform an operation
§ What actions have been performed, and by whom

The third point is partially provided in Windows NT and 2000 by the audit features built into
Windows, which allow administrators to trap accesses to the file system and write an audit
trail to the Event log.

The current Windows model provides the first point using the system of Authenticode digital
signatures. For example, suppose you access a Web page that needs to download an
ActiveX control. You are asked whether you want to download the control and may be
presented with a summary of the DLL’s credentials in the form of a certificate. This certificate
represents a digital signature that was issued to the originator of the DLL, who should be the
only person with access to the signature. The DLL is check-summed to ensure that it has not
been tampered with.

Therefore, when you are presented with a signed component, you can be sure that the
component was originated by the source named in the certificate (provided, of course, that
their signature information hasn’t been stolen, and is being used to sign forged components).

You can establish that a dynamic link library (DLL) has been created by DiskTrasher
Industries Inc., but it doesn’t let you control what it does after it has been downloaded and
run.

.NET deals with the second point I listed above using a system of permissions, which it uses
to decide what a particular piece of code is and isn’t allowed to do at runtime. There are
three kinds of permissions, all represented by classes:
§ Code access permissions—Represent access to a protected resource or the ability to

perform a protected operation
§ Identity permissions—Indicate that code has a particular identity
§ Role-based security permissions—Provide a way to discover whether the user (or the

user’s agent) is acting in a particular role, such as “developer” or “manager”

How Does .NET Security Work with Windows Security?

Many platforms have their own security mechanisms, although they vary widely in
sophistication. The .NET mechanism is designed to work alongside the native platform
mechanism, supplementing it where necessary.

For example, .NET’s role-based security lets you check the identity of the current user based
on the user ID and role that the user is currently adopting. When running on Windows NT or
2000, the user ID is mapped onto the Windows user ID, and the role is mapped onto the
groups that the ID belongs to.

Code Access Permission

Code access permission is used to protect resources and operations from unauthorized
access, such as accessing a file or accessing unmanaged code. Code access permissions
form a fundamental part of the CLR’s security mechanism. Programs use these classes to
declare which permissions they want, and the CLR uses its security policy to decide which (if
any) of them to grant.

All the code access permission classes derive from
System.Security.CodeAccessPermission and are listed in Table 7.1.

Table 7.1: The code access permission classes.

Permission Class Permission Represented

CodeAccessPermission The base class for all the code access
permission classes

DirectoryServicesPermission Provides access to the
System.DirectoryServices class

DnsPermission Provides access to Domain Name Services
(DNS)

EnvironmentPermission Provides ability to read or write environment
variables

EventLogPermission Provides ability to access the Event log

FileDialogPermission Provides access to files that have been selected
by the user in a File Open dialog box

FileIOPermission Controls read/write/append access to files and

Table 7.1: The code access permission classes.

Permission Class Permission Represented

directory trees, including the entire file system

IsolatedStorageFilePermission Controls access to private virtual file systems

IsolatedStoragePermission Provides access to isolated storage; that is,
storage associated with a specific user

MessageQueuePermission Provides access to message queues through the
Microsoft Messaging Service (MSMQ)

OleDbPermission Provides access to databases using OLE DB

PerformanceCounterPermission Provides access to performance counters

PrintingPermission Provides access to printers

ReflectionPermission Provides access to type information at runtime

RegistryPermission Provides access to Registry keys or to the
Registry as a whole

SecurityPermission Provides ability to execute code, assert
permissions, call into unmanaged code, and
other rights

ServiceControllerPermission Provides access to Windows services

SocketPermissi on Provides ability to use socket services

SqlClientPermission Provides access to SQL databases

UIPermission Controls access to UI features, such as the
clipboard and use of dialogs

WebPermission Makes or accepts connections on a Web address

The examples in the following sections and the Immediate Solutions show you how these
classes are used in code.

Identity Permission

The identity permission represents characteristics that identify code, such as the location
from which it was loaded or the digital signature that was used to sign the assembly. This
information is called evidence and is provided by the loader or a trusted host (such as IE or
ASP.NET). The CLR uses the evidence to grant identity permissions to the code when it is
loaded. The identity permission classes are listed in Table 7.2; they all derive from
CodeAccessPermission.

Table 7.2: The identity permission classes.

Permission Class Permission Represented

CodeAccessPermission The base class for all the identity permission
classes.

PublisherIdentityPermission The software publisher’s digital signature.

Table 7.2: The identity permission classes.

Permission Class Permission Represented

SiteIdentityPermission The site where the code originated.

StrongNameIdentityPermission The strong name of the assembly.

URLIdentityPermission The full URL where the code originated.

ZoneIdentityPermission The security zone where the code originated.

Assemblies can be identified by their text name, version number, and culture information, but
sometimes this is not adequate. Strong names provide a way to ensure that assemblies can
be uniquely identified.

A strong name consists of the text name, version number, and culture information plus a
public key and a digital signature. The strong name is generated from the assembly using a
private key, and assemblies with the same strong name are expected to be identical. Using
an encryption key to produce a strong name has several advantages:
§ Names are unique because they use unique private keys for generation. It is therefore

possible to determine who has created a particular assembly.
§ No one can produce a new version of your assembly and pass it off as genuine

because it will not have been signed with your private key.
§ No one can tamper with the contents of an assembly because the signing process

involves generating a check-sum for the assembly that will be checked at runtime.

Role-Based Security Permission

The role-based security permission is used to determine whether the user running the code
has a particular identity or is a member of a particular role. There is one role-based security
class, PrincipalPermission.

Role-based security is used with programs in three ways:
§ Imperative security checks
§ Declarative security checks
§ Accessing a Principal object directly

To use an imperative security check, you create a PrincipalPermission object representing
a given user and role and call its Demand() method to check whether it matches the current
user and role. If the user and role specified in the PrincipalPermission object doesn’t match
the current user and role, the demand fails and a SecurityException is thrown.

To use declarative security checks, you add attributes that declare which users and roles
can execute a piece of code. If the user doesn’t match the specification in the attributes, the
call fails at runtime.

Alternatively, you can access the Principal object representing the current user directly and
find out who it represents.

Security Policies

How does the CLR know whether an action—such as writing to a file—should be permitted
or not? It looks at the security policy, which specifies the access rights that are to be granted
to code based on where the code comes from, who has signed it, and other criteria. This

policy can be customized on a machine-by-machine or user-by-user basis to provide
complete custom security.

.NET implements an extensible security policy known as the Code Access Security (CAS)
model. This takes the form of a hierarchy of code group entries, as shown in Figure 7.1.

Figure 7.1: The hierarchy of code groups that determines Code Access Security.

Each box in the diagram represents a code group, which is a logical grouping of code that
shares the same membership condition. For instance, the code group labeled “Zone:
Intranet” would include all code that has its origins on the local intranet, whereas the group
labeled “Publisher: Coriolis” would include all code that has been digitally signed by Coriolis.

The CLR uses identifying characteristics of assemblies (the evidence) to determine whether
membership criteria have been met. Evidence includes where the code was loaded from, the
site it came from, and who has digitally signed the code (if anyone). For instance, if the
membership condition of the group is that software must originate from Coriolis, the CLR
examines the evidence to ensure that the assembly has been signed using Coriolis’s key.

Each code group represents one membership condition. The possible membership
conditions are listed in Table 7.3.

Table 7.3: Membership conditions for code groups.

Membership Condition Description

Application directory The application’s installation directory

Cryptographic hash An MD5 or SHA1 cryptographic hash

Custom A system- or application-defined condition

File The rights to access a file

Net The network where the code originates

Software publisher The public key of a software publisher’s Authenticode

signature

Strong name A .NET assembly strong name

URL The URL where the code originates

Web site The Web site where the code originates

Zone The zone where the code originates

The hierarchy of code groups gives you a way to refine the permissions granted to code. In
Figure 7.1, code originating from the Internet will have the permissions associated with the
code group on the far right of the diagram. If the code happens to come from site tcl.com,
the permissions in the Site: tcl.com code group are added to those for Zone: Internet. This
makes it possible to fine-tune the permissions granted, for example, to different sites on a
corporate intranet. If code belongs to more than one code group, the permission sets of the
groups are unioned together to produce the permission set that applies to the code.

Each code group has one membership condition plus an associated permission set.
Permission sets contain at least one permission along with the name and description of the
permission set. The permissions supported include all the types listed in Table 7.1, and
developers can define their own custom permissions when necessary. See the Immediate
Solutions section for details on how to set and use permission sets.

Three tiers of policy currently supported in .NET are enterprise, machine, and user levels.
Enterprise-level policy applies to a group of machines and will be set by enterprise system
administrators. Machine-level policy is typically set by the machine’s administrator and
applies to the entire machine. User-level policy represents the policy for an individual user
and is typically modified by the users themselves. When using the policy tool, caspol.exe,
users can specify which level of policy they want to examine or modify.

Note

Users can only specify which level of policy they want to examine or modify
if they have the correct permission. You won’t be able to access the
machine level if you are not an administrator.

The intersection of the settings for these three policy sets governs the access that a code
item actually receives. For example:
§ Enterprise access grants full I/O access to file systems.
§ Machine access only grants read-only access to the file system.
§ A user grants read/write access to c:\temp.

The intersection of the rights means that code will have read-only access to c:\temp because
the machine-level access overrides the read/write access granted at the user level.

Setting Security Policies

In .NET Beta 2 there is no GUI tool, and all policy manipulation is done using the caspol.exe
command-line tool. Caspol can be used to edit enterprise-, machine-, and user-level policies
using the appropriate switches. The tool is simply run from a command window by giving the
command name followed by one or more options:

C:\> caspol -option1 -option2

A large number of flags can be used with caspol, and Table 7.4 lists some of the most
commonly used options. Note that most of the options have one- or two-letter abbreviations,
which are not shown in the table.

Table 7.4: Common options used with the caspol.exe security policy tool.

Option Description

addgroup Adds a new code group to the hierarchy, specifying the
parent and permission set

addpset Adds a new permission set to the policy

all Indicates that the options following this apply to

Table 7.4: Common options used with the caspol.exe security policy tool.

Option Description

enterprise-, machine-, and user-level policies

chggroup Changes a code group’s membership condition,

permission set, or flags

chgpset Changes a permission set to use a new permission set
definition

customall Indicates that options following this apply to enterprise,
machine, and custom user policies

enterprise Indicates that the options following this apply to
enterprise-level policies

execution on or off Turns on or turns off the mechanism that checks for
permission to run before executing code

help Displays command syntax and options

list Lists the code group hierarchy and permission sets

listdescription Lists all code group descriptions

listgroups Displays all code groups for the specified policy level

listpset Displays permission sets for the specified policy level

machine Indicates that the options following this apply to
machine-level policies

polchgprompt Enables or disables the prompt that is displayed
whenever caspol is asked to do something that would
cause policy changes

recover Recovers policy from a backup file, which is made
whenever a policy change is made

remgroup Removes a code group by label or name

rempset Removes a permission set by label or name

reset Returns policy to its default state

resolvegroup Shows the code groups that a specific assembly
belongs to

resolveperm Displays the permissions that would be granted to an
assembly if it was run

security on or off Turns code access security on or off

user Indicates that the options following this apply to user-
level policies

As an example, suppose I issue the following caspol command:

C:\> caspol -machine -listgroups

This instructs caspol to list all the code groups at the machine-policy level. I get the following
output, which is slightly abbreviated so it doesn’t take up too much space:

Microsoft (R) .NET Framework CasPol 1.0.2914.16

Copyright (c) Microsoft Corp 1999-2001. All rights reserved.

Security is ON
Execution checking is ON

Policy change prompt is ON

Level = Machine

Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust

 1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web.

 1.2.2. All code: Same directory FileIO - Read, PathDiscovery
 1.3. Zone - Internet: Internet

 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet

 1.5.1 All code: Same site Web
 1.6. StrongName - 0024000… : FullTrust

 1.7. StrongName - 00000… : FullTrust

The first three lines of output after the copyright message tell me that the security system is
on, code will be checked before it is executed, and I’ll be prompted if I make any changes to
the policy.

What follows is the hierarchical list of code groups, each of which is identified by its name
and a numerical identifier of the form “1.1”. Thus, the first code group has the identifier “1”
and the name “All code”. Each of the names is followed by a colon and a description of the
permissions for the group. For example, code group “1.1” is the MyComputer zone,
representing locally loaded applications, which have full access rights.

At the bottom, groups 1.6. and 1.7 give full access rights to two particular assemblies that
are specified by their strong names. The actual entries get quite long, so I’ve omitted most of
the hex defining the strong name itself.

You can also list the descriptions of the code groups in order to get more information about
what code they affect and the permissions they grant. You can do this by running caspol with
the following command line:

C:\> caspol -machine -listdescription

Here’s a sample from the output, showing the descriptions for a selection of the entries:

Microsoft (R) .NET Framework CasPol 1.0.2914.16
Copyright (c) Microsoft Corp 1999-2001. All rights reserved.

Security is ON

Execution checking is ON
Policy change prompt is ON

Level = Machine

Full Trust Assemblies:

1. All_Code: Code group grants no permissions and forms the root

 of the code group tree.
 1.1. My_Computer_Zone: Code group grants full trust to all code

 originating on the local computer.
…

 1.3. Internet_Zone: Code group grants code from the Internet
 zone the Internet permission set. This permission set grants

 Internet code the right to use isolated storage and limited
 UI access.

…
 1.6. Microsoft_Strong_Name: Code group grants full trust to code

 signed with the Microsoft strong name
 1.7. ECMA_Strong_Name: Code group grants full trust to code

 signed with the ECMA strong name

You can see that the descriptions make it simple to understand what the permissions stand
for. You should always include descriptions if you add code groups to the policy set.

Use the following command line to see a listing of the permission sets:

C:\> caspol -machine -listpset

There is a lot of output from this command. Here are a couple of sample entries:

1. FullTrust (Allows full access to all resources) =

<PermissionSet class="System.Security.NamedPermissionSet"
 version="1"

 Unrestricted="true"
 Name="FullTrust"

 Description="Allows full access to all resources"/>

6. Internet (Default rights given to Internet applications) =
<PermissionSet class="System.Security.NamedPermissionSet"

 version="1"
 Name="Internet"

 Description="Default rights given to Internet applications">
<IPermission

 class="System.Security.Permissions.FileDialogPermission, mscorlib,
 Version=1.0.2411.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"
 Version="1"

 Access="Open"/>
</PermissionSet>

…
<IPermission

 class="System.Security.Permissions.UIPermission, mscorlib,
 Version=1.0.2411.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"
 Version="1"

 Window="SafeTopLevelWindows"
 Clipboard="OwnClipboard"/>

</PermissionSet>

This looks a lot like XML, and that’s because it is XML. When you want to give permission-
set information to caspol, you have to specify it as an XML document; so caspol reports it to
you in the same format. Each PermissionSet element usually consists of one or more
IPermission elements, each of which defines a specific permission.

Note

There’s one permission set that has no IPermission entries, and that’s the
one that grants no permissions whatsoever. Obviously you don’t need more
than one of these!

Permissions in Code

Permissions are manipulated in code using permission objects from the
System.Security.Permissions namespace and a few other useful objects from
System.Net.

When a component wants to perform an operation—such as accessing the file system—the
security system checks against the policy to see whether the operation is allowed. If this
component is being used by another component, it is important to check whether it, in turn,
is allowed to perform the operation, and so on, up the stack of callers.

In order to access the local file system, not only does the ultimate component doing the
accessing have to have the correct FileIOPermission, but every caller in the chain has to
have it as well. If anyone in the chain doesn’t have the correct FileIOPermission, the
request fails with a SecurityException.

It is easy to see why this is necessary. Components running on the local machine are highly
trusted, and by default have a high level of access to the system. Likewise, I’m granted a

high level of access as the logged-in user, so I can make the component do pretty much as I
like.

When a component is used by someone or something from outside the machine, that agent
may or may not be allowed to access the local file system. It is important that the agent not
be able to get in using the back door by getting the component to do for it what it wouldn’t be
able to do with its own security settings. This is shown in Figure 7.2.

Figure 7.2: Security policy settings control what access users have to components.

Note that the .NET security mechanism sits on top of the one provided by the underlying
operating system, but doesn’t override it. This means that even if .NET decides that you can
write to a file, the underlying security system may deny you access.

The CodeAccessPermission Class

System.Security.CodeAccessPermission forms the base for all the permission classes
that are discussed in this chapter and contains several members that are inherited and used
frequently by derived classes.

Table 7.5 lists the methods of the CodeAccessPermission class. Several of these
members (namely Assert(), Demand() and Deny()) implement runtime checking of
permissions and are discussed in the following sections.

Table 7.5: Methods of the CodeAccessPermission class.

Member Description

Assert Asserts that calling code can access the resource
identified by the permission

Copy Creates and returns a copy of the permission object

Demand Determines at runtime whether all callers in the stack
have been granted the permission

Deny Denies access to callers higher in the stack

FromXml Reconstructs a permission object from an XML
encoding

Intersect Creates a permission object that represents the
intersection of two permission objects

IsSubsetOf Determines whether one permission object is a subset
of another

Table 7.5: Methods of the CodeAccessPermission class.

Member Description

PermitOnly Ensures that only resources specified in this
permission can be called by callers higher in the stack

RevertAll Causes all overrides to be revoked

RevertAssert Causes any previous Assert for the current frame to
be revoked

RevertDeny Causes any previous Deny for the current frame to be
revoked

RevertPermitOnly Causes any previous PermitOnly for the current frame
to be revoked

ToString Returns a String representation of the permission
object

ToXml Writes a permission object as an XML encoding

Union Creates a permission that is the union of two other
permissions

Given two permission objects, Intersect() creates a new object that represents the
permissions that both have in common. When Union() is invoked on a pair of permission
objects, on the other hand, it creates a new object that contains the permissions from both
other objects.

IsSubsetOf() tells you about the relationship between two permission objects. If permission
object A gives read/write access to all of the C: drive, whereas permission object B gives
read/write access just to c:\temp, then B is a subset of A.

If code uses PermitOnly(), callers higher in the call stack will only be allowed access to the
resources protected by this permission, even if they have access to other resources.

ToXml() and FromXml() let you serialize permission objects to and from XML. You’ll find
that the format produced by ToXml() is identical to the one that the policy editor, caspol.exe,
produces for you when you list permission sets. For example, the following sample program
creates a FileIOPermission object, and then dumps it out in XML format:

Imports System.Security
Imports System.Security.Permissions

Module Module1

 Sub Main()

 ' Create a FileIOPermission object to represent all access
 ' to c:\temp

 Dim fpa As New FileIOPermission(FileIOPermissionAccess.AllAccess,
_
 "c:\temp")

 ' ToXml() returns a SecurityElement
 Dim se As SecurityElement = fpa.ToXml()

 ' Dump out the SecurityElement

 Console.WriteLine(se.ToString())
 End Sub

End Module

The output from this program is:

<IPermission

 class="System.Security.Permissions.FileIOPermission, mscorlib,
 Version=1.0.2411.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"
 Version="1"

 Read="c:\temp"
 Write="c:\temp"

 Append="c:\temp"
 PathDiscovery="c:\temp"/>

This small program can be very useful if you want to make up new permission sets to use
with caspol, because the precise format of the XML needed for the various permissions is
not always easy to find.

Demanding Permissions

Much of the time your components may not have much involement with permissions. If you
use .NET classes to do I/O or other tasks, these .NET classes have all the security built in at
a lower level, so there will be no need for you to deal with security in your code.

Suppose you do need to perform an action that is controlled by a permission, such as
accessing a file. You will need to have your code tell the system what access you need. The
system will then check against the security policy to see whether access can be granted.
The following example shows how this works:

' I need "all access" to the file

Dim fpa As FileIOPermissionAccess = FileIOPermissionAccess.AllAccess
Dim fp As New FileIOPermission(fpa, filename)

' See if I can get it

Try
 fp.Demand()

Catch se As SecurityException
 ' No access, so report the error

 Console.WriteLine("I'm sorry, Dave, I can't do that")

End Try

' All is OK, so use the file.

I first construct a FileIOPermissionAccess variable that contains flags representing the
access I want. In this case, I want all access, so I only need to specify one flag, but I could
have used other flags listed in Table 7.6, ORing them together as necessary.

Table 7.6: Members of the FileIOPermissionAccess enumeration.

Member Description

AllAccess Provides append, read, and write access to a file or
directory

Append Provides access to append to a file or directory

NoAccess Provides no access to a file or directory

PathDiscovery Provides access to information on the path itself, such
as the directory structure revealed by the path

Read Provides read access to a file or directory

Write Provides write access to a file or directory

Once I’ve set the flags I want, I construct a FileIOPermission object, passing in the flags
and the file name, and then call its Demand() method to test whether I have permission. At
this point, the CLR checks the security policy to determine whether the call should be
allowed. As mentioned previously, it not only checks on behalf of this component, but also
for every component up the call chain until it reaches the top. If it’s a simple case of a client
calling this component directly, there’s only one extra level of checking, but there may be
several levels involving remote users. If every component in the chain has the correct
permissions, the call will succeed, but if any call doesn’t, a SecurityException is thrown.

You can see how, using this declarative model, the component sets out what it needs to do,
and then asks the runtime to check whether this is okay.

When do you need do these checks? They are expensive, so choose the times when you
need to have a security checkpoint wisely. A good place may be at object construction time
and also before critical operations. You may also need to check again if a reference to the
object is passed around. If the check is only done at construction time, it may have been fine
for the original caller, but a reference could then be passed to another caller who isn’t
trusted, and that caller would be able to use it!

Denying Permissions

What if you’re using a component and you want to be sure that it isn’t going to do anything it
shouldn’t? As an example, suppose I’ve been given a component that formats some data
files and displays them, and I’ve installed it on my local machine. As far as I’m concerned, all
the component should do is to read the files in order to display them, but you’ve seen that a
component can request the permissions it wants at runtime. The problem is that because
both client and component are local, they both have a high degree of trust, so in all likelihood
if the component asks for write permission, it will be granted.

If I want to be sure that a component cannot misbehave, I can temporarily override the set of
permissions in force in order to deny certain operations:

' Create an empty permission set
Dim p As New PermissionSet(PermissionState.None)

' Deny access to certain directory trees on the disk

p.AddPermission(_
 New FileIOPermission(FileIOPermissionAccess.AllAccess, _

 "c:\data"))
p.AddPermission(_

 New FileIOPermission(FileIOPermissionAccess.AllAccess, _
 "c:\personal"))

' Change the permissions

p.Deny()

' Do the operation
myObject.accessData()

' Remove the restriction

CodeAccessPermission.RevertDeny()

As its name implies, a PermissionSet object holds a set of permissions, and I use the
AddPermission() method to create new permission objects and add them to the set.

Once I’ve built the set I need, I can call Deny() to change the set of active permissions, and
succeeding operations will be checked against the modified permission set until I call
RevertDeny() to revert to the original permission set.

Note that there’s only one set of permissions in force at a time, so if I want to build two
PermissionSet objects and call Deny() on each of them, the permissions I would get are
those associated with the second call:

Dim p1 As New PermissionSet(PermissionState.None)

Dim p2 As New PermissionSet(PermissionState.None)

' Change the permissions
p1.Deny()

p2.Deny()

' The permissions defined in p2 are in force, overwriting the set
' provided in p1

If you only want to grant one or two specific access rights—such as the ability to read files in
one directory—it is long-winded to create a permission set that denies access to all the other
files, directories, and services you don’t want touched.

In this case, you can use the PermissionSet.PermitOnly() and
CodeAccessPermission.RevertPermitOnly() methods, which deny all permissions except
those built into the permission set. The following code fragment shows how I could deny
access to everything except two directories:

' Create an empty permission set

Dim p As New PermissionSet(PermissionState.None)

' Give access to two directory trees
p.AddPermission(_

 New FileIOPermission(FileIOPermissionAccess.AllAccess, _
 "c:\data"))

p.AddPermission(_
 New FileIOPermission(FileIOPermissionAccess.AllAccess, _

 "c:\personal"))

' Change the permissions
p.PermitOnly()

' Do the operation

myObject.accessData()

' Remove the restriction
CodeAccessPermission.RevertPermitOnly()

Asserting Permissions

As mentioned earlier, the security mechanism checks each call in the chain to decide
whether an operation should be allowed or not. This is secure, but sometimes rather too
restrictive.

Suppose that I have a component that wants to put a simple dialog up on the screen. In
order to do this, everyone in the call chain has to have UIPermission, which may not be
feasible because the component may be being called by some completely nonvisual
component that hasn’t asked for UIPermission. In this case, it is possible for the component
that wants to display the dialog to “assert” one or more permissions, which effectively tells
the runtime not to check any further. Asserting a permission means that the runtime won’t
walk up the call chain checking permissions unless there are other permissions to be
checked that aren’t included in the asserted set.

Using Assert() is very similar to using Deny(), as you can see from the following code:

' Create an empty permission set
Dim p As New PermissionSet(PermissionState.None)

' Add a UIPermission object asking for unrestricted access

' to the UI

p.AddPermission(New UIPermission(PermissionState.Unrestricted))

' Assert the permission
Try

 p.Assert()

 ' If the code got here, the Assert worked, so do the operation
 DisplayDialog()

 ' Remove the Assert

 CodeAccessPermission.RevertAssert()
Catch se As SecurityException

 Console.WriteLine("Assert failed")
End Try

Once again I create a PermissionSet object. This time I add a permission to it that requests
unrestricted access to the UI. I may or may not be granted this access, so I call Assert()
within a Try block, so that I can catch the SecurityException that will be generated if my call
to Assert() fails.

Unlike the call to Demand(), which checks all the callers of this code, the call to Assert()
tells the security system to grant access to me without checking anyone else. This can result
in possible security loopholes, so Assert() should be used with care.

Signing an Assembly with a Strong Name

A strong name consists of the text name, version and culture information for the assembly, a
public key, and a digital signature. Although simple assembly names could be duplicated,
the addition of the public key and digital signature make the name unique. See the section
“Identity Permission” in the In Depth section for more discussion on strong names.

You need strong names in two particular cases:
§ When you want to put an assembly in the Global Assembly Cache (GAC) so that

everyone can use it
§ When you want to give the assembly special permissions in the security policy

This solution shows you how to sign an assembly with a strong name. Start by generating a
private/public key pair using the Strong Name tool, sn.exe, like this:

sn -k mykey.snk

Running sn with the -k flag generates a random key pair and stores it in the file mykey.snk.
Once you have the key pair, there are two ways to use it to sign an assembly. I will describe
each of these ways here.

Using Visual Studio .NET

Visual Studio .NET builds signed assemblies for you if you provide attributes to specify the
key information. Visual Studio .NET projects contain a file that is used to specify attributes
for the assembly. What this file is called depends on the language being used, but Visual

Basic projects contain a file called AssemblyInfo.vb along with any other code files that the
project may require.

Generate a key pair for the project using sn.exe, and then put it into the project directory
along with the VB and SLN files. Then open the AssemblyInfo.vb file, and add the following
line to the bottom:

<Assembly: AssemblyKeyFile("mykey.snk")>

The string “mykey.snk” must reflect the name of the key file you generated with sn.exe,
and you can use relative paths if you want. Visual Studio checks for the presence of the file
as soon as you’ve typed the line, so you’ll soon find out if you’ve put it in the wrong place.
Build the project, and your assembly will be signed with a strong name.

Using the Assembly Generation Tool

It is also possible to generate assemblies using the Assembly Generation tool, al.exe, which
builds an assembly out of modules.

An assembly consists of one or more IL code modules plus a manifest, and a module is
simply a compiled piece of IL code. Visual Studio always builds full assemblies for you, but if
you want to use the command-line compilers, you can produce modules as compiler output,
and then use al.exe to build the modules into assemblies. As well as creating a manifest,
al.exe can also use a key pair to sign an assembly.

Here’s an example using al.exe:

al /out:MyCode.dll MyCode.module /key:mykey.snk

The module MyCode.module is used to build the assembly MyCode.dll, and it is signed with
the keys in the file mykey.snk.

Note

See the .NET Framework SDK documentation for more details on building
assemblies and using al.exe.

Asking for Access to Resources

.NET components ask for the access they require to resources, such as files, by using
permission objects. The CLR then checks the request against the security policy and either
allows or denies the request.

The following example shows how a component would ask for access to a particular file:

Imports System.Security

Imports System.Security.Permissions

Module Module1

 Sub Main()
 ' Ask for all access to c:\temp

 Dim fpa As New FileIOPermission(FileIOPermissionAccess.AllAccess,
_

 "c:\temp")

 Try
 fpa.Demand()

 Console.WriteLine("Access granted")
 Catch e As SecurityException

 Console.WriteLine("Access denied")
 End Try

 End Sub

End Module

The program starts by importing System.Security, which gives easier access to
SecurityException, and System.Security.Permissions, which contains
FileIOPermission.

I then construct a FileIOPermission object representing all access to c:\temp, and then test
whether I can get that permission by using the FileIOPermission object’s Demand()
method. Demand() tells the security system to check whether this code—and any code that
has called this code—has AllAccess permission to c:\temp. If all callers have access, the
call succeeds; if any caller doesn’t have access, the call fails and throws a
SecurityException.

Using Demand() in this way means that you may get different results depending on where
the code is loaded from. For example, if the code is run from the local machine, the default is
to give all access to the local filing system. If, on the other hand, the code is loaded from a
source on the Internet, it won’t be given all access to the filing system unless the policy has
been modified to let it do so.

Restricting a Component’s Access to Files and Directories

It is very probable in the .NET world that components are going to call one another, and you
may not be sure what the component you’re using may try to do when you call a method.
The .NET code access security mechanism lets you specify exactly what components can
and cannot do by using permissions.

Here’s an example: My program wants to use a class called AccessIt, which I know
accesses the local disk. I’m not sure exactly what it is going to try to access, and I want to
restrict the component so that it can only use the c:\temp directory.

The following program shows you how I can accomplish this restriction:

Imports System.Security
Imports System.Security.Permissions

Imports System.IO

Module Module1

 Sub Main()

 ' Create an empty permission set
 Dim p As New PermissionSet(PermissionState.None)

 ' Give access to one directory

 p.AddPermission(New FileIOPermission(_
 FileIOPermissionAccess.AllAccess, "c:\temp"))

 ' Change the permissions

 p.PermitOnly()

 ' Do the operation
 Dim a As New AccessIt()

 a.DoIt()

 ' Remove the restriction
 CodeAccessPermission.RevertPermitOnly()

 End Sub

 Class AccessIt

 Public Sub DoIt()
 ' Try to access some data…

 Try
 Dim sr As New StreamReader("c:\tcl\Directions1.htm")

 Console.WriteLine("File open OK")
 Catch e As Exception

 Console.WriteLine("File open failed: " + e.ToString())
 End Try

 End Sub
 End Class

End Module

The program starts by importing some namespaces—two for the security system and
System.IO because I’m going to be using file I/O.

In order to restrict the permissions granted to components, I need to build a custom
permission set that specifies the permissions I want to grant. The
System.Security.PermissionSet class represents a set of permissions, and I create one
that is initially set to “no access to anything” by specifying the PermissionState.None
parameter.

I can now create one or more permission objects and add them to the PermissionSet using
the AddPermission() function. Because I’m concerned with access to the file system, I
create a FileIOPermission object that grants all access to the directory c:\temp.

Once I’ve set up the set of permissions I want to apply, I use the PermissionSet’s
PermitOnly() to make the set active. This function won’t allow any actions except those
specified in the PermissionSet, hence the name: It permits only those actions named in the
set. This set of permissions remains in force until I revoke them, by calling
RevertPermitOnly(), at which time the set of permissions in force reverts to whatever it was
originally.

The AccessIt class is very simple, consisting of one method, which tries to open a file in the
c:\tcl directory. At the point DoIt() is called, the security permissions only permit operations
on c:\temp, so attempting to open this file should fail.

When you run the code, you should find that it does indeed fail, and it shows you a security
violation exception, as shown in Figure 7.3.

Figure 7.3: The SecurityException that results from trying to access a forbidden file.

You can see that the exception was thrown in the StreamReader constructor in the DoIt()
function, where it was trying to open the file. Further up the stack trace you can see a call to
Demand(), where the I/O code is checking to see whether it has permission to open the file.
Because of the permissions in force, it doesn’t have permission, so the SecurityException
is thrown.

You can see from this program how it is possible for client code—in this case, the Main()
function—to control what components can access.

Ensuring That Only Specified Users Execute Code in
a Method

There are three ways to ensure that only specified users execute code in a method: You can
use an imperative security check, a declarative security check, or a Principal object directly.

Imperative Security Check

An imperative security check requires that you add code to your class to set up the security
check. Here’s a sample that shows you how this can be done:

' Needed for SecurityException

Imports System.Security
' Needed for PrincipalPermission

Imports System.Security.Permissions

Public Class Test
 Public Shared Sub SecureMethod()

 ' Create a permission object
 Dim pm As New PrincipalPermission("ZEPPO\Administrator", _

 "BUILTIN\Administrators")

 Try
 ' Demand the permission

 pm.Demand()
 Console.WriteLine("OK, you've got access")

 Catch se As SecurityException
 Console.WriteLine("Access denied")

 End Try
 End Sub

End Class

I want to make sure that code in the function SecureMethod() is only executed if the current
user is Administrator on the Zeppo machine. The
System.Security.Permissions.PrincipalPermission class represents a security
permission and allows you to perform checks on users and roles. You can create a
PrincipalPermission object to represent a particular user in a particular role; in this
example, the user is “ZEPPO\Administrator” and the role is “BUILTIN\Administrators”.

Note

When using security functions, the names of security principals are specified
in the Domain\UserID form.

The first parameter given to the PrincipalPermission constructor is the ID of the user, and
this maps onto a Windows NT or 2000 user ID. The second parameter is the name of the
role that the user must be occupying. Although it is possible to have generic roles defined
within .NET (and also to use roles defined for COM+ or MTS), most of the roles you use will
map into Windows NT or 2000 groups. In order to use operating groups, you have to prefix
the group name with “BUILTIN\”, as in the preceding example.

The Principal permission object now represents the user, so I can then call Demand() on
the object. This checks whether the current security principal matches the settings in the
Permission object and throws a System.Security.SecurityException if they don’t. This
means that by enclosing the call to Demand() in a Try block, I can be sure that the rest of
the code after the call to Demand() is only executed if the user has the right name and is in
the correct role.

Declarative Security Check

Declarative security means adding attributes to code that tells the CLR which users are
allowed to use a class or execute a method. The following C# example shows you how to
use the PrincipalPermission attribute to control access in this way:

using System;
using System.Security;

using System.Security.Permissions;

namespace CSSec1
{

 class Class1
 {

 static void Main(string[] args)
 {

 Console.WriteLine("Trying…");
 // This call will fail

 Restricted r = new Restricted();

 // So will this one
 foo();

 }

 // Create a method with restricted access
 [PrincipalPermission(SecurityAction.Demand,

 Name="fred", Role="Administrators")]
 static void foo()

 {
 Console.WriteLine("In foo…");

 }
 }

 // Create a class with restricted access

 [PrincipalPermission(SecurityAction.Demand,
 Name="fred", Role="Administrators")]

 class Restricted {
 public void aMethod() {

 }
 }

}

Note

There appears to be a bug in Visual Basic in the .NET Beta 2 release
related to using the PrincipalPermission attribute, so I’ve provided the
example in C#, which works fine.

The interesting parts of the code are highlighted. The static method foo() in Class1 and the
whole of class Restricted are marked with the PrincipalPermission attribute. This takes
three arguments: The first is the action, which I’ve set to SecurityAction.Demand, meaning
that the security settings will be checked at runtime. The next two parameters specify the

user ID and role, which will be checked at runtime. The net result is that if the two calls in the
Main() function are made by anyone other than fred, they will fail with a SecurityException.

Using a Principal Object

You can also check user identity by using the WindowsIdentity and WindowsPrincipal
classes.

The following two lines of code show you how to see who the current user is:

Dim prin As WindowsIdentity = WindowsIdentity.GetCurrent()

Console.WriteLine("Current user is {0}", prin.Name)

The WindowsIdentity class represents a Windows user. The GetCurrent() shared method
returns a WindowsIdentity object initialized with the details of the current user. Some other
methods and properties of this class are listed in Table 7.7.

Table 7.7: Useful methods and properties of the WindowsIdentity class.

Member Description

AuthenticationType Returns the type of authentication used, typically
NTLM

GetAnonymous Shared method that returns a WindowsIdentity object
representing an anonymous user

GetCurrent Shared method that returns a WindowsIdentity object
representing the current user

Impersonate Allows code to impersonate a user

IsAnonymous True if the WindowsIdentity object represents an
anonymous user

IsAuthenticated True if the WindowsIdentity object represents an
authenticated user

IsGuest True if the WindowsIdentity object represents the
guest account

IsSystem True if the WindowsIdentity object represents the
System account

Name Returns the user’s login name

The WindowsIdentity class lets you check the name of the user, but doesn’t provide any
information about group membership, for which you’ll need to use a WindowsPrincipal
object.

Note

A security principal represents the identity and role of a user. Windows
principals in .NET represent Windows users and their roles (or their
Windows NT and 2000 groups).

You often want to create a WindowsPrincipal object to represent the current user, and you
can do this using WindowsIdentity.GetCurrent(), as shown in the following code:

Dim prin As New WindowsPrincipal(WindowsIdentity.GetCurrent())

Console.WriteLine("Current user is {0}", prin.Identity.Name)

This class only has two members: an Identity property that returns a WindowsIdentity
object representing the user, and an IsInRole() method that tells you whether the user
belongs to a particular role:

If prin.IsInRole("BUILTIN\Administrators") Then

 Console.WriteLine("Administrator role")
End If

Chapter 8: The System.Web Namespace
By David Vitter

In Depth

The Web and the Internet play a crucial role in Microsoft’s vision for the future of applications
development. In fact, the role the Web plays in the .NET Framework is so important that it
has its very own namespace! Housed within the System.Web namespace you will find all of
the necessary ingredients to create an ASP.NET Web application or a .NET XML Web
service.

In this chapter, you learn about .NET Web development using the System.Web namespace.
You will see how easy it is to create an ASP.NET project using whichever .NET development
language you prefer. I will also show you how ASP.NET applications work behind the
scenes. In addition, you learn about XML Web services and how they can fit into a .NET
application architecture. This exciting new area of Visual Studio development has received a
great deal of attention in the media, and I am sure you are curious to learn

Introduction to ASP.NET

As you can probably tell by the name, Active Server Pages (ASP) are Web pages that are
processed by a Web server. Static Web pages, which usually end with the .html extension,
require no processing and can be sent in their natural form across the Internet to a user’s
browser. ASP pages are not static, and they need to be processed by a Web server before
the resulting HTML page is sent to a user. For example, you might create an ASP page that
displays today’s weather report. That ASP page would contain the code necessary to query
a weather-related database and then format the returned data into a Web page. ASP pages
are said to be dynamic because the content and format can change depending on the inputs
the page receives during processing.

ASP.NET represents the latest evolution of dynamic Web content development. Included
within the realm of ASP.NET are Web Forms and Web controls. You will first learn about the
dramatic changes made to ASP in ASP.NET, and then you will learn how Web Forms and
Web controls work and interact. In addition, you will see how ASP.NET projects can be
integrated with other projects that are created in .NET, including XML Web services and
Windows applications.

From ASP to ASP.NET

Before the introduction of .NET, ASP pages were a great way to create dynamic Web
content, but they had some serious drawbacks that developers had to deal with. ASP Web
development projects all suffered from the following limitations:
§ ASP pages could only use scripting languages, such as VBScript, which is a very

limited subset of Visual Basic.
§ Web pages were stored in raw text format and were interpreted at runtime by the Web

server.
§ Both the HTML formatting tags and the interpreted code were stored in the same

source code file, making it difficult to reuse code segments in multiple Web pages.
§ The basic set of HTML form controls was very limiting and creating fancy client-side

displays, such as a sortable grid displaying a table of data, required a great deal of
coding on the ASP developer’s part.

§ ASP development was not integrated into the main Visual Studio IDE (Integrated
Development Environment). You had to use a text editing tool such as Window’s
Notepad, the Visual InterDev tool included with Visual Studio 6, or some other third-
party tool such as Macromedia’s Ultradev 4 to edit ASP pages.

ASP allowed developers with Visual Basic experience to develop quick-and-dirty Web pages
to be hosted on a Microsoft Windows Web server. I use the term dirty because ASP pages
often used crudely crafted code that was as un-object-oriented as any code could be. Due to
its reliance on scripting languages, non-Visual Basic developers were basically locked out of
ASP development projects, at least as far as the Web interfaces were concerned. Because
of this exclusion, ASP Web page development was often considered a skill unto its own and
not a talent often associated with high-end C++ developers.

ASP.NET seeks to remove all of these weaknesses and drawbacks by completely
reincarnating itself as a respectable Web development technology. It addresses the
weaknesses of its predecessor in the following ways:
§ You can now create ASP.NET Web pages using any Visual Studio .NET development

language including Visual Basic and C#.
§ ASP.NET Web pages are compiled like Windows Forms, providing far better

performance than ASP pages.
§ The tags defining the Web pages interface and the programming source code are now

stored in two different files, allowing developers to edit their code without affecting the
interface designer’s work. Multiple ASP.NET Web Forms can also reuse a single source
code file.

§ ASP.NET introduces server-side Web controls, which allow developers to create fancy
and robust interfaces just as easily as you could create a Windows Form.

§ You can design, code, and debug your ASP.NET Web pages in the same development
environment as all of your other .NET projects.

ASP.NET levels the playing field for all developers. Everyone, from experienced ASP
developers to experienced C++ developers, will all have to learn ASP.NET from scratch. The
good news is that Microsoft has made it incredibly easy to learn how to create powerful Web
pages using ASP.NET, and this wonderful application type is no longer restricted to a small
subset of developers.

How Web Pages Work

If you are going to develop applications that use the Web as a communications medium, it is
important to understand how the Web works. This information not only applies to ASP.NET
Web pages, but also to XML Web services, which I will cover later in this chapter (see the
“XML Web Services” section). In other words, if you are new to Web development, do not
skip this section because you will be missing out on some very important background
information.

I am certain you have used the Web before, probably for email and Web browsing. But what
happens behind the scenes when you type a Uniform Resource Locator (URL) into your
browser’s Address box and click Go? The Web works by using a series of requests and
responses. Simply stated, your Web browser sends out a request for the Web page
matching the URL you typed in, and somewhere out in the world a Web server responds
with that Web page. Take a look at Figure 8.1. In this figure, you see a step-by-step example
of a user requesting a Web page from a remote Web server. The Web browser first sends a
request to the Web server for the desired page. The server then responds to the browser
with the HTML page. When the browser processes the page, it may encounter one or more
HTML tags that reference a graphic, so the browser sends a request for each required
graphic, which the Web server responds back with.

Figure 8.1: A Web browser requesting and receiving a Web page from a Web server.

The HTTP Protocol

These Web page requests and responses are transported back and forth across the globe
using Hypertext Transfer Protocol (HTTP). HTTP is the language of the Web—it’s how Web
browsers talk to Web servers and how your applications will talk to XML Web services.
Remember that Web-based communication is all about asking and receiving.

When you ask for some information, you must provide a couple of pieces of information to
complete the transaction. The URL you request tells the Web server exactly what it is you
desire, but within the HTTP request you can find many other tidbits of information. The
requester’s IP address is a critical piece of data without which the Web server would have no
idea where to send the requested page. Also included inside the HTTP request is
information on what type of browser the user is using and what file formats that browser will
accept. This information is sort of like mailing someone a self-addressed return envelop and
a little bit of information about your self to help the information provider tailor their response
with.

Connectionless and Stateless Communications

There are two limitations you need to be aware of when communicating via the Web. The
first is that the Web, by design, is connectionless. This means that your Web browser or
application does not establish a hard, fixed link with a Web server. You simply send your
request via HTTP, and then you wait for a response. I’ll bet you have encountered a time-out
message in your Web browser at one time or another. This means that your request was
sent out, but a response did not come back in a reasonable amount of time. Because your
browser does not establish a dedicated connection to a Web server, these request time outs
are often the sole indicator that a server is down or that the URL provided was incorrect.

The other tricky aspect to Web development and communications is that the Web is a
stateless medium. After a Web server provides you with the information you requested, it
then forgets that it ever met you. Yes, that’s kind of rude, but if your Web server had to keep
tabs on everyone that ever visited it and what they asked for, your server would quickly
come to a grinding halt due to overloaded resources. However, there are ways around this
limitation. If your Web site needs to track a user’s path through your site or remember some
important information about that user, you have some options available to you. You can:
§ Store information on the client’s end in the form of a cookie
§ Save this information to a database
§ Write these bits of data to a text file on the Web server
§ Store the user’s data within his or her Web session

In the next section, I discuss each of these methods, along with their strengths and
weaknesses.

Persisting Data

Most Web users are familiar with cookies. These are small files that are written to the user’s
hard drive to provide storage for some piece of information, such as the date of the user’s
last visit to a certain Web site. The Web server can request that the browser provide this
cookie to help the server remember something about the user. Unfortunately, many users
frown upon having information written to their hard drives unknowingly and therefore disable
the use of cookies within their browsers. This places the burden of remembering bits of user-
specific information squarely on the shoulders of the overloaded Web server.

Tip

Avoid using client-side cookies to persist data about your users—many users
disable the use of cookies in their browser, which will cause your persistence
plan to fail.

On the Web server, the three most common ways to persist a piece of information from one
Web page request to another are by saving the data to a database, writing it to a file, or
storing it in the user’s Web session. In terms of performance, reading and writing information
from a database can be very costly and should be done as little as possible. Often your
database will be stored on a separate server and making repeated calls to another server to
persist user information would greatly slow down your Web site. Writing data to a text file on
the server can offer some improvement over the database storage option, but you will still
experience some slow downs with this method.

Despite their drawbacks, developers have been using cookies, databases, and the file
system to persist data between requests since the birth of the Web. When working with
Microsoft’s Internet Information Server (IIS), developers have a fourth option available that
offers a significant performance gain over the other three options: When a user requests a
page from an IIS Web server, IIS creates what is called a session for that user. Each session
created is unique to a single user. An IIS Web server has a time-out setting that decides how
long the Web server will wait for a user to make another request before the server drops that
session. By default, this time-out is set to 20 minutes.

For the Web developer, the session creates a temporary area for each visitor where you can
store data. Say, for example, that the front page of your Web site asks a user to provide his
age. When this page is submitted, you could store this information within that user’s session
and continue to reference this information while that session is active. A couple of page
requests later, your code will be able to access the user’s age, which was “remembered” by
the session and provide some age-customized content back to your visitor.

In the Immediate Solutions section, you will learn how to read and write data to the IIS Web
server’s session. If you want to persist data to a database or the file system, you will do that
just like you would any other database or file access routine in any normal application. Table
8.1 lists all of the persistent storage methods discussed previously along with their upsides
and their downsides.

Table 8.1: Data persistence options for Web developers.

Method Pros Cons

Cookie Information storage occurs on

client ’s machine, freeing up server
resources.

Many users dislike cookies and
disable these in the browser.

Database A great way to associate data with
a user’s account.

Access times can be slow.

File System A good choice to persist data
close to the Web server.

Reading and writing to files can
be slow.

Table 8.1: Data persistence options for Web developers.

Method Pros Cons

IIS Session Provides the fastest access to
your data.

Excessive use of session
storage can slow down your
server.

The GET and POST Form Methods

A simple request for a single Web page is easy to comprehend, but making requests for
static HTML pages is fairly boring and does not represent the full power of Web applications.
The Web is full of Search buttons and registration forms, all asking you to provide some
information to be sent back to the Web server. These extra data elements are embedded
into the HTTP request using either the GET or POST method. Most Web page requests use
the GET method to send the request. If there is form data involved in a GET request, it is
appended to the end of the URL to form one long URL. Special characters such as ? and &
are used to separate data elements in a GET request. If you submit a form that uses the
GET method to send form data, you will see this data appended to the end of the URL in
your Web browser’s Address window.

If the Web page uses the POST method, you will not see the form data in the browser’s
Address window. Instead, these data elements are packaged inside the HTTP request
message. The main difference between the GET and POST methods is how they package
your form data. In the past, your server-side code had to know which request method was
used so that it could properly extract these data elements. Luckily, with ASP.NET and XML
Web services, the differences between GET and POST will be mostly transparent. If you do
not want the form data to be visible in the URL Address text box, you should use POST.
Otherwise, use the GET method.

Integrating ASP.NET into Your Applications

ASP.NET projects are not meant to be standalone applications. On the contrary, you should
use an ASP.NET project as one of the building blocks that makes up a larger and more
complex application. Sure, you could include all of your business logic and data access code
within your ASP.NET project, but the result would be a tightly packaged unscalable
application. For small Web applications, this is not such a bad thing, but if you are designing
a large enterprise-level application, you need to understand how ASP.NET projects can fit in
to an n-tier architecture.

Developing your application in tiers means that you separate the pieces of your application
based on their functions. If a component contains business logic or performs calculations, it
goes in the business tier. If it accesses data stores, a component is placed in the data tier.
ASP.NET Web Forms are responsible for displaying information and accepting input from
the users, similar to Windows Forms, so they belong in the presentation tier. If you use
ASP.NET in this fashion, you can develop multi-interface applications that maximize code
reuse. Imagine an application that features a Windows interface for employees working on
the company network and a Web interface for customers accessing the application from
outside the company. If you place all of your business logic on a tier separate from the
presentation logic, both the Windows and Web interfaces can share the same back-end
code. Figure 8.2 shows an example of an application that features these two different
interface types.

Figure 8.2: Integrating ASP.NET into your application designs.

To achieve this level of integration and code reuse, you will create a new project for your
ASP.NET Web Forms, another project for your Windows Forms, and yet another class
Library project that contains your business logic. The important thing to remember when
separating presentation logic from business logic is to not place any code in your
presentation tier projects that is not directly responsible for the display or collection of data. If
a function performs any calculations or accesses any data stores, you will need to move it
out of your presentation tier. This way you can reuse this piece of code in your other
presentation tier projects.

You should no longer think of your applications as being either Windows applications or Web
applications. In .NET, Web Forms represent one of many possible interfaces your
application can have, and any .NET developer can easily create a Web Form for use with his
application. Think of Web Forms as just another tool in your toolbox that you can use to
make your project available via the Web.

Tip

When thinking about Web interface development, use the term Web Forms,
not ASP.NET. This will remind you that Web Forms are interchangeable with
Windows Forms as the interface to your application.

Web Forms

When accessing your ASP.NET Web applications, your users will be using Web Forms
hosted within their browsers. In .NET, Web Forms are inherited from the
System.Web.UI.Page namespace. Creating Web Forms in Visual Studio .NET is very
similar to creating Windows Forms, so you should feel right at home working with Web
Forms, especially if you are coming from a Visual Basic background. One of the major
differences between Web Forms and Windows Forms is the fact that Web Forms are a
platform-independent application interface. This means that users can access your Web
Forms using any browser type hosted by any operating system running on any hardware
platform. Windows Forms, on the other hand, are designed to only run on computers using
the Windows operating system. The flexibility of Web Forms makes them an attractive
choice when planning your application’s front-end, and nowadays many customers are
asking for Web-based applications that they can use in their mixed operating system
environments. Let’s take a look at how a Web Form works and how developers create these
flexible Web-based interfaces.

How Web Forms Work

Web Forms live in the same realm as the HTML page. When you create an ASP.NET Web
Form, you make it available for use by placing it within the directory structure of an IIS Web
server. It’s important to note that only an ASP.NET-aware Web server, such as IIS 5 running

on Windows 2000, is capable of processing and serving ASP.NET applications. This is
because, unlike HTML Web pages, an ASP.NET Web Form must be processed before the
results can be sent to the requesting browser. You can think of your Web Forms as “HTML
generators” because when processed, your Web Forms will produce HTML Web pages that
are compatible with the requesting browser. None of the programming code that you will use
to code your Web Forms will be sent to the user, so your coding secrets are safe with
ASP.NET.

You can place controls on your Web Forms just as you can with Windows Forms except that
you will have a different drawer full of controls to choose from with Web Forms. Web Forms
and their associated Web controls can perform one nifty trick that their Windows
counterparts cannot: They can adapt their output to be compatible with the user’s browser
type. As every Internet developer can attest to, some browsers are more powerful than
others, and it seems that no two users can agree on which browser to use. Until ASP.NET,
developers had to decide which browser types and versions they wanted to support, and
then eliminate all features that the lowest supported browser could not use. This resulted in
watered down Web-based applications that excluded advanced features in favor of
maximizing browser compatibility.

Working in conjunction with the Web server, ASP.NET applications can detect what browser
type and version a visitor is using, and then adapt the Web Form’s output for that browser.
For example, the Internet Explorer browser supports Dynamic HTML (DHTML), whereas
most Netscape browsers do not, so an ASP.NET application can decide whether to send a
version of itself that uses DHTML or an alternate version that does not. (You will learn more
about Web controls and their abilities to adapt their outputs in the “Web Controls” section.) If
you look at Figure 8.3, you will see how a Web server processes a request for an ASP.NET
Web Form and how the Web Form detects and adapts itself to the user’s browser.

Figure 8.3: How ASP.NET Web Form requests are processed.

Code Behind

One of the limitations of ASP was that your code (usually VBScript) was mixed in with your
interface layout tags (HTML). This made it impossible to reuse your code among different
pages unless you separated your code into standalone files and used <Include> tags to join
your code to your ASP page. ASP.NET overcomes these problems by using a concept
called code behind, which separates your interface designs from your source code, yet
makes them appear as one solid file within Visual Studio .NET.

Each Web Form is made up of two files on the Web server: the main file containing the
interface layout (ending in a .aspx extension) and the code behind file written in your
programming language of choice. If you created an ASP.NET Web application using Visual
Basic .NET and had a Web Form named EmployeeList, the main file would be named
EmployeeList.aspx, and its associated code behind file would be named
EmployeeList.aspx.vb. Within the Visual Studio .NET Solution Explorer window, you would

only see the EmployeeList.aspx file, but if you selected this file and clicked on the View
Code button at the top of the Solution Explorer, the .aspx.vb file would open to reveal the
code behind this Web Form.

The ASPX file is the main piece of your Web Form, and this is the file that the URL
references. Web visitors will not be able to directly view the code behind files. Each Web
Form’s ASPX file references its associated code behind files using a declaration statement.
If you examine the raw HTML of a Web Form, which you can do by double-clicking on a Web
Form in the Solution Explorer window and then clicking on the HTML button at the bottom of
the Design view window, you will see a tag at the top of your HTML that looks something like
this:

<%@ Page Language="vb" AutoEventWireup="false" Codebehind=_
 "EmployeeList.aspx.vb" Inherits="MyProject.EmployeeList"%>

This tag associates the code behind file containing your source code with your HTML
interface file. There are many great advantages to separating your interface code from your
source code, for example:
§ It allows interface designers and coders to work on the same Web Form at once

without overwriting each other’s work.
§ It gives developers the ability to reuse source code files among multiple Web Forms.
§ You can quickly change a Web Form’s code behind by simply changing the

CodeBehind attribute of the Form’s declaration line.

Visual Studio .NET realizes that not every developer is an interface designer, and not every
Web designer knows how to write source code. In the next section, you will see some great
examples of the source code that you will find in the code behind files.

ASP.NET Events

Like Windows Forms and their associated controls, ASP.NET Web Forms and Web controls
have events that you can create code for to make your Forms reactive. There is one
important difference between Windows Forms and Web Forms events. For a Windows
Form, the code that is processed when an event fires is contained within that Form, whereas
the code associated with a Web Form event is stored in the code behind file on the Web
server. This means that when an event is fired in a Web Form running in the user’s browser,
the Form has to call back to the Web server to run its event.

This process of firing an event in the browser, calling back to the Web server to process the
event and then returning the updated page to the browser, is called a postback because the
Web Form posts its information back to the server. With Windows Forms, the event
processes almost immediately without slowing down the user’s interface, but because Web
Forms must make a call across the Internet to the Web server, there can be a hefty price to
pay for overusing these events. You can avoid using postback events by using client-side
scripting, such as JavaScript, to handle events within the browser. This would require you to
place your client-side scripting language within your ASPX Web Form layout code so that
this code is sent to the browser along with the HTML. Of course, JavaScript is another skill
set that you’ll need to learn to accomplish this task, and you will have to perform some
extensive testing of your scripts using multiple browsers because each browser type
interprets client-side scripts differently.

The Page_Load Event

The most important page-level event you will work with is the Page_Load. This event fires
on the Web server every time your Web Form processes a request. This event will not be

fired within the user’s browser, but the Page_Load code may execute in response to
another event raised in the browser, such as a control’s raised event. You will learn more
about Web control events in the “Control Events” section, but for now picture a Web Form
loaded in your browser with an empty text box and a button on its surface. The very first time
your browser requests this page, the text box is empty. When you click on the button, you
see that the browser contacts the Web server again, and in a few seconds, you see the
same form again except this time when the page loads, the text box now says “Thank You”
and the button now says “Clicked”. Let’s take a look at the code behind this form:

Public Class WebForm1

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System._
 EventArgs) Handles MyBase.Load

 If IsPostBack Then
 TextBox1.Text = "Thank You"

 End If
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
_
 System.EventArgs) Handles Button1.Click
 Button1.Text = "Clicked"

End Sub

End Class

I could have easily made the changes to both the text box and the button within the button’s
Click event, but I chose to separate these two changes to both control’s Text values to
illustrate the IsPostBack feature. Notice that inside the Page_Load event I check to see if
this page request is a postback. If it is a postback, that means that the user is already
looking at this page, and the current request is in response to a page event, such as the
button’s Click. The first time the page loads, you see that the text box is empty because the
IsPostBack is False , but clicking on the button causes a postback and its associated code
to run. If you are coming from an ASP background, you will notice that you can now refer to
the controls on your Web Forms as objects, which you were not able to do prior to ASP.NET.
Buttons have properties such as Text and events such as Click, which you can now refer to
in your code, just like you would in a Windows Form.

Postback also offers a second useful improvement over the older ASP way of doing things.
Previously, your ASP page had to include a great deal of extra code if you wanted to
preserve the control values whenever the page submitted itself to the Web server. If you
failed to preserve these values, the new page that the user received would forget the user’s
settings and revert back to its original state. When Web Forms do a postback, the Web
server automatically notes the current values of all of the pages’ controls and preserves
these values when it returns the next version of the page to the user. By preserving these
settings, ASP.NET almost makes the postback process invisible to the developer. You know
the postback process is occurring, but you do not have to do any additional coding because
of it.

The Page_Unload Event

The Web Form’s Page_Unload event is the ideal location to place your cleanup code to
close any database or file connections used during the processing of a particular page. This
event fires when the Web server is finished processing the Web Form and has completed
sending the resulting Web page to the user’s browser. In the Web application world, once a
page has been rendered and sent out via HTTP, the Web server will want to remove all local
copies of that page in preparation for the next page request. Keep in mind that the Web
Form’s Page_Unload event fires when the Web server is done generating the page, not
when the user closes that page in his browser.

Tip

Use the Page_Unload event to clean up valuable resource connections
created within your Web Forms’ code.

Integrating Web Forms into Application Designs

If you follow proper n-tier design principles and separate your business logic from your
presentation logic, you will find that ASP.NET Web Forms can be easily substituted for
Windows Forms in your application designs. Your physical application designs will have to
include a Windows IIS Web server to serve out your Web Forms, but your application will
gain the ability to be used on any operating system and platform. For applications that run on
a Windows operating system and perform a large amount of client-side processing, you will
probably want to use Windows Forms. But from here on out you should always consider
using Web Forms as an interface alternative to Windows Forms. You can also choose to use
both Web and Windows Forms in your application design. An online bookseller, for example,
might use Windows Forms to allow its employees to edit the database of books while
presenting the store’s Internet visitors a Web-based interface to search and purchase from
the same database.

Web Controls

You will be working with two types of controls on your Web Forms: Web controls and HTML
controls. These two control types come from very different backgrounds, and as such, these
controls are inherited from two different namespaces: System.Web.UI.WebControls and
System.Web.UI.HtmlControls. When you are in design mode looking at one of your Web
Forms, you will see two panels containing controls in the toolbar window: one panel named
HTML, which lists your HTML controls, and another panel named Web Forms, which
contains the Web controls. I will first discuss the HTML controls, which will be very familiar to
anyone that has ever created a Web-based form. Next I will explore .NET’s new Web
controls, which promise to make interface designers’ jobs easier and users’ experiences
more satisfying.

HTML Controls

All Web browsers support a small, common set of form controls. These include the button,
text box, checkbox, and radio button (or the option button). Some browsers previously
supported more robust controls, but if Web developers were required to support multiple
browser types, they had to forgo these advanced controls and stick with the simple (and
boring) controls. The following is an example of the HTML tags that would place a button on
your Web page:

<Input Type="Button" Name="Button1" Value="Click Here">

Any events associated with this type of control are handled within the browser. You would
need to add some client-side code to deal with this button’s Click event. You can still add
these older controls to your Web Forms using these HTML tags, but you would not be able

to create server-side events for these controls. If you use the HTML controls from the
Toolbox’s HTML panel, your Web Forms will be using these same standard set of HTML
tags to describe these controls, but you will not be able to handle events for these controls
on the server. To create server-side event code for HTML controls, you need to convert
these controls to their associated server-side versions.

Web Controls

HTML controls tell the browser to draw a control type that the browser is familiar with. If you
only use HTML controls on your Web page, you will be limited to a very small set of basic
controls. The trouble is, these are the only controls you can be sure all browsers know how
to draw by name. Web controls, also known as server-side controls, are a special set of
controls designed for use with ASP.NET Web Forms. When you look at the HTML in a Web
Form, you will notice that the Web controls on the page use a different tagging format than
the standard HTML controls. Here is what the Web control version of a TextBox would look
like:

<asp:Button id=Button1 runat="server" Text="Click Here"
Width="158px" _
 Height="30px"></asp:Button>

If you are familiar with HTML tagging, you might think that a browser is not going to
understand that tag, and you would be correct. But the Web server will understand this tag,
and this special <asp> tag will be converted to a more familiar <Input> tag displaying a
button within the browser. The most important feature of this new control tag format is the
runat attribute. By setting the runat equal to “server,” the Web page is letting the Web
server know that all events for this control will be handled via postback to the Web server.

Web Controls Generating HTML

Many of the standard set of HTML controls have Web control equivalents that you should
favor in your Web Form designs. But the collection of Web controls included with Visual
Studio .NET introduces some new controls to Web development. These Web controls use
an incredibly cool trick to introduce advanced features to Web browsers that only support a
limited set of basic controls. A single Web control, when processed on the Web server, can
generate a series of simple and basic HTML tags to direct the browser to draw a complex
control.

If the Web control has an HTML tag equivalent, that tag is sent to the browser. If there is no
HTML equivalent tag, the resulting control displayed in the browser will be made up of many
separate HTML tags. For example, my favorite Web control is the DataGrid, which can help
you display sets of data, such as those contained in an ADO.NET DataSet. Within the
browser, the DataGrid will be drawn out using HTML tags such as the <TABLE> tag for the
layout and the <A HREF> tag to make items within the DataGrid clickable. You will learn to
use the DataGrid and see this powerful new control in the Immediate Solutions section of
this chapter.

Validation Controls

Within the set of Visual Studio .NET Web controls is a collection of helpful items known as
validation controls. You can drag-and-drop a validation control over to your Web Forms just
like any other control, but these controls work a little differently than other Web controls.
Instead of generating HTML tags to be sent to the user’s browser, validation controls
generate client-side script to be sent, and unless visitors look at the raw HTML source code
for your page, the validation controls will be invisible to them.

Validation controls are designed to validate or check the values of other controls on a Web
page without using a postback to perform these checks on the Web server. You could drop a
RangeValidator control onto your Web Form, and then set its ControlToValidate property
equal to TextBox1. Next, you could set the RangeValidator’s MaximumValue and
MinimumValue properties to represent a range of numbers to which you want to limit
TextBox1. Whenever a user changes the value of TextBox1 within the browser, the
RangeValidator’s code will check TextBox1’s value against its settings and provide an error
message to the user if the value is outside the acceptable range. It’s important to note that
validation controls can only be used to validate other Web controls. Visual Studio .NET
comes with the following validation controls in the Web Forms panel of the Toolbox:
§ RequiredFieldValidator
§ CompareValidator
§ RangeValidator
§ RegularExpressionValidator
§ CustomValidator
§ ValidationSummary

You will find an example of how to use and configure a validation control in the Immediate
Solutions section.

Converting HTML Controls to Server Controls

When you are looking at a Web page in Visual Studio .NET’s design mode, you will notice
that the server-side Web controls have a little green arrow icon in the upper-left corner,
whereas the HTML controls do not have this arrow. This feature allows you to quickly identify
which controls are Web controls and which are not. In order to create server-side event code
for an HTML control, you must first convert it to a Server control. You can do this by right-
clicking on the HTML controls and selecting Run as Server Control. When you convert an
HTML control to a Server control, Visual Studio simply adds a runat attribute to the HTML
control’s tag like so:

<Input Type="Button" Name="Button1" Value="Click Here"
runat="Server">

The format of this control’s tag still resembles an HTML control, but the runat=“Server”
property of this control lets the Web server know that the events for this control will be
handled on the Web server.

Tip

In most cases, Web controls are the best option when designing your Web
Forms from scratch. You should only use HTML controls and HTML controls
converted to Run as Server Controls when working with older Web pages you
are migrating to .NET.

Control Events

Your Web controls and HTML controls will have events associated with them, which you can
create code for, just as you would controls on a Windows Form. When adding code to a Web
Form control’s event, remember that when this event fires it causes the Web page to
communicate back to the Web server to process that code. For this reason, I recommend
you use control events sparingly and only when absolutely necessary.

Every control will have a Load and Unload event. The Load event is triggered when the
Web server is rendering the Web page and encounters the portion of the page where that
control’s tags will go. This is a good event in which to place any control initialization values.
The Unload event will fire after the Web server has completed generating the HTML tags for
the page and the page has been sent. You can use the Unload event to perform any special

cleanup actions, such as closing files or database connections. Each control will have its
own specific events. For example, the Button control has a Click event, and the TextBox
control has a TextChanged event.

You can also create code within your HTML to handle control events on the client side.
Typically, client-side code is written in JavaScript or JScript. Many controls will fire events
that will not result in a postback to the Web server. For example, many Web developers use
the tag’s OnMouseOver to change the graphic when a user’s mouse point passes
over the image. This is a really good trick to use to draw someone’s attention to something,
but it would not be appropriate for the Web page to contact the Web server every time the
mouse point passes over a particular item.

AutoPostBack

The button is the traditional control used to submit form data to the Web server, and if you
create server-side code for a button’s Click event, clicking on a button will trigger the
postback process. Other control types, such as TextBoxes and CheckBoxes, typically act as
part of a large set of controls and should not immediately trigger the postback process. Even
if you create some server-side code for one of these control’s events, such as the TextBoxes
TextChanged event, changing the text within a TextBox will not cause an immediate
postback. Instead, the TextChanged event will be delayed until a postback is triggered by
another control. If you want to ensure that a control’s event is immediately processed and
not delayed, you can override this delay by changing the control’s AutoPostBack property
to True. Controls with an AutoPostBack property are set to False by default to minimize the
amount of back-and-forth communications happening between the Web server and the
browser.

XML Web Services

One of the most talked about enhancements made in Visual Studio .NET is the introduction
of XML Web services, and for good reason. The ability to create and make XML Web
services available offers many attractive benefits to modern-day application development
projects:
§ Your applications can call XML Web services across the Internet. Now a “distributed”

application can scatter its parts all over the world.
§ XML Web services communicate using Simple Object Access Protocol (SOAP), an

open source protocol that any application can use, which inherently makes your
services available to any development language running on any operating system.

§ Maximizing code reuse takes on a whole new meaning when dealing with XML Web
services because you can reuse your code from applications located anywhere in the
world and across multiple development environments.

§ You can immediately start developing XML Web services today using your existing
programming skills.

XML Web services have the potential to completely change the way you design and develop
applications. The first important step to harnessing this new power is to understand how
XML Web services work and how they overcome many of the limitations developers have
fought for so long. Once you are comfortable with how XML Web services work, you can
then begin to design your application architectures to take advantage of XML Web services.

Introduction to XML Web Services

Over the last few decades, application designs have been greatly affected by how far the
application is able to communicate. Applications written to run on non-networked standalone
computers are the simplest to comprehend. As businesses installed and improved upon their

internal networks, application designs grew more and more complex and their individual
components where scattered farther and farther apart, often across multiple machines. Now
that almost every corporation’s internal network is hooked into the Internet, your application’s
physical deployment diagram can potentially look like a map of the world!

XML Web services take the concept of remote procedure calls to the greatest extremes by
allowing your applications to make calls to remote procedures that can be housed anywhere
in the world. This also means that you can create your own XML Web services and host
them on the Web for anyone to use. Many developers may read that definition and ask
themselves, “Why would I want to do that?” I am sure that as you read on and see a few
examples of XML Web services in action, you will immediately think of some terrific uses for
this new project type.

The introduction of XML Web services to the Visual Studio environment also represents a
radical new direction for Windows developers. XML Web services tightly embrace open
source standards and can support application development for non-Microsoft platforms. You
do not even have to use Visual Studio .NET to develop or use XML Web services.
Applications communicate with XML Web services using SOAP. This is an open source
protocol and is not proprietary or controlled by Microsoft. This means that you can host an
XML Web service developed in Visual Studio .NET, and it will natively support request calls
from any application that can communicate using SOAP, whether that application was
written in Visual Studio .NET or Java. This also means that your applications can call upon
any XML Web service available, no matter what language that XML Web service was written
in. In just a bit I will discuss how XML Web services work, and you will see how elegantly
simple they really are.

Code reuse is a big issue when designing an application. If designed properly, your
application avoids duplicating pieces of code by placing commonly used routines and
functions in shared classes so that the code can be reused throughout the application. What
if you could reuse a function or a feature in multiple applications delivered to different
clients? You could centrally host an XML Web service that makes a special feature available
to multiple applications. You can even market this XML Web service to developers outside of
your organization. There is already a large market for developing and selling third-party
application components, such as controls for your Windows Form interfaces. The
introduction of XML Web services to Visual Studio .NET is sure to result in a new services-
based market. For a fee, your application will be able to call across the Web to someone
else’s XML Web service, which will provide a portion of your application’s functionality, such
as user authentication or file system storage. In the following discussion of some examples
of services, you will begin to see the true potential of XML Web services.

XML Web Services Examples

XML Web services operate on the same principle as Web page requests. The client sends a
request for a Web page or service to the hosting server, and that server returns your page or
results to you. Just as with Web pages, interaction between clients and XML Web services is
connectionless and stateless. If you are thinking about developing a XML Web service that
will need to remember something about its users, you will have to include some sort of
storage or caching scheme in your plans. Table 8.2 lists some examples of likely XML Web
services you will encounter.

Table 8.2: XML Web services examples.

Service Description

Weather Provide this XML Web service with your zip code, and in return
you will get a paragraph describing your local forecast.

Table 8.2: XML Web services examples.

Service Description

Stock Prices Send this XML Web service the name of a company and it will

return that company ’s current stock value.

TV Programming Give this service a time and a channel and receive a
description of the television show airing at that time.

Online Payments Provide this service with a username, password, dollar
amount, and payee identification and this service could
transfer funds from your online account to an online merchant.

File Storage Accepts files as inputs for storage in a user’s personalized file

system. This same service can also field requests for
documents the user has in storage.

Sales Tax Provide a dollar amount and a state name, and this service
can calculate and return the local sales tax.

When looking at the examples in Table 8.2, you will see that there are many possible
combinations for XML Web service inputs and outputs. In some cases, you can provide little
or no data and still get back some usable information. For more personalized services, such
as the online payment system or personal file storage, some means of securely identifying
and authenticating a user is required to protect highly sensitive personal information. In all
these examples, the client is asking to be provided some sort of service, whether it be
providing information or storing a file.

In Figure 8.4, I have illustrated a fictional user’s interaction with an online store. Many
different XML Web services come in to play during this interaction. This fictional online store
makes a call to an externally hosted XML Web service to calculate the shipping cost of the
requested item. Next the online store contacts an XML Web service hosted at one of its
suppliers to check on the desired product’s availability status. Determining that this product
is in stock, the online store uses the supplier’s XML Web service to place the order for the
product. The online store then contacts yet another XML Web service hosted by a different
company to arrange the transfer of funds from the user’s account to the store’s account.

Figure 8.4: Examples of XML Web services used by an online retailer.

.NET My Services

You can accuse Microsoft of being a little slow to embrace the Internet in the beginning, but
once it realized what a profound effect the Internet would have on computers and
applications, Microsoft made developing for the Internet its number-one priority. With XML
Web services, Microsoft has put the pedal to the metal in the race to become the world’s
leading XML Web services provider with a project called .NET My Services (originally
codenamed Hailstorm). .NET My Services hopes to be the central point of user services for
the Internet. Using Microsoft’s Passport user authentication and identification technology,
.NET My Services will provide user-specific data such as email inboxes, calendars, online
wallets, and more.

Imagine this scenario: You log on to your favorite online bookstore, and because both you
and the bookseller are hooked into .NET My Services, you are immediately provided a
tailored list of products you might be interested in. With a single click, you can complete a
book order because the bookseller already has access to your address and online wallet. Of
course, making shopping this easy and fast makes many users queasy, but this is only one
possible future. For a less threatening example, picture logging in to a public kiosk at the
mall to use the Internet, and you realize that your personalized favorite Web site list and
favorite interface color scheme is automatically available on this machine. All this and more
will be made possible through XML Web services.

Web-Enabled Devices

XML Web services will play a crucial role in the development of mobile and Web-enabled
devices. If you look at a handheld digital phone, you can see that there is not a lot of room in
that case for bulky hardware, such as RAM and hard drives. In order to make small devices
useful and feature rich, developers must offload as much processing power as possible to
servers housed on the Internet. XML Web services are the ideal way to provide this
functionality because they communicate using open source protocols, which allow any
developer working with any device to access them. Look around and I’ll bet you can spot a
couple of devices that could potentially be Web-enabled, for example:
§ Alarm clocks that regularly compare their time to an accurate Web-based source
§ TV sets that download television programming guides for on-screen viewing
§ Microwave ovens that can download a requested recipe

I would not be surprised if there are developers currently developing software for washing
machines and toasters. Personally, I can’t wait for the day when I can check email and listen
to streaming media in the shower.

How XML Web Services Work

XML Web services communicate using HTTP, which is a universally recognized and
implemented protocol. HTTP is not a proprietary technology controlled by a single company.
The Web has been using this open source protocol since its inception, which has allowed
hundreds of different vendors to develop their own Web browsers and Web servers. Now
application developers can use HTTP to communicate with remotely located XML Web
services. Because XML Web services use HTTP, the same rules and limitations that apply to
Web page requests also apply to using XML Web services.

What makes HTTP so wonderful? Consider a situation where the communication protocol is
proprietary, such as when a COM object communicates with another COM object using a
Remote Procedure Call (RPC). If you were a Java developer, your Java code would not be
able to talk to a COM object because Java does not utilize RPC in its communications. This
same problem also prevents COM developers from calling Java objects. If your objects

natively communicated using HTTP, anybody’s code would be able to call upon them as
long as they too use HTTP to make that call.

Figure 8.5 shows a TV channel viewing guide XML Web service hosted on a Web server.
Because this XML Web service makes itself available to anyone on the Web and
communicates using HTTP, many different application types written using many different
development tools can all take advantage of this service. Web browsers, handheld devices,
and applications developed using both Microsoft and non-Microsoft tools can all make
requests of this service.

Figure 8.5: The TV viewing guide XML Web service.

Changes in Design Paradigms

We are currently witnessing the sunrise period of the XML Web services era, and so far the
day ahead looks fabulous. It’s too early to tell how quickly developers will adopt XML Web
services and make them a part of their application designs, but those changes are coming.
Microsoft is not the only company that sees the beauty of service-based code. Sun, Hewlett
Packard, and Oracle have all announced XML Web service development and support
initiatives, signaling an industry-wide acceptance and enthusiasm for this new technology.

As a developer, how should you incorporate XML Web services into your future application
designs? If you have experience developing distributed applications, you are already moving
in the right direction. For the past couple of years, you have been breaking up your code into
application tiers and components. You’ve created business logic components, data access
components, and presentation components. If you understand n-tier development, adjusting
your designs to allow for the inclusion of XML Web services is as simple as making a minor
terminology change.

Traditionally, the presentation tier of your application contains the interface components,
such as the Windows and Web Forms users interface with to use your program. XML Web
services use the term end-points to refer to any device or application that makes use of a
service. An example of a physical end-point would be a digital phone. Within that phone is
some code that represents the logical end-point that communicates with remote services. If

you think in terms of end-points, your Windows and Web Forms are logical end-points, and
the computer terminal you access these forms with is the physical end-point. Take a look at
Figure 8.6. In the first example, you see the standard n-tier architecture diagram using
Windows Forms as the application’s interface. In the second example, I rename the
presentation tier as the end-points tier, which greatly broadens this realm to include
nontraditional interfaces, such as digital phones and even refrigerators. I also add an XML
Web service tier to the second diagram in between the end-points and business logic tier.

Figure 8.6: Working XML Web services into an n-tier architecture.

In the next section, I discuss integrating XML Web services into your application designs and
explain why these belong in their own tier.

Integrating XML Web Services into Application Designs

You can create an XML Web service as a standalone application by simply creating an XML
Web services project, adding all of the necessary code to that single project, and then
posting it to a Web server. You will probably follow this method when you create your first
XML Web service, just to keep things simple. But when it comes to designing and planning
robust and professional XML Web services, placing all of your code into a single package
severely limits your ability to scale or build upon that code. N-tier application design solves

these problems for traditional applications, and these same principles can be applied to XML
Web services as well.

Look at Figure 8.6 again. You will see that I made two changes to the standard tiers: I
renamed the presentation tier the end-point tier, and then added a new tier in between the
end-point and business tier named the XML Web services tier. XML Web services do not
belong in the end-point tier (formerly the presentation tier) because these services are not
what users will directly interface with. Your user will use applications or devices that act as
end-points, which connect to your Web Services. Although XM L Web services could live in
the business logic tier, I decided to create a new tier for two good reasons: code reuse and
scalability. For the same reason that you separate business logic from your presentation
logic, keeping your business logic out of your XML Web services tier allows you to reuse
those business functions in other parts of your application. If the demand for your XML Web
service grows beyond the processing power of your Web server, you will have the ability to
offload some or all of the business logic components to another server with little or no effort.

Using this design method, your XML Web services will act as universal interfaces for your
business logic tier, and they will not contain any business logic themselves. An n-tier design
without XML Web services is extremely limited in terms of which end-points can
communicate with the business logic, but if you insert an XML Web services tier into your
design, you are opening the door to an endless list of possible end-points for your
application. This tier can make your code available to any developer located anywhere in the
world using any programming language. You can make portions of your application available
on a function-by-function basis to the entire world. Of course, this does not mean that you
are opening up your entire application to everyone, only the portions you want to make
available. When you learn how XML Web services are created, you will see that the users of
your service only have access to the interfaces you provide, whereas the rest of your
application remains out of sight.

You can easily integrate XML Web services into your already existing projects. Take, for
example, a class Library project you have developed that contains a series of functions and
calculations. Without XML Web services, only your other .NET projects are able to
communicate with your class Library functions, but if you add an XML Web services tier in
front of your class Library, anyone is able to use your code. Simply create an XML Web
services project and add a mirror set of functions to it that represent the functions in your
class Library you want to make public. Each XML Web service function acts as a redirector
to pass requests received via HTTP and SOAP back to the real code in your class Library.
Take a look at the following simple function written in Visual Basic .NET that might represent
one of your class Library functions:

Public Class CWeather

 Public Function LocalWeather(ByVal ZipCode As String) As String

 'Make database calls here to get a real weather forecast
 LocalWeather = "Sunny and 65 degrees all day long!"

 End Function

End Class

To make this function available via the Web, you would create an XML Web services project
and add a reference to it for your class Library project, which I called ClassLib_Chapt8. Next,
you would create your redirector function inside your XML Web services project that would
look like this:

Imports System.Web.Services

Public Class MyWeatherService

 Inherits System.Web.Services.WebService

 <WebMethod()> Public Function GetWeather(ByVal ZipCode As String)
As _
 String

 Dim WeatherClass As New ClassLib_Chapt8.CWeather()
 GetWeather = WeatherClass.LocalWeather(ZipCode)

 End Function

End Class

In the preceding XML Web service code example, you will see that this class is inheriting
from the System.Web.Services.WebService class. This XML Web service only makes one
interface available via the Web, which is the GetWeather function. In an XML Web service
project, you will be able to spot the publicly available interfaces by the <WebMethod()> tag
in the function declaration line. Within this function, I simply Dim a reference to my
CWeather class and then execute the matching method in that class, passing the result of
this method back out as the results of the GetWeather Web method.

Making function calls through XML Web services will result in some slow downs, so if you
have a project that is written in .NET that can access your class Library via a reference
pointer, by all means use that route and avoid going through the XML Web service
interfaces. XML Web services are meant to be used for remote procedure calls only, and by
remote I mean calls originating from outside of your application’s physical design.

Creating XML Web Services

The first time you create an XML Web service you might be surprised as to how easy it is
and how familiar it feels. Coding an XML Web service is just like creating a class Library
project, with one tiny difference. Any function you want to make externally visible through
your service needs to have a <WebMethod()> attribute in its declaration line. Other than this
small addition, your functions will look and act the same as you are used to. They will accept
input parameters and provide output values, just like any other function. In fact, you can
include functions in your XML Web service that do not use the <Webmethod()> attribute.
These functions will be available to your XML Web services code like any other function, but
they will not be visible to callers using your XML Web service. You will not be able to use the
<WebMethod()> attribute in a normal class Library project, only in an XML Web service
project.

The reason that you can only make functions available via the Web from an XML Web
services project and not a class Library project has to do with how these projects are
packaged for deployment. Class Library projects are either placed in the application’s
directory structure or in the computer’s Global Assembly Cache (GAC), both of which are not
directly accessible by the Web server. Class Libraries do not inherently know how to handle
requests formatted with SOAP either. An XML Web services project is packaged in to a
special file ending with an .asmx extension that is saved somewhere in the Web server’s

directory structure. The Web server is perfectly comfortable handling HTTP requests, and
your ASMX XML Web service files understand SOAP messages. Later in Chapter 14, you
will read about SOAP and learn why this extremely simple communications protocol is
revolutionizing the way applications talk to one another.

Calling XML Web Services

You can call upon XML Web services from within your Windows application, Web
application, and class Library projects. Formulating SOAP requests, communicating with
remote Web servers using HTTP, and unpackaging the SOAP formatted results might sound
like a daunting task, but if you are using Visual Studio .NET to create your projects, it’s as
simple as can be. All you need to do is to add a reference for a particular remote XML Web
service to your project, and then use it like you would any other reference. You do not have
to know about SOAP, XML, or HTTP to get the job done. Of course, understanding what’s
going on behind the scenes is always a good idea. The following steps are taken when your
application makes a call to an XML Web service:

1. The developer adds a project reference to the XML Web service.
2. Visual Studio .NET contacts the hosting server to get a description of the service.
3. At runtime, your application makes a call to the XML Web service.
4. .NET creates a proxy class to represent the service, formats a message, and forwards

your request to the XML Web service.
5. The proxy class receives a response from the service and unformats the message.
6. The proxy class provides the XML Web services’ response to the calling code.

Now let’s go over each step in detail to see what’s going on. When you add a reference for
an XML Web service to your .NET project, Visual Studio .NET learns all that it can about that
XML Web service and stores that information within your project. During development,
Visual Studio is not in constant contact with that XML Service, so it needs to take a snapshot
of the services’ interfaces so that Visual Studio can provide you with IntelliSense feedback
when you are coding your calls to this service. Visual Studio gathers this information through
a process called discovery, which you will learn more about in the “Discovery” section later
the chapter.

When your application makes a reference to a remote XML Web service, your application
creates a proxy class, which is an empty local version of the remote service. To your code,
this proxy class appears to be like any other referenced class, but there are some extra
features at work inside this class. When your code makes a call to a proxy class, the proxy
class must relay this request to the remote XML Web service where the real work takes
place. To do this, the proxy class must format your code’s request into a SOAP message
and send it out via HTTP. When the response returns from the XML Web service in the form
of a SOAP message, the proxy class decodes that message and returns to your code the
response value using native Visual Studio data types. Because SOAP is an open source
protocol, many of the supported data types do not directly match up with Visual Studio data
types, so the proxy class often has to translate one data type to another to facilitate this
transaction. Figure 8.7 shows this step-by-step process.

Figure 8.7: Using proxy classes to communicate with XML Web services.

SOAP, GET, and POST

XML Web services communicate with their clients via messages sent using the HTTP
protocol. As you learned earlier in the discussions on ASP.NET and form data, data is
traditionally sent across the Internet using either the GET or POST method to format the
data. These two methods have been around since the dawn of the Internet age, and
although they do a decent job of passing form data to the Web server, they are not really
robust enough to pass application data back and forth. SOAP, which uses XML to describe
and send data elements, is a far better choice for exchanging application data via the Web.
SOAP should be the communication protocol of choice when working with XML Web
services. When you add a reference to an XML Web service to your .NET project, the proxy
class discovers which protocols an XML Web service supports and formats your messages
using the best possible supported protocol.

To support clients that do not use the SOAP protocol, Visual Studio .NET XML Web services
are capable of communicating using all three protocols; SOAP, GET, and POST. By
supporting GET and POST, even simple static HTML pages are capable of making calls to
XML Web services, although the results of those requests will appear in the browser without
the benefit of formatting. The following URL uses the GET method to access my Weather
XML Web service:

http://mywebserver/Weather/Service1.asmx/GetWeather?ZipCode=22902

Using the GET method of appending your data values to the end of the URL, you could test
your XML Web services by manually entering the URL and parameters into the Address
window of any Web browser.

Discovery

Finding information on the Internet can be a challenge at best. Typically when you are
looking for a piece of information, you turn to a Web-based search engine. By simply typing
in a few keywords, the search engine provides you with a list of hyperlinks to some related
Web pages. Without these search engines, you would be lost in a vast sea of information.
Even if I told you that the piece of information you want is on Web server X, you would still
be hard-pressed to find that needle in the haystack. But if I told you that there was a useful
XML Web service on server X, you would have all you need to immediately start using that
service in your applications.

How is this possible? Web servers that host XML Web services support a process called
discovery, which enables these Web servers to automatically detect installed Web Services

and provide visitors with a list of available services. Each XML Web service has a related
discovery file, which ends in .vsdisco, to identify itself to the Web server. When you first add
a Web reference to one of your .NET applications, you are asked to type in the URL of the
hosting Web server. Using this URL, Visual Studio .NET contacts that Web server, and
through the discovery process, receives a list of available XML Web services for you to
choose from.

There is an industry-wide initiative called Universal Description, Discovery, and Integration
(UDDI) that hopes to provide a central database where developers can look to find XML
Web services located all over the globe. UDDI is an XML Web service that your applications
can query and receive information from on other services. Many major companies, including
Microsoft and IBM, support this initiative. You can learn more about UDDI and search its
database by visiting its Web site at www.uddi.org.

XML Web Service Definition Language (WSDL)

Even when you know exactly where a service is located on the Web, if you do not know the
details of what interfaces this service supports and their associated parameters, it is almost
impossible to figure out how to use it. In order to create a proxy class that exactly duplicates
a service locally in the Visual Studio environment, you need as much detail on these
interfaces as possible. Luckily, XML Web services have a way to describe themselves in
detail—WSDL.

A WSDL document describes a service’s supported interfaces and parameters to a
perspective client. Visual Studio .NET uses this information to generate a proxy class for the
XML Web service, but non-Visual Studio development languages can also use the WSDL
description to gain an understanding of the service. A WSDL document also describes which
protocols a service supports and which can include SOAP, GET, and POST. For each
supported protocol, there is a separate section describing the service’s interfaces and
parameters customized for that protocol.

The XML in XML Web Services

Although it is SOAP that makes it possible for anyone to communicate with your Web
Service, within those SOAP messages you will find another open source technology that
makes the information your service provides universally understandable: XML. If a Web
Service developed in .NET responded with .NET-specific data types, only .NET applications
would be able to use it. By formatting the Web Services output using XML, any application is
able to interpret your services’ results. The following is the XML output of the Weather
service, which is wrapped in a SOAP message during transmission:

<?xml version="1.0" encoding="utf-8"?>
<string xmlns="http://mywebserver">Its 65 and sunny
outside!</string>

The requesting application receives the services response formatted with XML. In .NET, the
proxy class interprets this data and forwards the message using a String data type to the
calling code. The data types used in the XML message often have to be converted to data
types native to your development environment before you can use them. Take a look at the
following WebMethod, which calculates a discount percentage based on the users age:

<WebMethod()> Public Function CalcDiscount(ByVal Age As Integer) As
Single
 CalcDiscount = Age * 0.005

End Function

This function uses the .NET-specific Single data type. But take a look at the XML response
this WebMethod provides:

<?xml version="1.0" encoding="utf-8"?>

<float xmlns="http://tempuri.org/">0.375</float>

The Short becomes a <float> data type in XML. If a .NET proxy class receives this
message, it can choose to convert this value back to a Short data type, whereas non-.NET
development languages that do not use Short data types will understand what a float data
type is and handle this data accordingly.

XML Web Service Availability Issues

When designing applications that make use of XML Web services, you need to develop a
backup plan in case the XML Web services become unavailable. Occasionally, Web servers
do fail, whether due to administrative error or malicious hacker attacks. To prevent an XML
Web service’s unavailability from causing your own application troubles, your code should
have a way of dealing with unexpected results or request timeouts. You could cache XML
Web service results locally to give yourself some data to fall back on in case later requests
fail. You could also create a workaround that hides this missing data.

If you create a Web application that provides a page full of sports scores reported from
multiple XML Web services, you could place a message in the spot where a score would
normally be letting users know that this data is currently not available. The last thing you
want to happen is for your application to crash due to an unavailable XML Web service, so
anticipate problems during the design phase and ask yourself, “What should the application
do if the XML Web service fails?”

The design phase is also a great time to assess the type of connection your application will
have with the enlisted XML Web service and what effects this connection will have on
performance. An application running on a home computer with a 56K dial-up connection to
the Internet will experience far slower XML Web service response times than an application
running on a corporate network with a dedicated T1 line to the Internet. If you come to the
conclusion that using a remote XML Web service would result in acceptable response times,
you may want to try to host a local copy of this service on your network for a big
performance boost. Over the next few years, as broadband access makes its way into
houses and offices around the world, the issue of XML Web services performance will fade
away, but for now this is a big issue you should address during your application’s design
phase.

Creating a Web Form

Although Web Forms can be created using any of the Visual Studio .NET development
languages, you can only add Web Forms to two of the .NET project types: the ASP.NET
Web Application and the ASP.NET XML Web Service. This restriction to Web Form usage is
due to the fact that a Web server is required to process these pages, and non-Web project
types do not interface with the Web server. You will not be able to add Web Forms to
projects such as the class Library and Windows application projects.

The following steps explain how to create an ASP.NET Web Applications project, which
includes a Web Form by default:

1. Open Visual Studio .NET, and select File|New Project.
2. In the Project Types window on the left, highlight the Visual Basic Projects folder.
3. Highlight the ASP.NET Web Application icon in the right side of the Templates window.

4. In the Name TextBox below these two windows, enter a name for your Web application
project, such as MyFirstWebApp.

5. Ensure that the machine name listed in the Location TextBox is a valid .NET Web
server (if you are using a Web server on your local machine, this TextBox should
read: “http://localhost”).

6. Click OK at the bottom of the New Project window.

When you create a new Web application project, Visual Studio .NET contacts the Web
server you entered in Step 5 and coordinates with the Web server to set up a new
subdirectory in which to house your project. If the machine named in Step 5 does not have a
Web server installed or is using a Web server that is not .NET aware, the project creation will
fail.

Once Visual Studio .NET is finished creating the project’s directory and starting files, you will
be able to see all of the files associated with your Web application project in Visual Studio’s
Solution Explorer window. The MyFirstWebApp project starts out with the six files listed in
Table 8.3 already created for you.

Table 8.3: ASP.NET We b Application default files.

File Name Description

AssemblyInfo.vb Contains metadata for your entire project including the
Assembly version number.

Global.asax Contains code for application-level events such as
Application_BeginRequest.

MyFirstWebApp.vsdisco Used by the Web server to discover information about
XML Web services.

Styles.css Web page style sheet containing definitions of display
tags (font styles, sizes, etc.).

Web.config Configuration file for Web server options such as
authentication and globalization.

WebForm1.aspx The initial Web Form for your project.

If you want to add a new Web Form to either an open Web application or XML Web service
project, all you need to do is to right-click the project’s name in the Solution Explorer window,
and then select Add|Add Web Form.

Adding Web Controls to a Web Form

You can design ASP.NET Web Form interfaces in the same way that you create Windows
interfaces. When you have a Web Form open in design mode, the Toolbox window will
feature two panels full of controls that you can use. The HTML panel contains the basic set
of HTML controls, and the Web Forms panel contains all of your server-side Web controls.
You can add one of these controls to your Web Form by either dragging one from your
Toolbox to your form or by selecting a control in the Toolbox and then clicking and dragging
your mouse pointer on the form’s surface to draw this control on the form.

Web Form Layout Mode

Before you begin adding controls to your Web Form, you need to decide which layout style
you will use to place these controls. Each Web Form has a pageLayout property that can

either be set to FlowLayout or GridLayout. FlowLayout is the traditional way that Web
pages are coded and designed. Web browsers read HTML from top to bottom, and then
draw the page items in the order they appear in the HTML starting at the top of the browser
window. If you are designing a Web Form that has its pageLayout property set to
FlowLayout and you drag a control to the center of this form, you will see that control
relocate itself to the upper-left corner of the page.

GridLayout mode uses an advanced browser ability called absolute positioning to assign
coordinates to page items. When you draw a control on the surface of your Web Form, the
corresponding coordinates are recorded inside that control’s tag. When your Web Form is in
GridLayout mode, you will see tiny dots on the surface of your Web Form to aid you in your
layout chores. GridLayout is selected by default to make Web Form design as easy as
possible; you will want to use GridLayout for most of your Web Form designs.

Working with Controls and Web Form Layout Modes

The following example shows you how to set the Web Form’s layout mode and add various
control types to the form’s surface. The example also examines a control’s properties and
appearance:

1. Create a new ASP.NET Web Application project. The project starts with WebForm1
loaded in design mode.

2. Click once on the surface of the Web Form, and then locate the pageLayout property
in the Properties window. By default this is set to GridLayout, and you see tiny dots
on the surface of the Web Form.

3. In the Toolbox window, you see a panel named HTML and another named Web
Forms. Click the HTML panel to expose its contents.

4. Click and hold the left mouse button on the Text Field control in the HTML panel and
drag it over to the center of your Web Form. Notice that this control stays where you
place it in the center of the page.

5. Select the Web Forms panel in the Toolbox window. Click and hold your left mouse
button on the Button control and drag it over to the surface of your form, placing it
directly below the Text Field control. Again, you see that this control stays where you
place it.

6. Click once on the surface of your Web Form to deselect the button you placed.
7. In the Property window, change the Web Form’s pageLayout property to FlowLayout.

Because the two controls already on the surface of this form were placed in
GridLayout mode, their tags include coordinates that allow them to stay in place
even in FlowLayout mode.

8. Again, left-click and hold on the Button control in the Web Forms Toolbox panel and
drag this control to the center of the form. When you let go of this control, it relocates
itself to the upper-left corner of the Web Form. When the page’s layout mode is set to
FlowLayout, any controls you place on the form’s surface will not be assigned
coordinates and will instead start stacking at the top of the page.

9. Click once on the Button control added in Step 8. In the Properties window you see all
of the display properties for this button. Change the button’s Text property to say
Click Me.

10. Notice that the two Button controls added from the Web Forms panel both have tiny
green arrows in their upper-left corners, whereas the TextBox control you added from
the HTML panel does not. The little green arrow indicates which controls are server-
side Web controls.

Creating Code to Handle Web Control Events

You can add code to the Web Form’s code to handle events raised by Web controls hosted
in the browser. Web control event code is executed on the Web server. HTML controls do

not support server-side event processing, only client-side events using a client-side scripting
language such as JavaScript. In the following example, I create a Web Form with a Button
on it and add some code to this Button’s Click event to add a special message to the form
when the button is clicked:

1. Create a new ASP.NET Web Application project using Visual Basic as your
development language. When the project opens, you see WebForm1 open in design
mode.

2. From the Web Forms panel in the Toolbox, drag a Button control over to the center of
your Web Form.

3. Next, drag a Label control and place it below the Button control.
4. Double-click the Button control you placed on your Web Form. The code behind the file

opens and your cursor is located within the Button1_Click event subroutine. You
also see a subroutine named Page_Load within this class named WebForm1.

5. Enter the following code within the Button1_Click subroutine:

6. Label1.Text = TimeOfDay
7. Save your Web application by selecting File|Save All.
8. To see this Web Form in action, click the F5 key to run your Web application. A

browser window opens and displays the Web Form you created. You will see a
Button that reads “Button”, and some text below it that reads “Label”.

9. Click the button. This triggers the Button’s Click event within the browser, which in turn
causes the Web Form to submit itself back to the Web server. When the Web server
is contacted by your Web Form, it sees that the Button’s Click event caused this
postback. It then processes the code in the Click event and returns an updated
version of the Web page to you. The Label control on the Web Form should now
display the current time of day. If you keep clicking on the Button, the displayed time
will be updated. Note that the time displayed is coming from the Web server because
this is where the server-side code was processed.

Each Web control has its own associated events, such as the Button’s Click event and the
TextBoxes TextChanged event. You can find out which events a control supports by adding
that control to your form, and then switching over to the Web Forms code view. At the top left
of the code view is a drop-down menu containing a list of all the items in your Web Form.
Select your control’s name from this list and the drop-down menu to the right will list all of
this control’s programmable events.

Detecting Postbacks in the Page_Load Event

A postback is when a Web page in the user’s browser calls back to a copy of itself on the
Web server to perform some server-side processing. If you create server-side code for a
Button’s Click event, a postback will occur whenever a user clicks on that Button in the
browser. Why would you want to deal with initial page requests differently than you would a
postback page request? Every time your Web Form is requested, the Page_Load event is
fired. If your Web Form requires a lot of initialization processing, such as a database query
to request a table of information that is then used to initialize a DataGrid on the Web Form,
you will probably not want to continually requery your database and redraw the DataGrid
during a postback.

You do not need to redraw or reinitialize the controls on your Web Form during a postback
because ASP.NET preserves these controls for you. An unmodified DataGrid, for example,
is returned to the browser after a postback with the exact same data displayed. If a user
enters some text into a TextBox and then clicks on a button that causes a postback, the text
the user entered will still be there when the same page is returned to the user.

When initializing a Web Form, the smart thing to do is to first determine whether the request
is a postback within the Web Form’s Page_Load event; if it is a postback, bypass all of the

Web Form’s initialization code. The following ASP.NET Web Application example shows you
how to detect whether or not a request is a postback by checking the IsPostBack value
within the Web Form’s Page_Load event. It also shows how controls on a Web Form
preserve their current state during the postback process:

1. Create a new ASP.NET Web Application named PostBackTest.
2. From the Toolbox’s Web Forms panel, add a Button control to the center of

WebForm1, add a TextBox control below this Button, and then add a Label control
above this Button.

3. Double-click on the Button and add the following line of code to the Button1_Click
event:

4. Label1.Text = TimeOfDay
5. Add the following code to WebForm1’s Page_Load event:

6. Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System._

7. EventArgs) Handles MyBase.Load
8. If IsPostBack Then

9. Button1.Text = "POSTBACK"
10. Else

11. Button1.Text = "INITIAL REQUEST"
12. End If

13. End Sub
14. Save your project by selecting File|Save All, and then run your Web Form by pressing

the F5 key.
15. When your Web Form first loads in your Web browser, the Button will read “INITIAL

REQUEST”. This occurs because at the time the Web server was processing the
page, the value of IsPostBack was False .

16. Type your name into the TextBox below the Button.
17. Click the Button and the Web page will submit itself back to the Web server. This time

the value of IsPostBack will be True, which causes the Text property of the Button to
change. Because the Button control’s Click event triggered the postback, the code in
this Click event will also be run, changing the value of the Label control. Note that the
page’s Page_Load event executes before the Button’s Click event.

18. When the Web page returns to the browser after its postback, the Button will read
“POSTBACK”, and the Label above it will display the current time of day.

19. Notice that the name you entered into the TextBox in Step 7 is still there. Prior to
ASP.NET, Web developers had to create extra code in their page to preserve a
control’s current values during a postback, but ASP.NET automatically does this for
you.

Working with Delayed Web Control Events

Although the Button’s Click event always triggers an immediate postback to the Web server
to process its associated code, other Web controls may have events that, by default, do not
trigger a postback when they fire. These events will fire, but their associated server-side
code will not be processed until another event explicitly causes a postback. By storing these
events and delaying their processing, you can avoid unnecessary calls back to the Web
server, which could possibly slow down your Web application and annoy your users.

Web controls that allow you to delay processing their events have an AutoPostBack
property. By default, this property is set to False , which means that when an event fires
within this control, a postback is not automatically triggered. You can force these controls to
cause a postback by setting their AutoPostBack properties to True. Let’s take a look at a

Web Form that uses delayed event processing. In this example, the Web Form is a simple
calculator that figures out an item’s price with sales tax. To make this a little more
interesting, the Web Form features a CheckBox to give customers a 10 percent discount, but
this discount only applies if the item’s price is greater than $100:

1. Create a new ASP.NET Web Application named DelayedEvents using Visual Basic as
your programming language of choice.

2. From the Web Forms panel of the Toolbox window, drag a TextBox control over to the
Web Form’s upper-left corner. Below this, place a CheckBox control and set its Text
property to “10% Discount”. Above the TextBox, add a Label control and make this
control’s Text value blank (no text). Then, add a Button control below the CheckBox
and set its Text property to “Calculate Price”. When your Web Form design is
complete, it should look something like mine in Figure 8.8.

Figure 8.8: The price calculator Web Form.

3. Click the CheckBox control and note that its AutoPostBack property is set to False by
default. This control has a CheckedChanged event that fires when the box is
checked or unchecked. Because AutoPostBack is set to False , checking or
unchecking this box will not cause an immediate postback, but it will raise the
control’s event.

4. Double-click the CheckBox control and the code view will open with your cursor inside
the CheckBox1_CheckedChanged event. Place the following code inside this event:

5. Private Sub CheckBox1_CheckedChanged(ByVal sender As
System.Object, _

6. ByVal e As System.EventArgs) _
7. 349

8. Handles CheckBox1.CheckedChanged
9. Dim StartPrice As Double

10. StartPrice = CDbl(TextBox1.Text)
11. If CheckBox1.Checked = True And StartPrice < 100

Then
12. Label1.Text = "ERROR! Price under $100!"
13. CheckBox1.Checked = False

14. End If
15. End Sub

16. At the top of the code view window, click the left drop-down menu and select the
Button1 item. In the right drop-down menu, click the Click event. This adds a

Button1_Click event to your code and places your cursor inside this event. Add the
following code to the Click event:

17. Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As _

18. System.EventArgs) Handles Button1.Click

19. Dim FinalPrice As Double
20. Dim StartPrice As Double

21. StartPrice = CDbl(TextBox1.Text)
22. If CheckBox1.Checked = True Then

23. 'Calculate price WITH 10% discount
24. FinalPrice = (StartPrice - (StartPrice * 0.1)) + _

25. (StartPrice * 0.04)
26. Else

27. 'Calculate price WITHOUT discount
28. FinalPrice = StartPrice + (StartPrice * 0.04)

29. End If
30. Label1.Text = "Price = " & Format(FinalPrice,

"$#,##0.00")
31. 351
32. End Sub

33. Select File|Save All to save your project. Press F5 to run your project.
34. When your Web Form finishes loading in the browser, type “45.95” into the TextBox

control, and then click Button. The Label at the top reports that the item’s price is
$47.79.

35. Click the CheckBox to check that control, and then click the Button control. When the
Web page finishes processing, the price will still be $47.79 and the CheckBox will be
unchecked. When you checked its box, the CheckedChange event fired but did not
process immediately. When you clicked Button, the Button’s Click event fired, but
back at the Web server, the CheckBoxes CheckedChange event was processed
before the Button’s Click event, and this event determined that the item price was
under $100, did not qualify for the discount, and therefore unchecked the CheckBox
control. When the Button’s Click event was processed next, the value of
CheckBox1.Checked was False , so the discount was not applied. Notice that you
never saw the “ERROR” message in the Label control because the Button’s Click
event replaced this message with the “Price” message before the page completed
processing.

36. Change the item’s price in the TextBox to 145.95 and click Button. The item’s price is
reported to be $151.79.

37. Check the CheckBox to enable the discount, and then click Button. Because the price
is more than $100, the CheckBoxes CheckedChanged event does not uncheck this
box, and the Button’s Click event includes the discount in its calculation.

38. Close your browser window, which should take Visual Studio .NET out of Debug
mode and place you back in the code view window.

39. At the top of the code view window, click the WebForm1.aspx tab to look at the Web
Form in design mode.

40. Click the CheckBox control, and then change its AutoPostBack property to True.
41. Save your project, and then run it by pressing F5.
42. When the Web Form loads in your browser, enter the value 55.88 in the TextBox.

43. Click the CheckBox to check it. The CheckedChanged event then fires and triggers
an immediate postback. Because the value of TextBox1 is less than $100, the
CheckBox unchecks itself and places an error message in Label1.

44. Change the value of TextBox1 to 155.88, and then try to check the CheckBox. Again
this event triggers a postback to the Web server, but this time the box stays checked
because the value of TextBox1 is more than $100. With a local Web server, you will
not have to wait long for the postback to process this event, but if your browser does
not have a fast connection to the Web server, waiting for a postback can severely
affect your application’s performance.

When working with delayed event processing, you need to take these delays into account
when processing the event. For instance, if I check the discount CheckBox, and then realize
that my price is less than $100 and uncheck the CheckBox, this should not result in an error
on the Web server. In the calculator example, I avoid raising an error in this situation by
checking the CheckBox’s value as well as the TextBox’s value in the CheckedChanged
event. If a delayed event raises an error that affects the event that caused the postback (the
Button’s Click event in this example), try to work around this problem and avoid sending a
blank result back to the user. Users will become frustrated if they ask for a calculation and
they receive an error message after a long pause. Instead, try to fix these problems for the
user, and hopefully you will avoid additional postback requests.

Using the DataGrid Web Control

Visual Studio .NET comes with a Web control version of the DataGrid control, which you
may be familiar with from Windows Form development projects. This control has the ability
to display tables of data to the user and provide view-management features such as the
ability to sort columns. This control represents an amazing breakthrough in Web
development because before there were server-side Web controls, developers had to create
pages and pages of server-side code to draw out database tables and make them easily
manageable and updateable. With the DataGrid Web control, a developer can display a
table of data within the user’s browser with only a few lines of code.

To show you how you can use the DataGrid control on your Web Forms, I am going to
create a Web page that displays a table of data from a sample database. All you have to
provide the DataGrid is a data source for it to display, and all of the hard work of drawing
tables and formatting HTML text is handled by the control. You can also give your DataGrid
some advanced functions with only a few mouse clicks. These advanced features include
the ability to sort columns and page through tables of data a few records at a time. Try the
following example to see how easy it is to use the DataGrid Web control on your Web
Forms:

1. Create an ASP.NET Web Application named DataGrid under the Visual Basic Project
folder.

2. From the Web Forms panel of the Toolbox window, select the DataGrid controls, and
then drag it over to the surface of your Web Form. After you drop this control, resize
its edges so that it fills most of the visible portion of the Web Form in the design view.

3. Click the DataGrid and look at the Properties window. Under the AlternatingItemStyle
header you will find a BackColor property. Set this property to be the lightest shade
of blue (when you click this property’s value column, a color-picker window opens and
displays a palette of colors to choose from). Note that every other row in the DataGrid
control is the color you selected. This feature makes it a little bit easier to read rows
and rows of data.

4. In the Properties window under the Behavior section, you will find the AllowSorting
property. By default this is set to False , but let’s change this to True.

5. In the Properties window under the Paging section, change the AllowPaging property
to True, and then set the PageSize property to 5. This property limits the number of

rows of data returned to the user to five. The first time the user requests this Web
Form, the first five rows of data returned by the query will be displayed. The user will
be able to then ask for the next five rows of data if he or she wants to see more.

Tip If your DataGrid control is dealing with large tables of data, using the

AllowPaging and PageSize properties is an excellent choice because
these properties limit the amount of data that is rendered and
transmitted across the Web, resulting in fast page response times.

Note At this time, I am not going to explain the intricacies of .NET data

access because you will find plenty of details in Chapter 15. Step 7
uses the Server Explorer window to locate a database table for
display in the DataGrid. If you do not have any data connections
defined in the Server Explorer window, refer to Chapter 15 to find out
how to add data connections.

7. From the Server Explorer window, expand one of your database connections, and then
below that connection expand the Tables tree. Left-click and hold on one of these
tables, drag it over to the surface of your Web Form, and drop it. You will see an
OleDbConnection1 and an OleDbDataAdapter1 component added below your Web
Form.

8. From the Toolbox window, click the Data panel. Drag a DataSet component over to
your Web Form and drop it. A window named Add Dataset will pop up asking you if
you are adding a typed or untyped dataset. Select the Untyped option and click OK.
You should then see a DataSet1 component below your Web Form.

9. Double-click the surface of your Web Form, and the code behind opens. Place your
mouse cursor inside the Page_Load event and add the following code to it:

10. Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System._

11. EventArgs) Handles MyBase.Load
12. If IsPostBack Then

13. 'Do NOT reload the DataSet, Postback preserves the
data

14. Else

15. OleDbDataAdapter1.Fill(DataSet1)
16. DataGrid1.DataSource = DataSet1

17. 354
18. DataGrid1.DataBind()

19. End If
20. End Sub

21. Notice that in the Page_Load event, I do not contact the database and initialize the
DataGrid during a postback, only during the initial page request. Save your project by
selecting File|Save All.

22. Run your Web Form by pressing F5. When the browser finishes loading your page,
you should see the table of data you selected in Step 7 displayed on the Web Form.
Figure 8.9 shows an example of a Web browser using the DataGrid control to display
a table of data. The column names at the top of this table of data will be hyperlinks
that you can click to sort a column. Earlier, you set the PageSize to 5, so if your
select table of data returns more than five rows, you will only see the first five rows
and a left and right arrow at the bottom of those rows. These arrows allow you to ask
for the next or previous five records in the table.

Figure 8.9: A DataGrid control shown in the Web browser.

23. Right-click the surface of the browser window, and select View Source. This is the
raw HTML that the Web server provided to the browser. You will see a lot of HTML
tags, most of which were generated by the DataGrid control. The DataGrid control
also generated a JavaScript function to handle the postback function on the client-
side. If you can imagine trying to create this raw HTML page manually, you will
understand why server-side Web controls are so powerful and how they will save you
hours, if not days, of development time.

Working with the Validation Web Controls

There will be times when you will want to check the value of control on a Web Form without
triggering a postback to the Web server. To accomplish this task, you need to execute some
code on the client-side within the browser window. Prior to ASP.NET, your Web
development team would have needed a developer skilled in JavaScript coding to create this
code, but currently, with the help of a powerful set of validation Web controls, you can create
this client-side code with a few simple mouse clicks.

The following exercise shows you how to use three of the available validation controls.
Setting up these controls is as simple as placing a control on your Web Form and editing a
few of its properties. When you observe these controls in action within the browser, you will
see that these controls generate JavaScript code to perform their magic on the client-side:

1. Create an ASP.NET Web Application using Visual Basic, and name it WebValidation.
2. From the Web Forms panel of the Toolbox window, select the TextBox control and

drag it over to the upper-left corner of your Web Form. Add two more TextBox
controls directly below it for a total of three TextBox controls.

3. Drag a RegularExpressionValidator control over to the center of the Web Form. Set its
ControlToValidate property to TextBox1. Next, edit its ValidationExpression
property, and select the U.S. Social Security Number from the list of possible
expressions. Set the ErrorMessage property to “TextBox1 must be a valid Social
Security Number”. Drag this control up, and place it to the right of TextBox1.

4. Drag a RangeValidator control over to the center of your Web Form. Set the
RangeValidator control’s ControlToValidate property to TextBox2. Next, set its
Type property to Integer, set the MaximumValue property to 10, and set the

MinimumValue property to 1. Finally, set the ErrorMessage property to “Must be a
number between 1 and 10”. Drag this control over to the right of TextBox2.

5. Drag a CompareValidator over to the center of your Web Form. Set its
ControlToValidate property to TextBox3 and its ControlToCompare property to
TextBox2. Set the Type property to Integer. Verify that the Operator property is set
to Equal, its default value. Finally, set the ErrorMessage property to “2 and 3 are
NOT equal”. When you are done setting this control, drag it over to the right of
TextBox3.

6. Select File|Save All to save your project, and then press F5 to run your Web Form.
When the Web Form finishes loading, you will see three TextBox controls on it, but
you will not see any of your validation controls.

7. In TextBox1, type in your name, and then press the Tab key. The
RegularExpressionValidator error message turns on, letting you know that you did not
enter a valid Social Security Number.

8. Enter the value 99 in TextBox2 and press the Tab key. The RangeValidator error
message lights up telling you that you did not enter a number between 1 and 10.

9. In TextBox3, enter the number 6 and press the Tab key. The CompareValidator’s error
message lets you know that the values of TextBox2 and TextBox3 are not equal.

10. Tab back to TextBox1 and enter a valid Social Security Number (###-##-####). Tab
to the next field and the error message disappears.

11. In TextBox2, enter the number 6 and press the Tab key. The remaining two error
messages disappear.

If you look at the raw HTML behind the Web page displayed in the browser, you will see all
of the JavaScript code that was generated for you by these validation controls. Not only do
these controls save you time by creating source code for you, they also greatly reduce the
need to post a Web Form back to the server to validate and check these control values. The
more you minimize the back and forth communications between the Web browser and the
server, the better your application will perform, and the happier your users will be.

Caching Data in the Web Server’s Session

Because of the connectionless nature of Web communications, every request received by
the Web server is treated as a request from a brand new user. This makes it difficult to know
where users have been and what information has already been provided to them. Take an e-
commerce Web site with a shopping cart feature for instance. Without some way to persist
which items a visitor has placed into his shopping cart as the user navigates from one page
to another, the shopping cart will always remain empty. In order to remember which items a
user selected as he travels from page to page, the Web site needs to save this information
using a client-side cookie, a database, a text file on the server, or a user’s session on the
Web server.

A user’s Web server session is a special area in memory that is directly tied to an individual
visitor to the Web site. If the Web server currently has 10 visitors, there will be 10 sessions
being stored in memory. Each Web session has a timeout period. If a visitor does not return
to the Web server and request another Web page within the designated timeout period, the
session and all of its data is destroyed by the Web server to make room for new sessions.
By default, the session’s timeout length is 20 minutes, although Web server administrators
can increase or decrease this value as needed.

For Web site developers, the Web server’s session provides a powerful tool to persist data
associated with a particular user. Imagine that you are developing an online bookstore, and
you want to store the name of the book a user is ordering while you present him with a Web
page asking for his mailing address and credit card information. The following example
shows a Button’s Click event that would write this data to the user’s session:

Session("BookName") = strBookName

As long as the user stays active on this Web site, the session will remain active and will
remember the name of the book the user selected. To access this information in the Web
server’s session, all you need to do is assign to it to a variable like so:

StrBookToOrder = Session("BookName")

A developer could also opt to store the book’s title in a client-side cookie, but if the user has
cookies disabled in his browser, this plan would fail. You could also use a database in which
to create a permanent or temporary user account, and then add books to that account to
persist the data. Unfortunately, database calls come at a high price in terms of application
performance, so this may not be the best choice for a visitor that may or may not actually
purchase all of the books he is looking at. Storing data in the Web server’s session is the
fastest and most efficient way to persist this data. Access to data stored within a session is
almost instantaneous because the session is directly connected to the Web server that is
responsible for processing your Web Form. If the user abandons his shopping spree and
logs off, the Web server will delete the session data after the timeout period expires. This
feature eliminates the problem of cleaning up unneeded cookies or data stored in a
database.

Testing and Debugging Web Forms

Not only can you design your Web Forms in the powerful Visual Studio .NET environment,
but you can also use the same debugging features that you use to test other Visual Studio
.NET applications. When you run your Web Form, Visual Studio .NET connects to the
hosting Web server and allows you to debug your server-side code just like Windows
application code. This means that when the Web server is processing a part of your Web
Form, you have the ability to use Visual Studio’s debugging windows and breakpoints. You
will not be able to use Visual Studio’s debugging facilities to track down problems that occur
within the browser, such as problems with client-side JavaScript code.

Breakpoints and Debugging Tools

In the following exercise, I use many of the familiar Visual Studio .NET debugging features to
test and debug a simple Web Form. I place some breakpoints in the code, and then view the
form’s current values using the Locals window. You can also step through your code or jump
to a different line of execution:

1. Create a new ASP.NET Web Application using Visual Basic as your development
language.

2. Add a Button and a Label control to WebForm1’s surface from the Web Forms panel
of the Toolbox.

3. Double-click the Button to access its Click event, and add the following code:

4. Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As_

5. System.EventArgs) Handles Button1.Click

6. Dim AverageScore As Double
7. Dim ScoreA, ScoreB, ScoreC, ScoreD As Double

8. ScoreA = 87.5
9. ScoreB = 90.2

10. ScoreC = 97.4
11. ScoreD = 78

12. AverageScore = (ScoreA + ScoreB + ScoreC + ScoreD) /
4

13. Label1.Text = "Average Score = " &
CStr(AverageScore)

14. End Sub
15. In the code window, locate the Page_Load event, and add the following line of code

to it:

16. Label1.Text = "Click on the button"
17. Save your project by selecting File|Save All.
18. Add a breakpoint on the line of code added to the Page_Load event in Step 4 by left-

clicking once on the gray bar to the left of this line of code.
19. Add another breakpoint in the Button’s Click event where the ScoreA variable is set

to 87.5.
20. Press F5 to run your Web Form. The browser will open while the Web server is

processing your page. When the server encounters the breakpoint within your
Page_Load event, your application will enter break mode, and the current line of
code will be highlighted in yellow. In break mode, you can step through your code by
pressing F8, or you can tell the page to continue processing normally by pressing F5.

21. Press F5 to continue processing the page. The browser will finish loading your page,
and you will see the message “Click on the button” below the Button.

22. Click the Button on the form. This action causes the Web Form to postback to the
server to process the Click event. Again, you will enter break mode, and again the
line with the breakpoint in the Page_Load event will be highlighted. Press F5 to
continue processing the page. Processing will pause again when the breakpoint in
the Click event is encountered.

23. Press F8 to step forward one line of code to the ScoreB variable initialization line.
24. Open the Locals debugging window by selecting Debug|Windows|Locals. In this

window, you will see all of the variables currently in scope and their current values.
ScoreB, ScoreC, and ScoreD will all have a value of zero because their lines have
not yet been processed. ScoreA will have a value of 87.5, and this value will be in
red because it was just changed in the previous line of code. Press F8 once to see
the ScoreB value change and turn red.

25. If you expand the tree named Me in the Locals window, you will be able to view the
values of the items on your Web Form, such as the Button1 and Label1 control.

26. In the Locals window, click the current value for ScoreA, change it to 33.1, and then
right-click on the line that computes the AverageScore . Select Set Next Statement.

27. Press F8 once. Processing skips over the ScoreB, ScoreC, and ScoreD initialization
lines, processes the AverageScore computation, and then stops on the line that sets
the Label1’s Text value. Hover your mouse pointer over any of the AverageScore
variable names in the code, and you should see its current value. Press F5 to finish
processing the page.

You have the ability to set watches on variables within your Web Form or set conditional
breakpoints within your code. The ability to interactively debug your Web Forms is a major
improvement over the last version of ASP, where most developers resorted to writing
debugging messages to the browser window to trap errant code or page failures.

Web Forms Trace Property

If you are looking at a Web Form in design mode, you will see a property named Trace in
the Properties window. By default, this property is set to False , but if you set it to True, your
Web Form will provide a wealth of debugging and testing information for you to see in the
browser. You will be able to see what request format was used to call your Web Form and
how long different phases of your Web Form’s processing took to execute. All of the header

information that came with the request will be visible as well as the current values of the
Web server variables. This Trace information can provide you with some valuable insight
into what information your Web Form is processing and what kind of performance you are
getting out of your Web Form. Figure 8.10 shows an example of a Web Form’s browser
output with its Trace property set to True.

Figure 8.10: Web Form’s output with Trace turned on.

Creating an XML Web Service

XML Web services play a very important role in the .NET vision of the future, and any
developer working with Visual Studio .NET should be familiar with how XML Web services
work and how to create them. Among the many exciting features of XML Web services is the
fact that they are incredibly easy to create, as you are about to discover. You can use any
.NET programming language to create your XML Web service, but in my example, I will use
Visual Basic, which just about any developer should be able to understand.

The BookService

To illustrate how easy it is to create an XML Web service, I am going to create one that
exposes a simple object named Book to the world. With the obvious exception of the
<WebMethod()> tag added to every property and function, this object will look exactly like a
Book object created in a class Library project. This is because XML Web services are not
about changing the way you program, only the communication methods you use to make
your properties and methods accessible to the outside world. Remember, because XML
Web services make themselves available via HTTP and the Web, you need to host these
services on a Web server such as Microsoft’s IIS. Try the following example, which steps
you through creating and running your first XML Web service:

1. Create a new ASP.NET Web Service project named BookService using Visual Basic
as the development language. Visual Studio .NET will communicate with your
selected Web server to set up a project directory on that server.

2. When the project finishes loading, the main XML Web service file, Service1.asmx in
the Solution Explorer window, will open in design view. Click once on the XML Web
services surface. In the Properties window, change the Name property from Service1
to Book. Your class is now named Book.

3. Right-click the surface of the design view, and select View Code to access the source
code for your service. Notice the Inherits line directly below the class declaration line,
which shows that your XML Web service class is inherited from the
System.Web.Services.WebService class.

4. In your Book class, add the following three functions:

5. <WebService(Namespace:="http://microsoft.com/webservic
es/")> _

6. Public Class Book
7. Inherits System.Web.Services.WebService

8.
9. <WebMethod()> Public Function BookName() As String

10. BookName = "Visual Studio .NET Black Book"
11. End Function

12.
13. <WebMethod()> Public Function BuyBooks(ByVal

Quantity As Integer) _
14. As Double
15. Dim TotalCost As Double

16. TotalCost = 49.99 * CDbl(Quantity)
17. TotalCost = TotalCost + CalcTax(TotalCost)

18. 'Add shipping and handling to TotalCost
19. TotalCost = TotalCost + 5.99

20. BuyBooks = Format(TotalCost, "###,##0.00")
21. End Function

22.
23. Public Function CalcTax(ByVal TotalCost As Double)

As Double
24. 'Internal function to calculate the total tax
25. CalcTax = TotalCost * 0.04

26. End Function
27.

28. End Class
29. Notice that only two of the functions you are creating have <WebMethod()> tags.

You should also note that the BuyBooks function requires an input parameter to do
its job.

30. Save your project by selecting File|Save All.
31. XML Web services do not directly define user interfaces like Web Forms do. XML

Web services are designed to support other applications, and like class Library
projects, are not meant to stand alone. Luckily, in order to support the discovery
process where developers locate and learn about XL Web services, a .NET XML
Web service will create some Web-based interfaces for you to examine and test your

services without creating an external test application. Simply press F5 to run your
XML Web service project.

32. Your Web browser will open, and you will see the URL path to your XML Web service
in the Address box. At the top of this page, you will see the name of the class, Book,
and below it the two functions made public with the <WebMethod()> tag, BookName
and BuyBooks. You will also see a hyperlink near the top of the page, which shows
you the Service Description, or WSDL information. Take a look at Figure 8.11 to see
what this page looks like.

Figure 8.11: The BookService discovery page.

33. Click the BuyBooks hyperlink. The next Web page you see describes the BuyBooks
function of the BookService XML Web service. The bottom half of the page shows
potential developers how the SOAP, GET, and POST requests and responses will be
formatted when using this interface. This information is helpful if you are not using
Visual Studio .NET to access XML Web services. The top half of this Web page
allows you to test your BuyBooks function by providing you with a TextBox where
you can enter the required Quantity parameter. Enter the number 2 into this TextBox,
and click Invoke.

34. A new browser window opens, and you see an XML message displayed. This is the
response from the XML Web service based on your input parameter. When provided
a Quantity parameter of 2, the BuyBooks function calculated the total price of this
transaction to be 109.97, which includes sales tax and shipping and handling. Even
though you cannot see the CalcTax function as one of the XML Web services
interfaces, this function is available to the BuyBooks function.

Migrating Class Libraries to XML Web Services

Because XML Web services communicate differently than a class Library, you will not be
able to add XML Web services or the <WebMethod()> tag to an existing class Library
project. If you want to migrate an existing class Library project to an XML Web service, there
are only a few simple steps you need to perform:

1. Create a new ASP.NET Web Service project using the same development language
you used to create the class Library.

2. Copy the code from your class Library project and paste it into your XML Web service
source code file ending in .asmx.

3. Add the <WebMethod()> tag to the beginning of every property and method
declaration line that you want to make available via the Web.

If you do not add the <WebMethod()> tag to a property or method, that code will not be
directly accessible via the XML Web services interface, but your code inside the XML Web
service will still be able to enlist these nonpublic functions. Because XML Web services often

have a wider audience than a class Library, you will probably want to limit the interfaces to
your service more than you would a class Library. For example, if your class Library has an
AddUser method that allows callers to add new user accounts to a database, you may not
want to make this same method available to everyone on the Internet. By not adding a
<WebMethod()> tag to this method, you prevent direct access to it via HTTP calls.

Exploring XML Web Service Discovery and WSDL

In order to use an XML Web service in your application, you must be able to:
§ Locate the XML Web service’s host
§ Discover which services that host provides
§ Select and understand a service’s interfaces and parameters

To start, you have to know where on the Internet to locate this service. You may find this out
through an XML Web service lookup service, such as www.uddi.org, or through a service’s
vendor that provides you with the URL to its Web server. Next, you need to find out which
services that Web server is making available to you. Many times this information will be
provided to you along with the URL to the server, but sometimes you may only know the
server’s name and not the full path to its hosted services.

XML Web Service Discovery

To find out which services are being hosted, you can simply query that server’s discovery
file. In an ASP.NET project, you will see a file in your Solution Explorer ending in .vsdisco.
As you add XML Web services to your project, this file is automatically updated with the
necessary descriptive data. To query a locally installed Web server that is hosting a project
named BookService, you could open a browser window and type in the following URL:

http://localhost/BookService/BookService.vsdisco

In response to this request, the Web server will return a file of XML describing the XML Web
services housed within this project. If there were two services in the BookService project,
BookInfo and Customers, the discovery file might look like this:

<?xml version="1.0" encoding="utf-8" ?>

<discovery xmlns="http://schemas.xmlsoap.org/disco/">
 <contractRef ref="http://localhost/BookService/BookInfo.asmx?wsdl"
_
 docRef="http://localhost/BookService/BookInfo.asmx" _

 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
 <contractRef ref="http://localhost/BookService/Customers.asmx?wsdl"
_
 docRef="http://localhost/BookService/Customers.asmx" _
 xmlns="http://schemas.xmlsoap. org/disco/scl/" />

</discovery>

This XML file tells you that there are two XML Web services hosted, BookInfo and
Customers. You are also provided with a URL to query each of these services to discover
more information about their interfaces and parameters. This information is provided in a
service’s WSDL.

The WSDL

Once you know where the actual XML Web service file is located (in .NET, these files end in
.asmx), you can query that file to obtain its WSDL information. You can obtain this data
using any Web browser by entering the URL path to the XML Web service followed by
?wsdl. The following is an example of a WSDL query:

http://localhost/BookService/BookInfo.asmx?wsdl

The XML Web service would respond back with another XML file describing itself. Take a
look at the following example of a WSDL file:

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:s="http://www.w3.org/2001/XMLSchema"_

 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" _
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" _

 xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/" _
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" _

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" _
 xmlns:s0="http://microsoft.com/webservices/" _

 targetNamespace="http://microsoft.com/webservices/" _
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <s:schema attributeFormDefault="qualified" _

 elementFormDefault="qualified" _
 targetNamespace="http://microsoft.com/webservices/">

 <s:element name="BuyBooks">
 <s:complexType>

 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="Quantity" type=_

 "s:int" />
 </s:sequence>

 </s:complexType>
 </s:element>

 <s:element name="BuyBooksResponse">
 <s:complexType>

 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="BuyBooksResult" _

 type="s:double" />
 </s:sequence>

 </s:complexType>
 </s:element>

 <s:element name="string" nillable="true" type="s:string" />

 <s:element name="double" type="s:double" />
 </s:schema>

 </types>
 <message name="BuyBooksSoapIn">

 <part name="parameters" element="s0:BuyBooks" />
 </message>

 <message name="BuyBooksSoapOut">
 <part name="parameters" element="s0:BuyBooksResponse" />

 </message>
 <portType name="BookSoap">

 <operation name="BuyBooks">
 <input message="s0:BuyBooksSoapIn" />

 <output message="s0:BuyBooksSoapOut" />
 </operation>

 </portType>
 <binding name="BookSoap" type="s0:BookSoap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style=_
 "document" />

 <operation name="BuyBooks">
 <soap:operation soapAction="http://microsoft.com/webservices/_

 BuyBooks" style="document" />
 <input>

 <soap:body use="literal" />
 </input>

 <output>
 <soap:body use="literal" />

 </output>
 </operation>

 </binding>
 <service name="Book">

 <port name="BookSoap" binding="s0:BookSoap">
 <soap:address
location="http://localhost/BookService/Service1.asmx" _
 />
 </port>

 </service>
</definitions>

This is an abbreviated example of a WSDL file provided by the BookService XML Web
service you created earlier. To condense this file, I removed the GET and POST
<message>, <portType>, and <binding> information tags. The tags provide similar

information to the SOAP sections except in a format that clients using GET or POST
requests would adhere to. A WSDL provides a great deal of redundant information in order
to make a service available to the widest possible audience.

If this is your first exposure to an XML message, you might feel a bit overwhelmed, so let’s
start at the top of this file and examine the information that is being provided.The very first
tag lets you know which version of XML tagging is being used. Following this section is the
<definitions> tag, which provides URL links to resources on the Web that define the tags
used within the message. The next section of the message starts with the <type> tag and
describes the remaining messages schema and major elements. Notice that the BuyBooks
element has a subelement named Quantity that is of type int. This directly matches up with
the BuyBooks function’s Integer parameter named Quantity. The BuyBooksResponse
element also has a subelement, BuyBooksResult, which is of type dbl. This is the Double
data type that the BuyBooks function replies with.

The remainder of the WSDL message describes the SOAP messaging format for both the
request and the XML Web service’s response. With this information, developers or the tool
they are using should be able to format a valid SOAP message to send a request to an XML
Web service. They will also have all the information necessary to decode the XML Web
services response message in SOAP format. If you are worried about how you are going to
work this into your application, don’t be! The Visual Studio .NET development environment
will handle the discovery and WSDL processing steps for you, and you will never have to
look at these XML files if you do not want to. You won’t even have to format your requests
using SOAP because this will all be made transparent to you.

Accessing an XML Web Service from an Application

It’s an XML Web service’s lot in life to be a supporting actor and not the main act. XML Web
services can be used by both Web and Windows applications. Knowing how to use an XML
Web service from your applications will not only give you a better idea of how XML Web
services work, but also how Visual Studio .NET simplifies your dealings with these services
and handles all of the communication and message formatting complexity for you.

To see how simple it is to use an XML Web service in your applications, try the following
example. The project you will create uses the BookService XML Web service created in the
“Creating an XML Web service” solution, so if you have not already created this service, do
so now. The BookService must be hosted on an available Web server that the Windows
application you are about to create can access:

1. Under Visual Basic Projects, create a new Windows application named BookOrders.
2. From the Windows Forms panel of the Toolbox window, drag a TextBox control over to

the upper-left corner of the Windows Form. Below this, add a Button control, and
below the Button add a Label control. Set both the TextBox and Label control’s Text
properties to be blank.

3. To add a reference to the BookService, in the Solution Explorer window, right-click the
BookOrders project name, and select Add Web Reference. A window named Add
Web Reference opens. This window looks like a Web browser because it has an
Address box at the top and some of the familiar browser buttons next to it like
Refresh and Back. There are two panes below the Address box. The right pane,
named Available references, will be blank at the moment, whereas the left pane will
feature links to the Microsoft UDDI site to help you search for XML Web services on
the Internet.

4. In the Address TextBox, type the URL pointing to the actual XML Web service,
BookService. If this service is hosted on your local machine, the URL should look like
this:

5. http://localhost/BookService/Service1.asmx

6. After you type the XML Web service’s URL, press Enter. Visual Studio .NET will
contact this XML Web service, and in the left pane, you will see a Web page listing
the functions associated with this service. The right pane will provide links to the
WSDL information and documentation for the located service. Click the Add
Reference button at the bottom of this window. You will see a Web References folder
underneath your BookOrders project in the Solution Explorer window. If you expand
this folder, you will see there is a reference to the Web server that is hosting the
BookService.

7. On the Windows form, double-click the Button control to access its Click event code.
Add the following code to the Click event:

8. Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As _

9. System.EventArgs) Handles Button1.Click
10. If Not (IsNumeric(TextBox1.Text)) Then

11. MsgBox("ERROR! Please enter an integer")
12. Exit Sub

13. End If
14. Dim GetCost As New localhost.Book()

15. Dim BookCount As Integer
16. Dim FinalPrice As Double

17. BookCount = CInt(TextBox1.Text)
18. FinalPrice = GetCost.BuyBooks(BookCount)

19. Label1.Text = "Cost = " & Format(FinalPrice,
"$###,##0.00")

20. End Sub
21. Because your application already holds a reference to the Web server, using this

service is just like using any other class reference. In the Click event, I Dim a
variable named GetCost to be a new instance of localhost.Book(), which is the
name of the Web server hosting the service followed by the class name within the
XML Web service. A single application can hold multiple references to XML Web
services hosted on multiple Web servers.

22. Save your project and run it by pressing F5. When the Windows Form is loaded,
enter the number 4 in the TextBox, and then click Button. After a brief pause, your
Windows Form will display the results of the price calculation, which will be $213.95
for four books.

As you can see, making calls to XML Web services is so simple that you might forget you
are even using an XML Web service hosted on a remote machine. When creating this
sample application, you never once had to look at any XML tags or SOAP messages. Visual
Studio .NET did all of this for you. If you wanted to access an XML Web service from an
ASP.NET Web Application, you would follow the exact same steps to reference that service,
and then use it in your code.

Testing and Debugging XML Web Services

XML Web services are not intended to run alone, so you need a way to test your services
that lets you simulate making requests from remote clients. Visual Studio .NET developers
have a great many debugging tools at their disposal, and you will be relieved to hear that
you can use your favorite debugging tools while developing XML Web services as well.

Debuging a Standalone XML Web Service in Visual Studio .NET

If you create an XML Web service in .NET and then run it using the F5 key, the XML Web
service generates a special Web page for display in the browser. This dynamically
generated page is necessary because an XML Web service was designed to respond to a
specific request, which is not provided when you run the XML Web service in this way. But
the Web pages generated by Visual Studio .NET allow the developer to test his XML Web
service from within a Web browser. The first Web page that is generated lists the interfaces
exposed by your XML Web service. If you click on one of these interfaces, you will get
another dynamically generated page that you can use for testing your service.

On the testing Web page, you will get a TextBox for each input parameter that your interface
accepts and a Button that reads “Invoke,” which submits the values you enter into the
TextBoxes as parameters to your XML Web service. Developers can use this Web-based
testing platform to try out different pieces of test data to validate their service’s output as well
as its response to unexpected inputs.

Tip

As with any function you design, you should thoroughly test your code using
unexpected input data that includes data type mismatches (for example, enter
a String data type when an Integer is expected).

Breakpoints and Debugging Tools

One of the benefits of testing your XML Web service from within the Visual Studio .NET
environment is that it allows you to add breakpoints to your code and use the IDE’s
advanced debugging features. Whenever a breakpoint is encountered in your XML Web
service’s code, the processing of your service will pause and Visual Studio .NET will become
visible with the current line of code highlighted in yellow. In break mode, you can use
debugging tools such as the Locals window and variables watches to track and check your
code’s progress. If you read the “Testing and Debugging Web Forms” solution, you will see
an example of how Visual Studio .NET can help you debug your Web-based applications.

Using Remote XML Web Services

If you are testing and debugging an application that uses a remotely hosted XML Web
service, you will not be able to directly troubleshoot the XML Web service itself, only the
results that the service sends back to your application. This limitation is similar to a situation
where your development team is provided with a component for your application, but not the
source code. This can be considered black box testing because you cannot actually see
inside the code, and you are limited to only testing the values that go into or come out of this
component.

If you are using an XML Web service you did not develop that is hosted by a third party, you
should spend a great deal of time testing that service’s interfaces to ensure that what you
get back is what you expected. I highly recommend you perform validation checks on every
value passed to your code from an XML Web service, and surround your XML Web service
calls with exception-handling routines to handle those unexpected uh-ohs.

Chapter 9: Windows Forms
By Julian Templeman

In Depth

This chapter discusses the new GUI architecture that is shared by all .NET programming
languages, Windows Forms. This architecture was previously known as WinForms, but
Microsoft ran into problems with the name and had to change it.

Windows Forms provide you with a set of classes for writing form-based Windows
applications. These forms are very similar in appearance and operation to the way forms
have been built and used in Visual Basic for some years, but Windows Forms can be used
by any .NET language, and so bring the ease of VB style drag-and-drop UI programming to
other .NET languages.

The Windows Forms namespace, System.Windows.Forms, is very complex, containing
more than 200 classes and interfaces. Because an entire book could be devoted to just this
topic, I’ll only provide an overview of how Windows Forms work and what you can do with
them. Even then, I’ll have to split the discussion over two chapters, with this chapter
concentrating on the basic form mechanism, and Chapter 10 discussing controls and how
you use them with forms.

Forms and Controls

Many of the classes in the namespace represent familiar Windows GUI elements, such as
buttons, listboxes, menus, and common dialogs, but two of them stand out from the rest.

The Form class represents a window or dialog box and is the base for all windows. The
Control class is the base class for “components with visual representation,” so it forms the
base for everything you see on the screen and interact with.

Figure 9.1 shows the overall class hierarchy in the System.Windows.Forms namespace
and how Form and Control fit in.

Figure 9.1: Relationships between the major classes in the System.Windows.Forms
namespace.

Table 9.1 describes what each class does and what functionality it provides to the hierarchy.
I’ll describe some of these classes used in more detail in this chapter.

Table 9.1: The major classes in the System.Windows.Forms namespace.

Class Description

Object The base class for all other classes

MarshalByRefObject The base class for all objects that need to communicate with
one another

Component Provides a base implementation of the IComponent interface

Control The base class for “components with visual representation,”
which provides message and user input handling

ScrollableControl Provides a base class for controls that need to have scrolling
functionality

ContainerControl Represents a control that can act as a container for other
controls handling focus management

UserControl Represents an empty control that can be used in the Form
Designer to create other controls

Form Provides a base class from which custom forms can be
derived

Anatomy of a Windows Forms Application

Now let’s take a look at what a Windows Forms application actually looks like using a hand-
written application written in Visual Basic. It’s rather unlikely that you’ll write many Windows
Forms applications by hand because you lose the advantages of the Forms Designer and
the visual layout tools. But hand-written code is very useful when you’re trying to understand
how things work, and you can be sure that the wizards and designers aren’t doing sneaky
things behind the scenes.

Creating a Skeleton Application

Here, then, is some code that simply creates a form and displays it on the screen:

Imports Microsoft.VisualBasic

Imports System
Imports System.Collections

Imports System.Data
Imports System.Diagnostics

Imports System.ComponentModel
Imports System.Drawing

Imports System.Windows.Forms

Module MyMod

Public Class MyForm
 Inherits System.Windows.Forms.Form

 Public Sub New()

 MyBase.New
 End Sub

 Overrides Public Sub Dispose()

 MyBase.Dispose
 End Sub

End Class

Public Sub Main()
 Dim form1 As New MyForm()

 form1.Show()
End Sub

End Module

You can type this into a file, save it as MyForm.vb, and then compile it with the command-
line VB compiler by opening a console window and typing the following command line:

vbc /t:winexe /main:MyForm /r:System.Data.dll /r:System.Drawing.dll
_
 /r:System.Windows.Forms.dll /r: System.dll MyForm.vb

Remember that you need to type the entire command line on one line. Figure 9.2 shows
what the compilation process should look like:

Figure 9.2: Compiling a Visual Basic application from the command line.

When you run the application, you won’t see anything spectacular; all you’ll see is a blank
form that you can close using the system menu or the close button, as shown in Figure 9.3.

Figure 9.3: The most basic of Windows Forms applications.

Let’s take a look at how the code and compilation process works.

Understanding the Application Code and the Command Line

The code begins with a host of “imports” statements because Windows Forms applications
can use a lot of .NET classes from many namespaces. Although the basic application
doesn’t need all of these namespaces at this time, I’ve put them in so I won’t have to
remember to add them later on. Here’s what each namespace is for:
§ Microsoft.VisualBasic—Contains (obviously) basic classes and interfaces needed by

VB.
§ System—Contains definitions of many .NET basics, including the built-in types and the

String and Object classes.
§ System.Collections—Contains the common collection classes (discussed in Chapter

4).
§ System.Data—Contains the ADO.NET classes.
§ System.Diagnostics—Contains classes that let you trace the execution of your code

and debug the application.
§ System.ComponentModel—Provides classes used to implement components.
§ System.Drawing—Contains the GDI+ classes that will be needed if you want to do

any drawing.
§ System.Windows.Forms—Contains all the Windows Forms functionality, so you’ll

definitely need this one.

The second part of the code defines a new form class, which inherits from the
System.Windows.Forms.Form base and provides Sub New() and overridden Sub
Dispose() functions. At present, these two functions are used in order to call the base class
function, but I’ll add more code to these functions as we go through the rest of the In Depth
section.

The command line looks quite complex, so let’s consider it piece by piece. The first option,
/t:winexe, tells the compiler that I’m building a Windows executable as opposed to a console
application or a DLL. The second option, /main:MyForm, tells the compiler where to start
executing the program, and in the case of a form-based application like this, I give it the
name of the main form class. The following four options, all starting with /r:, tell the compiler

which DLLs it needs to reference. I need to do this because the compiler needs to check the
use of namespaces, classes, interfaces, and other programming constructs at runtime; the
four DLLs I’ve listed contain all the namespaces I mentioned in the Imports statements. The
final parameter is, of course, the name of the file I’m compiling.

The Form Class

Now that you’ve seen how to create a basic form, let’s take a look at the
Windows.Forms.Form class. I’m only going to provide you with an overview of Form
because it is a very large and complex class that contains more than 250 methods,
properties, and events. This isn’t too surprising when you consider that a form represents a
window on the screen, and windows have a great deal of functionality that needs to be
encapsulated in this class.

Forms can be used to display several kinds of windows, such as:
§ Ordinary Single Document Interface (SDI) forms—Each window stands on its own.
§ Multiple Document Interface (MDI) forms—One form contains zero or more child forms.
§ Dialog boxes—Forms optimized to contain controls.

Creating forms is very simple, as the Form class only has one constructor that takes no
arguments:

Dim form1 As New MyForm()

Form Properties

Forms have a number of properties. Table 9.2 shows the property values that a form has
when it has just been created.

Table 9.2: The initial properties of a Form object.

Property Value Description

AutoScale true The window and
its controls will
scale to the font
being used (and
rescale if the font
is changed).

BorderStyle FormBorderStyle.Sizable The window
border is
resizable.

ControlBox true The window
displays a control
box in the top-left
corner.

MaximizeBox true The window
displays a
maximize box in
the top-right
corner.

MinimizeBox true The window
displays a
minimize box in

Table 9.2: The initial properties of a Form object.

Property Value Description

the top-right
corner.

ShowInTaskBar true This window will
have an entry in
the task bar.

StartPosition FormStartPosition.WindowsDefaultLocation Windows will
choose the
default location
for the window.

WindowState FormWindowState.Normal The window will
be displayed
normally (as
opposed to
maximized or
minimized).

These default values fit with what we saw in the simple form created earlier, and you can
change any of these properties in order to affect the appearance and operation of the form.

The Form class has approximately 100 properties, many of them inherited from Control and
other classes higher in the hierarchy. Table 9.3 lists some of the most useful properties of
the Form class. Several of these properties are discussed in more detail throughout the rest
of the chapter.

Table 9.3: A selection of commonly used Form class properties.

Property Description

AcceptButton Gets or sets the button that performs an action equivalent to the
user pressing the Enter key

Anchor Determines which, if any, of the sides of the object are

anchored to the container’s edges

AutoScale Determines whether the form and its controls autoscales to suit
the font being used

AutoScroll Determines whether the form supports autoscrolling

BackColor Gets or sets the background color of the form. ForeColor
represents the foreground color

Bottom Gets the bottom of this control. There are matching Top, Left,
and Right properties

Bounds Gets or sets the bounding rectangle of this control

CancelButton Gets or sets the button that performs an action equivalent to the
user pressing the Esc key

ClientRectangle Gets the rectangle that represents the client area of the form

ClientSize Gets or sets the client area of the form

Table 9.3: A selection of commonly used Form class properties.

Property Description

ContainsFocus Tells you whether this form (or a child control) currently has the
focus

ContextMenu Gets or sets the context menu associated with this control

ControlBox Determines whether this form displays a control box in the top-
left corner

Controls The collection of child controls

DesktopLocation Gets or sets the location of the form on the Windows desktop

Dock Controls the docking of the control in its container

Enabled Determines whether the control is enabled

Focused Read-only property telling you whether the control has the
focus

Font Represents the font used in this form

Height The height of the form

Icon Gets or sets the icon associated with the form

IsMDIChild Tells you whether a form is an MDI child window

IsMDIContainer Tells you whether a form contains MDI child windows

MaximizeBox Determines whether this form displays a maximize box in the
top-left corner

MDIChildren For an MDI container, returns an array of forms representing
the MDI children

MDIParent For an MDI child, holds a reference to its container

Menu Gets or sets the main menu for the form

MinimizeBox Determines whether this form displays a minimize box in the
top-left corner

OwnedForms Returns an array of owned forms

Owner Gets or sets the owner for this form

Parent Gets the parent of this form

Size Gets or sets the size of this form

Text Gets or sets the text associated with the form (i.e., the window
title)

TopLevel Determines whether this is a top-level window

TopMost Determines whether a window is displayed as the topmost
window in your application

Visible Determines whether a form is visible or not

Table 9.3: A selection of commonly used Form class properties.

Property Description

Width Gets or sets the width of this form

WindowState Determines how a window is to be displayed—normal,
minimized, or maximized

The Form class also has a large number of methods; some of the most common are listed in
Table 9.4.

Table 9.4: A selection of commonly used Form class methods.

Method Description

Activate Activates a form and gives it the focus

BringToFront Brings a form to the front of the Z-order

Close Closes the form

DoDragDrop Begins a drag-drop operation

Hide Hides the form by setting its visible property to false

Invalidate Causes a paint message to be sent to the form in order to
cause it to redraw itself

LayoutMDI Lays out the MDI child windows in an MDI container

PointToClient Converts from screen coordinates to client coordinates

PointToScreen Converts from client coordinates to screen coordinates

Refresh Forces the repaint of this form and any children

Scale Scales this form and any children

Show Shows the form by setting its visible property to true

ShowDialog Displays this form as a modal dialog

Update Forces the control to repaint any invalid areas

And finally, Table 9.5 shows some of the most common events associated with the Form
class.

Table 9.5: Events associated with the Form class.

Event Description

Activated Occurs when the form is activated. The Deactivate event
occurs when the form has lost focus

Click Occurs when the form is clicked

Closing Occurs when the form is closing. The Closed event occurs
when the form is closed

DoubleClick Occurs when the form is double-clicked

GotFocus Occurs when the form gets the focus. The LostFocus

Table 9.5: Events associated with the Form class.

Event Description

event occurs when the control loses the focus

Invalidated Occurs when the form receives a paint message

KeyPress Occurs when a key is pressed while the form has the focus.
KeyUp and KeyDown events will also be generated

Load Occurs before the form is displayed for the first time

MDIChildActivate Occurs when an MDI child window is activated

MouseDown Occurs when a mouse button is pressed over the form.
MouseUp and MouseMove events are also sent when
necessary

MouseEnter Occurs when the mouse enters the form. The MouseLeave
event occurs when the mouse leaves the form

Move Occurs when the form is moved

Paint Occurs when the form needs to repaint itself

Resize Occurs when the form is resized

Form Relationships

Several times in this chapter I’ve used terms that imply that relationships exist between
windows, such as parent and child, owner and owned. If you’re not familiar with the way
windows can be related, I provide a brief account in this section. Consider the simple About
box shown in Figure 9.4.

Figure 9.4: An About box showing a form and child controls.

This simple window contains a number of controls that are themselves windows, such as the
close button at the top right and the OK button at the bottom. The form is the parent and the
controls are children of the form. This leads to some important consequences:
§ A child window always displays on top of its parent. The window isn’t much use if the

OK button gets behind the form.
§ A child window always moves and gets minimized and maximized with its parent.

§ A child window is clipped by its parent window, so it can’t display outside its parent
window’s bounding rectangle.

§ A child window’s lifetime is bound to that of its parent, so that when the About box is
destroyed, its child controls are also destroyed.

The relationship between owner and owned windows is slightly different than that between
parent and child. Owned windows display on top of their owners and will still be maximized,
minimized, and destroyed along with them, but they can display outside the border of their
parent and won’t move when the parent is moved. The About box is a good example of an
owned window.

Windows that don’t have a parent are called top-level windows, and they’re usually used for
the main window in an application.

The last term I’ll define is topmost. A topmost window is one that floats above all others in
the application regardless of whether it has the focus or not. Windows will usually move to
the front of the stack of windows when they get the focus and may move in front of
whichever window had the focus previously. A topmost window may lose the focus, but will
still display on top of all others. A good example of a top-most window is the Find And
Replace window you can display in Microsoft Word.

Tip

Be careful when giving more than one window in your application topmost
status at the same time. They can interact with unexpected results.

Using MDI Forms

There are several styles of Windows applications commonly in use. The simplest is the SDI
style where all information is displayed in a single window; Notepad is a good example of an
SDI application.

A second style is the MDI style, where a parent frame window can hold zero or more child
windows. The Excel user interface, shown in Figure 9.5, is a good example.

Figure 9.5: The Excel MDI user interface showing the frame and two child windows.

The figure shows the parent frame window (known as the container), holding menu and
toolbars and two child windows. You can see that these are children because they display
inside the parent and are clipped where they might try to display outside the parent’s

bounding rectangle. Programming MDI forms is a little more work than using SDI, but
Windows Forms makes it pretty painless.

In order to create an MDI application, you simply set the IsMDIContainer property of the
frame window to true, and then create another window and set its MDIParent property to
refer to the parent window reference. Here’s an example in VB:

Imports Microsoft.VisualBasic

Imports System
Imports System.Collections

Imports System.Data
Imports System.Diagnostics

Imports System.ComponentModel
Imports System.Drawing

Imports System.Windows.Forms

Module MyMod

' Sample MDI application

Public Class MyMDIForm
 Inherits System.Windows.Forms.Form

 Public Sub New()

 MyBase.New

 ' Set us to be an MDI container
 IsMDIContainer = true

 Dim child1 As New MyMDIChild()

 child1.MDIParent = Me
 child1.Show()

 End Sub

 Overrides Public Sub Dispose()
 MyBase.Dispose

 End Sub

End Class

Public Class MyMDIChild
 Inherits System.Windows.Forms.Form

 Public Sub New()

 MyBase.New

 End Sub

 Overrides Public Sub Dispose()
 MyBase.Dispose

 End Sub
End Class

Public Sub Main()

 Dim form1 As New MyMDIForm()
 form1.Show()

End Sub

End Module

I’ve simply created a second Form class to act as the MDI child window. The highlighted
lines show how I set the main form to be an MDI container, and then add a child window. If I
had more than one child window, I could use the MDIChildren property to get an array of
Form references for each child, and I can use the ActiveMDIChild property to get a
reference to the active MDI child window. If you compile and run the code, you should see
an application similar to the one shown in Figure 9.6.

Figure 9.6: An MDI application in Visual Basic.

You can see how the child window is clipped to the area of the container, and in this case,
.NET automatically provides scrollbars to let you see the part of the child window that’s
hidden.

Just for completeness, let me mention that there’s a third style of application that is
becoming more common, which is the “multiple top-level window” style. When you’re running
Internet Explorer, you can open as many Explorer windows as you like, and they all display
separately, but there’s only one application running behind all the windows. You can also
close the windows in any order, and the application won’t quit until the last window is closed.
This style of application doesn’t get any special support in Windows Forms.

Using Dialogs

Windows applications use two kinds of dialogs—modal and modeless. Modal dialogs, such
as About boxes and File Open dialogs, prevent users from interacting with an application
until they’ve finished with the dialog. Modeless dialogs, such as Word’s Find dialog, exist
alongside the main form, and you can switch back and forth between the form and the
dialog.

In many ways, modeless dialogs are simply another form displayed by your application, and
there is no special support for them in Windows Forms. If you want to display a window as a
modal dialog, use the Form class ShowDialog() method, which ensures that the form
behaves as a modal dialog and prohibits interaction with an application until it is dismissed.

ShowDialog() returns a DialogResult value, which tells you which button on the dialog was
clicked to dismiss it. DialogResult is an enumeration, and its members are shown in Table
9.6.

Table 9.6: Members of the DialogResult enumeration.

Member Description

Abort Returned when the Abort button is clicked.

Cancel Returned when the Cancel button is clicked.

Ignore Returned when the Ignore button is clicked.

No Returned when the No button is clicked.

None Nothing has been returned, which means that the modal dialog is
still running.

OK Returned when the OK button is clicked.

Retry Returned when the Retry button is clicked.

Yes Returned when the Yes button is clicked.

User interface design guidelines state that a dialog has to have buttons that let the user
choose how to dismiss the dialog. There should always be an OK button, and if the user
wants to dismiss the dialog without making any changes, there should be a Cancel button as
well. These two buttons are rather special in that pressing the Enter key is taken as the
equivalent of clicking the OK button, whereas pressing the Esc key is taken as the
equivalent of clicking the Cancel button. You can indicate which buttons on the form
represent the OK and Cancel buttons by assigning button references using the
AcceptButton and CancelButton properties of the form.

You set the value to be returned from a dialog by assigning a suitable value to the form’s
DialogResult property, like this:

' Report that the user pressed the 'Yes' button

Me.DialogResult = DialogResult.Yes

Assigning a value to the DialogResult property normally closes the dialog box and returns
control to the form called ShowDialog(). If for some reason you want to prevent the property
from closing the dialog, use the DialogResult.None value, and the dialog will remain open.

You can also assign a value to the DialogResult property of a Button object, in which case,
clicking the button dismisses the dialog and returns the value to the parent form.

Handling Events

The .NET event mechanism is used by forms and controls to communicate with one another,
and an event is simply a notification sent by a form or a control to let the world know that
something has happened. Examples of events include clicking a button and selecting an
item in a listbox.

The “event sender” originates the event, and there may be one or more “event receivers”
that are interested in knowing what has happened. A receiver that wants to accept
notifications registers a handler function with the sender, and at the appropriate time, the
sender calls the handler function. The mechanism used to make this work involves
delegates, which were discussed in Chapter 2 in the “Delegates” section. If you are
unfamiliar with delegates, you may want to review the material in Chapter 2 before reading
on.

The way in which you use events in code is different in VB than it is in C#. In VB, a lot of the
mechanism is hidden from you, whereas in C#, you can still see it and have to be prepared
to work with it. For this reason, I’ll discuss events in VB first, and then cover C#.

In VB, all event-handler functions follow the same pattern:

Protected Sub Control_EventName (ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Control.EventName
 ' Handler code here

End Sub

The function name (Control_EventName) consists of the name of the form or control to
which this handler applies plus the name of the event you want to handle. So if you want to
handle the Click event for a button called OKButton, you would code a handler called
OKButton_Click, and if you want to handle the user changing the selection in a listbox
called Listbox1, the handler would be called Listbox1_SelectedIndexChanged. You can
find out which events are supported by a control by consulting the .NET Framework
documentation.

The arguments to the handler function are largely superfluous in VB. They provide
information about which object was the source of the event and about what the event
actually was, but in VB, Visual Studio adds a custom handler function for each event you
want to handle on an object. This means that when the user, for instance, clicks on Button1,
you’ll end up in the Button1_Click() handler, so there’s no need to check the “sender”
argument to determine that it was Button1 that was the source of the event. It must have
been Button1 or else you wouldn’t be here in the handler function. C# and C++ give you a lot
more flexibility (or unnecessary complexity, depending on your viewpoint), and these
arguments are often needed.

Handlers are easy to add even if you are manually editing code. Provided you use the right
naming convention, VB links the event handler to the control automatically.

Things are not quite as simple in C#, where you actually see the delegate mechanism in
use. Adding a handler in C# involves code like this:

this.OKButton = new Button();
…

OKButton.Text = "OK";
OKButton.Click += new System.EventHandler(this.OKButton_Click);

…
protected void OKButton_Click(object sender, System.EventArgs e)

{
 // Handler code here

}

There is a very similar handler function, which takes the same two arguments as in the VB
version, but in C# you have to link the event handler to the object manually. As the
highlighted line of code shows, this means creating a new EventHandler object and
initializing it with the name of the handler function. Remember that the function of a delegate
is to call a function when it itself is called, effectively “passing on” the function call to the
function it is managing. In this case, the EventHandler object is going to call the
OKButton_Click() function. Note that it would be quite possible to have a general button
click handler and associate that with OKButton, CancelButton, and all manner of other
buttons. In that case, you would need to use the “sender” argument to find out which button
was the source of the event, and you may need to use the second argument to find out just
what happened.

What does the += operator do, though? A Button object—along with many other control and
form types—can associate a list of EventHandler delegate objects with its events, and the
+= operator adds an entry to that list. When the event is fired, the Button object uses the
delegates in the list to call all the handler functions that have been registered via delegates.

This mechanism has two useful consequences. First, it is possible to associate more than
one handler with an event, and they’ll be called in the order they were added when the event
fires. Second, it is possible to use -= to remove a handler from an event, so you can choose
when you want to handle events.

Note

You can call your event handler functions anything you like in C#, but
Microsoft recommends using the naming convention that I’ve followed in this
section.

The Application Class

The System.Windows.Forms.Application class represents the application itself and
provides several properties and methods that can be useful. This class is sealed, so you
cannot derive any other classes from it, and all its methods and properties are shared (or
static in C# and C++), so you use them without creating an instance of the class.

Table 9.7 lists some of the more useful properties exposed by the
Windows.Forms.Application class.

Table 9.7: Properties of the Windows.Forms.Application class.

Property Description

CommonAppDataPath Returns a path for the application data that is common

Table 9.7: Properties of the Windows.Forms.Application class.

Property Description

to all users

CommonAppDataRegistry Returns a Registry key for the application data that is
common to all users, which was set up during
installation

CompanyName Gets the company name associated with the
application

CurrentCulture Gets or sets the locale information for the current
thread

ExecutablePath Gets the path to the executable that started this
application

ProductName Gets the product name associated with the application

ProductVersion Gets the product version associated with the
application as a string in the form of “123.2.1.2”

StartupPath Gets the path to the executable that started the
application

There are a number of shared methods in the Application class, some of which are rather
esoteric. Some of the most useful shared methods are listed in Table 9.8.

Table 9.8: Common shared methods in the Windows.Forms.Application class.

Method Description

AddMessageFilter Adds a filter for Windows messages

Exit Terminates the application

RemoveMessageFilter Removes a previously installed filter

Run Begins a standard message loop on the current thread

The AddMessageFilter() function is used when you want to view Windows messages
before they are processed by the framework, usually to prevent them from being processed
or monitoring application behavior. You can remove a filter with RemoveMessageFilter().
The Exit() method is used to shut down the application.

Visual Inheritance

You might be used to the idea of inheritance in object-oriented (OO) programming
languages, but .NET has taken inheritance one step further in Windows Forms.

Inheritance lets you create a new class based on an existing one, so that the new class
inherits the properties, events, and methods of the parent (or “base”) class, and can then
build on them. If you want to read more about inheritance, see the section “OO Programming
from 30,000 Feet” in Chapter 2.

You can see inheritance in action whenever you create a new form, as in the following code
fragment:

Public Class MyMDIForm
 Inherits System.Windows.Forms.Form

The Inherits keyword shows that the MyMDIForm class inherits from
System.Windows.Forms.Form.

So what does visual inheritance mean, and how does it take inheritance further? It’s easier
to demonstrate than explain in words, so I’ll start by creating a project that has a main form.
This will be a standard form called Form1 that inherits from System.Windows.Forms.Form
as in the previous example. Now, I’ll add a picture box to the form in order to add a logo to
the top-right corner, as shown in Figure 9.7.

Figure 9.7: The main form showing a logo in the top-right corner.

I then add a second form to the project, and by default, this will also inherit from
System.Windows.Forms.Form. But what if I change the code so that my new form inherits
from my main form, like this:

Public Class NewForm

 Inherits MyProject.Form1

The design view for the form—shown in Figure 9.8—shows that the new form has inherited
the picture box from its parent form, which is just what visual inheritance means. Deriving a
new form from one that contains controls results in all the controls (and their behavior) being
inherited from the parent form. This is very neat and makes it simple to establish a look and
feel for a set of dialogs or forms, together with common behavior for inherited controls.

Figure 9.8: A form that inherits from the main form showing the inherited logo in the
top-right corner.

Visual Studio provides tools to help manage inherited forms. See the Immediate Solutions
section “How Can I Create a Form Based on One I’ve Already Defined?” for details on how
to manage visual inheritance within the Visual Studio environment.

Common Dialogs

Windows possesses a selection of common dialogs that let you perform common tasks,
such as opening and closing files and choosing fonts and colors. You’re advised to use
these dialogs rather than inventing your own for several reasons:
§ Writing a good file open dialog or color selector is surprisingly difficult. Why reinvent

what has already been done quite adequately?
§ These dialogs provide a standard way of performing their tasks, and using them will

give your application a recognizable and familiar GUI.
§ These dialogs are future-proof because their screen appearance is provided by the

version of the operating system your code is running on. If you run your applications on
Windows 2000, you’ll get the Windows 2000 version of the dialogs. If the Windows UI
changes when Windows XP becomes available, your code will display the Whistler
version of the dialogs with no effort on your part.

You’ll find the seven common dialogs in the Toolbox. Table 9.9 also lists them and provides
a description of each. Although I’ll only discuss how to use the file dialogs, you can extend
the technique quite easily in order to use the others.

Table 9.9: The .NET common dialogs.

Class Description

OpenFileDialog Lets the user choose a file to open

SaveFileDialog Lets the user choose a directory and file name for saving a
file

FontDialog Lets the user choose a font

ColorDialog Lets the user choose a color

PrintDialog Displays a print dialog, letting the user choose the printer
and which portion of the document to print

PrintPreviewDialog Displays a dialog that displays print preview of a print job

PageSetupDialog Displays a dialog that lets users choose page settings,
including margins and paper orientation

How Do I Create a Windows Forms Application?

To create a Windows Forms application, start a new project in Visual Studio, and select the
Windows Application project type, as shown in Figure 9.9

Figure 9.9: Creating a Windows Forms application in Visual Basic.

Once the project has been created, you’ll be presented with a form in Visual Studio, shown
in Figure 9.10, which looks remarkably similar to the ones you’ve been using in VB for years.

Figure 9.10: Starting a Windows Forms application in Visual Studio.

Now let’s take a look at the code that was actually generated when I created the basic
application. Here’s the code that I copied from the code editor in Beta 2—be aware that it
may change in future releases:

Public Class Form1
 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing _
 As Boolean)

 If disposing Then
 If Not (components Is Nothing) Then

 components.Dispose()
 End If

 End If
 MyBase.Dispose(disposing)

 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.Container

 'NOTE: The following procedure is required by the Windows

 'Form Designer
 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> Private _

 Sub InitializeComponent()
 components = New System.ComponentModel.Container()

 Me.Text = "Form1"
 End Sub

#End Region

End Class

Note that the whole form is simply a class that inherits from System.Window.Forms.Form.
In the In Depth section entitled “Visual Inheritance,” you learn how to use inheritance of
forms to build upon the designs of forms that you’ve already created.

The program imports three namespaces: obviously there’s System.Windows.Forms, but
you also need System.Drawing (which gives you access to the GDI+ drawing functionality,
which I describe in Chapter 11) and System.ComponentModel (which contains a number
of classes that implement and license components).

The code declares a variable of type System.ComponentModel.Container that is used to
hold references to the controls that this form contains.

You’ll notice that most of the code is enclosed between the #Region and #End Region
lines. These commands are used by the code-outlining feature built into Visual Studio .NET
and will by default hide this block of code under the comment “Windows Form Designer
generated code.” The reason for this is that this code is generated and maintained by the
Windows Form Designer, and you shouldn’t edit it manually. If you do, you may reformat it or
add code in such a way that the Designer cannot find its way around the code any longer,
and you’ll lose access to a lot of useful help.

The constructor code then calls the InitializeComponent() function that is used to set up the
form. The first line actually creates the container variable to hold the form components, and
the final line sets the text for the window title bar.

The final function in the code is Dispose(), which is used to dispose of any components the
form may contain.

Just for comparison, the following code is produced if you create the same basic Windows
Forms project in C#:

using System;

using System.Drawing;
using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;

using System.Data;

namespace CSBasic
{

 /// <summary>
 /// Summary description for Form1.

 /// </summary>
 public class Form1 : System.Windows.Forms.Form

 {
 /// <summary>

 /// Required designer variable.
 /// </summary>

 private System.ComponentModel.Container components = null;

 public Form1()
 {

 //
 // Required for Windows Form Designer support

 //
 InitializeComponent();

 //

 // TODO: Add any constructor code after InitializeComponent
call
 //

 }

 /// <summary>
 /// Clean up any resources being used.

 /// </summary>
 protected override void Dispose(bool disposing)

 {
 if(disposing)

 {
 if (components != null)

 {
 components.Dispose();

 }
 }

 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.
 /// </summary>

 private void InitializeComponent()
 {

 this.components = new System.ComponentModel.Container();
 this.Size = new System.Drawing.Size(300,300);

 this.Text = "Form1";

 }
 #endregion

 /// <summary>

 /// The main entry point for the application.
 /// </summary>

 [STAThread]
 static void Main()

 {
 Application.Run(new Form1());

 }
 }

}

You can see that the structure is almost identical. The main differences are the addition of a
Main() function to start the program and the use of System.Drawing.Size to set the size of
the form.

How Can I Create a New Form and Display It?

To add a new form to a project, right-click on the project name in the Solution Explorer
window to display the context menu. Select Add, and then select Add Windows Form from
the context menu, as shown in Figure 9.11.

Figure 9.11: Use the Add Windows Form menu item to create a new form.

The Add New Item dialog, shown in Figure 9.12, is displayed. Make sure that Windows Form
is selected in the Templates window, and then type in a name for your new form. When you
click the Open button, a new class is added to your project, and the design window is
opened for the new form.

Figure 9.12: The Add New Item dialog lets you create a new form and add it to a
project.

Creating a form object and displaying it is simple:

' Create another form and display it

Dim newForm As New Form2()
newForm.Show()

The first line creates the form object, and the second line displays it on the screen.

Creating MDI Forms

The main window of a MDI application acts as a frame that contains zero or more child
windows.

To create an MDI application, start by creating a standard Windows application. If you are
using Visual Studio, use the Property Browser to set the form’s IsMDIContainer property to
true; if you are not using Visual Studio, set the property in code, as shown earlier in the
section “Using MDI Forms” in the In Depth section. Once you’ve done this, the main form will
display as a frame. You can then create other forms and get them to display as child
windows by setting their MDIParent property to refer to the frame window:

' The MDI Frame window class
Public Class MyMDIForm

 Inherits System.Windows.Forms.Form

 Public Sub New()
 MyBase.New

 Form1 = Me

 ' This call is required by the Win Form Designer

 InitializeComponent

 ' Create another form as an MDI child

 Dim child1 As New MyMDIChild()
 child1.MDIParent = Me

 child1.Show()
 End Sub

 …
End Class

Creating and Using Dialogs

A dialog in .NET is simply another form, which you may choose to display in a particular
manner.

There are two kinds of dialogs:
§ Modal dialogs, such as About boxes and File Open dialogs, prevent you from

interacting with an application until you’ve closed them.
§ Modeless dialogs, such as Word’s Find And Replace dialog, let you interact with the

application as well as the dialog.

Modeless dialogs don’t need much at all in the way of special support because they can be
displayed as simply another form. Modal dialogs, on the other hand, need some way of
preventing the user from interacting with the rest of the application. This is done by using the
form’s ShowDialog() method.

Setting Up a Dialog

In order to create a modal dialog, start by creating a new form, as detailed in the solution
“How Can I Create a New Form and Display It?” GUI design guidelines state that dialogs
should always have a button that the user clicks to dismiss it, and that this button is usually
labeled OK or something similar. If the dialog lets users make changes to data, which they
may want to cancel, then the dialog should display a second button, typically labeled Cancel.
It is also very common in dialogs for the Enter key to have the same effect as clicking OK
and for the Esc key to have the same effect as clicking the Cancel button. You can let .NET
know which buttons to associate with the Enter and Esc keys by using the form’s
AcceptButton() and CancelButton() functions.

Dialogs are usually created by other forms, so how do you let the parent form know which
button was pressed in order to dismiss the dialog? Dialog forms have a DialogResult
property, so you can set this property in order to pass a value back, like this:

' Set the dialog return value
Me.DialogResult = DialogResult.OK

The values you can use are laid out in the DialogResult enumeration, and they’re listed in
Table 9.6. The DialogResult property not only sets a value that can later be retrieved, but it
also sends the dialog away. This means that DialogResult is typically used in the handler
for the OK and Cancel buttons, like this:

Protected Sub OKButton_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 ' Set the return value and close the dialog
 Me.DialogResult = DialogResult.OK

End Sub

An alternative way of doing this is to assign the value to the DialogResult property of the
buttons themselves. When a button with a DialogResult is clicked, it causes the dialog to
close and sends the result back to the parent form.

Using the Dialog

In order to display a dialog as a modal dialog, create a form object, and call its
ShowDialog() method, like this:

' Create a form and display it as a dialog
Dim dlg As New MyDialog()

dlg.ShowDialog()

If you’re interested in knowing which button was clicked to dismiss the dialog, check the
DialogResult property:

' Create a form and display it as a dialog

Dim dlg As New MyDialog()
Dim result As DialogResult

result = dlg.ShowDialog()

If result = DialogResult.OK Then

 ' OK button pressed
End If

Displaying MessageBoxes

Everyone knows what a MessageBox is—a small dialog designed to display a text message
to the user along with an icon to indicate whether the message is informative, is a warning,
or is an error. Figure 9.13 shows a typical MessageBox.

Figure 9.13: A typical MessageBox with text, a title, and an icon.

MessageBoxes are represented by the MessageBox class. You don’t create instances of
MessageBox yourself, but instead use the shared (static) Show() method. Like dialogs, a
Show() returns a DialogResult value telling you which button was clicked to dismiss the
dialog.

There are 12 overrides of Show(). The most basic simply takes a text string for the message
and displays a MessageBox with no title or icon and a single OK button. The others let you
create MessageBoxes based on combinations of
§ message

§ title
§ button type(s)
§ icon type

The button and icon types are represented by members of the MessageBoxButtons and
MessageBoxIcon enumerations, and the most commonly used values are shown in Tables
9.10 and 9.11.

Table 9.10: Members of the MessageBoxButtons enumeration.

Member Description

AbortRetryIgnore Specifies that the MessageBox contains Abort, Retry,
and Ignore buttons

OK Specifies that the MessageBox contains an OK button

OKCancel Specifies that the MessageBox contains OK and
Cancel buttons

RetryCancel Specifies that the MessageBox contains Retry and
Cancel buttons

YesNo Specifies that the MessageBox contains Yes and No
buttons

YesNoCancel Specifies that the MessageBox contains Yes, No, and
Cancel buttons

Table 9.11: Members of the MessageBoxIcon enumeration.

Member Description

Asterisk, Information Specifies that the MessageBox contains an asterisk
icon

Error, Hand, Stop Specifies that the MessageBox contains a hand icon

Exclamation, Warning Specifies that the MessageBox contains an

exclamation point (‘!’) icon

Question Specifies that the MessageBox contains a question
mark icon

Here’s an example showing how to display a MessageBox in VB:

MessageBox.Show(""Message", "Title", _

 MessageBoxButtons.OK, MessageBox.IconHand)

How Do I Work with Menus on Forms?

You can add a menu to a form by choosing the MainMenu control from the Toolbox and
dragging it onto the form. The visual menu designer lets you create the menu items directly
on the form. In Figure 9.14, I’ve created an example of a top-level File menu with a single
Exit menu item. The pane at the bottom of the designer window holds a small icon entitled
MainMenu1, and you’ll see an entry in this pane for controls, such as menus and timers.

Figure 9.14: Creating a menu in a Windows Forms application.

You add more menu items by entering text into the Type Here boxes. The one on the menu
bar creates a new top-level menu, whereas entering text into the box below Exit adds an
item to the File menu, and the one to the right of Exit adds a submenu. Figure 9.15 shows a
more complete menu with submenus.

Figure 9.15: A more complete menu on a Windows Form.

Tip

Putting an & character before one of the characters in the menu text string will
provide the quick access character for that menu item, and the character will
appear underlined when you run the application.

Tip

You can insert a separator bar by right-clicking on a menu item and selecting
Insert Separator from the context menu.

You can delete menu items by right-clicking on the item and selecting Delete from the
context menu. Inserting new items means right-clicking on the item below where you want
the new item, and then choosing Insert New from the context menu. Moving items around is
done by using Cut or Copy and Paste from the context menu.

Handling Menu Events

To add a handler for a menu item, simply double-click on the menu item in the Designer.
You’ll be taken to the code window where you will be presented with a skeleton handler
function, which looks like this:

Private Sub MenuItem2_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs)
 ' Handle the menu item here…

End Sub

In VB, the arguments to this function are seldom used, but if you’re handling a menu in C# or
C++, you may well need to use them in order to find out which item originated the event and
what event it was. VB handles this internally, and you can be sure that if you end up in the
MenuItem2_Click() function, then it was MenuItem2 that sent you a Click event.

Working with Menus in Code

It is very simple to work with Menus and MenuItems in code. You can make use of the
properties of the Menu and MenuItem classes to add, remove, and change menu items at
runtime.

Tip

Although it is possible to modify menus at runtime, user interface creation
guidelines recommend that dynamic modification of menus be kept to a
minimum because of the risk of creating confusing and hard-to-work-with
menu hierarchies.

There are several tasks you may want to accomplish when working with menus:
§ Adding and removing menu items
§ Enabling and disabling items
§ Adding and removing checks
§ Changing menu text
§ Adding and displaying shortcuts

Adding and removing menu items is accomplished using the MenuItems property of a Menu
or MenuItem:

' Add an item

item = New MenuItem("one")
main.MenuItems.Add(item)

The MenuItems property is a .NET collection that holds all the MenuItems belonging to a
Menu or MenuItem, so it has all the usual properties and methods belonging to collections,
including Add(), Remove(), and Clear() methods and the ability to use enumerators. If you
want to add more than one item at a time to a menu, put them into an array and use the
AddRange() method.

It is recommended that programs display a consistent menu hierarchy, and that options
currently unavailable are disabled, which can be done using the Enabled property:

' Disable this item
printItem.Enabled = False

If you want to display a checkmark next to a menu item, use the Checked property:

' Check this item

optionItem.Checked = True

The Index property represents the zero-based position of this item within its parent, and you
can assign a different value in order to move the item within the list. However, this should be
avoided to prevent user confusion.

The Text property represents the text of the MenuItem, and once again, you can change it
in order to modify the appearance of the item.

Shortcuts are key combinations, which frequently use Ctrl, Shift, or Alt combined with other
keys, which enable users to activate frequently used menu items without navigating through
a menu hierarchy. The Shortcut and ShowShortcut properties let you assign and display
shortcuts:

' Add a shortcut to this item
printItem.Shortcut = Shortcut.CtrlP

printItem.ShowShortcut = True

The Windows.Forms.Shortcut enumeration defines a number of values corresponding to
useful key combinations.

Tip

Try to use the commonly accepted shortcuts in your applications, such as
Ctrl+P for File | Print, Ctrl+N for File | New, Ctrl+S for File | Save, and so on.
Assigning such shortcuts to other menu items or using other shortcuts for
common menu items will lead to a confusing and unintuitive user interface.

How Do I Associate a Context Menu with a Form?

A context menu is a menu that pops up when you click the right mouse button over a form or
control. They are very popular, appearing in many applications, and very easy to add to a
project. Start by selecting the ContextMenu control from the Toolbox, and draw a context
menu on the form or control that is going to host the menu. Notice in Figure 9.16 how a
ContextMenu1 icon has been added to the pane at the bottom of the Designer window:
There’s only one menu editor, which displays at the top of the form, so you use the icons to
decide which menu you want to edit.

Figure 9.16: Adding a context menu to a form.

You can add menu items to the form in exactly the same way as you do for a main menu,
which I described in the previous solution. Note that all the items you want to display in the
pop-up menu need to be defined as top-level menu items, as shown in Figure 9.17.

Figure 9.17: Creating context menu items.

Before this menu will pop up, you need to let the form or control know that it has a context
menu. You do this by setting the ContextMenu property of the form or control to refer to the
ContextMenu item. Once you’ve done this, build and run the application. You’ll find that you
can pop up the menu using the right-mouse button, as shown in Figure 9.18.

Figure 9.18: Displaying the context menu for a form.

Displaying File Open and Close Dialogs

To use a File Open dialog, select the OpenFileDialog in the Toolbox, and draw one on the
form that is the parent of this dialog. You’ll see an icon for OpenFileDialog1 appear in the
pane at the bottom of the Designer window. This pane shows icons for controls that don’t

have a design time appearance on the form. Selecting the icon in this pane lets you change
the control’s properties.

You’ll typically display a File Open dialog as the result of the user selecting a menu item.
The following code shows how you can do this:

Protected Sub FileOpen_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 ' Set up the dialog
 OpenFileDialog1.InitialDirectory = "d:\"

 OpenFileDialog1.Filter = "txt files (*.txt)|*.txt|All files
(*.*)|*.*"
 OpenFileDialog1.FilterIndex = 1

 OpenFileDialog1.RestoreDirectory = True

 ' Show the dialog and handle the result
 If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

 MessageBox.Show("File chosen was " & OpenFileDialog1.FileName)
 End If

End Sub

The Designer will already have created the OpenFileDialog1 object for you, but before you
show the dialog, you need to set its properties to provide a useful starting point for the user.
The class has a number of properties, which are summarized in Table 9.12.

Table 9.12: Useful properties of the OpenFileDialog class.

Property Description

AddExtension Determines whether an extension is automatically added to the

file name if the user doesn’t provide one.

CheckFileExists Determines whether a warning is displayed if the user tries to

open a file that doesn’t exist.

CheckPathExists Determines whether a warning is displayed if the user tries to

specify a path that doesn’t exist.

DefaultExt Provides a default extension.

FileName When the dialog has been closed, holds the name chosen by
the user.

FileNames When the dialog has been closed, holds an array of all the
names selected by the user. This only works if MultiSelect has
been set to true.

Filter Holds the current filter string, which appears in the Save As File
Type box on the dialog.

FilterIndex Indicates which filter is being used.

InitialDirectory Indicates the initial directory to be displayed by the dialog.

Table 9.12: Useful properties of the OpenFileDialog class.

Property Description

MultiSelect Indicates whether multiple selection is supported.

ReadOnlyChecked Indicates whether the read-only checkbox is selected.

RestoreDirectory Indicates whether the current directory is to be restored when
the dialog exits.

ShowReadOnly Indicates whether the dialog shows a read-only checkbox.

ValidateNames Indicates whether the dialog only accepts valid Win32 file
names.

Using this table, it is easy to see what I’m doing in the code. I’ve set up the dialog to point to
the root of the D: drive initially, and then restore the current directory when finished. File
dialogs can contain filters that will cause the dialog to display only those files that match a
pattern. In this example, the filter string specifies two filters and contains a description of the
filter, such as “text files (*.txt)” followed by the filter pattern itself. The components of the filter
string are separated by vertical bars. The FilterIndex property is set to one, so the first filter
is displayed by default.

Once the dialog has been set up correctly, I show the dialog, which displays something very
similar to Figure 9.19.

Figure 9.19: A File Open common dialog.

When the user dismisses the dialog, I check which button was clicked by looking at the
result returned from ShowDialog(). If the OK button was clicked, I display the FileName
property in a MessageBox.

The File Save dialog has many of the same properties, and using it is very similar to using
the File Open dialog.

Note

It is frequently asked whether there is a way to use a File Open dialog to
implement a directory selector, so that you can navigate around and select a
directory rather than a file. Unfortunately, there isn’t an easy way because
the File Open dialog wants you to select a file before returning and won’t
accept a directory.

How Can I Create a Form Based on One I’ve Already Defined?

.NET’s new visual inheritance feature lets you create a form or dialog, and then use it as a
base for creating new ones. All the new forms will contain the same controls as the base
form, together with all their functionality.

Here’s an example of how to make visual inheritance work. Start by creating a standard
Windows application, and then add some controls to the main form, as shown in Figure 9.20.
I’ve set the background of the form to white, just to make it look a little different.

Figure 9.20: A form that is used to demonstrate visual inheritance.

You need to build the project before visual inheritance can be demonstrated, so press
Ctrl+Shift+B or choose the Build | Build menu item.

Next, choose Add Inherited Form from the Project menu. The Add New Item dialog appears,
as shown in Figure 9.21.

Figure 9.21: The Add New Item dialog.

Make sure that Inherited Form is selected in the Templates pane, choose a name for your
new form, and click Open. The Inheritance Picker dialog opens, as shown in Figure 9.22,
and displays a list of all the forms in your dialog from which you can derive your new form.

Figure 9.22: Choosing a form to inherit using the Inheritance Picker dialog.

Choose the form, click OK, and a new form class is added to your project. When you look at
the design view, you’ll see that the new form has inherited all the controls from its parent,
and that the controls are marked with a small arrow, very much like the one used to mark a
file shortcut, to give you a clue that they are inherited.

And of course, you can have as many levels of inheritance as you like—deriving Form3 from
Form2, which in turn is derived from Form1—adding new controls and functionality at each
level.

How Do I Use a Splitter on a Form?

Splitters have become very popular with Windows programmers in the past few years, and
you’ll find that more and more programs incorporate them. Newcomers to Windows Explorer
soon discover that by dragging the central divider between the tree and list panes, they can
alter how the screen real estate is shared between the two panes. In early implementations,
this was done by careful custom programming, but in .NET there is a control to help.

Here’s how you can use a splitter to produce a Windows Explorer-like interface. Start by
placing a TreeView control on the form, and set its Dock property so that it fills the left-hand
side of the form. Now place a Splitter control onto the form, and you should find that it
attaches itself to the right-hand side of the TreeView. Finally, place a ListView control onto
the TreeView, and set its Dock property to fill the rest of the form. You end up with an
application containing a ListView on the right, a TreeView on the left, and a splitter in the
middle, as shown in Figure 9.23.

Figure 9.23: A form containing a Splitter control.

Chapter 10: Windows Forms and Controls
By Julian Templeman

In Depth

Chapter 9 discussed forms and how they are used. This chapter focuses on the controls that
live on those forms.

.NET has a rich set of controls that let you build complex and sophisticated user interfaces,
so there’s a lot to cover in this chapter. I’ll start by describing the Control base class before
going on to examine individual controls in detail.

Forms and Controls

You’ve seen how the Form class represents a window and forms the base class for all other
windows. The Control class is the base class for “components with visual representation”; it
forms the base for everything you see on the screen and interact with.

You can create your own control classes by deriving from one of the control classes. You
don’t normally derive directly from Control itself, but from UserControl or one of the built-in
controls. As you can see in Figure 10.1, UserControl adds functionality—such as scrolling—
to Control, and it provides a blank control to which you can add your own user interface (UI)
and functionality.

Figure 10.1: How the Control classes fit into the System.Windows.Forms
namespace.

Figure 10.1 shows the overall class hierarchy in the System.Windows.Forms namespace
and how the Control classes fit in.

If you want to know what each of the classes does and what functionality it provides to the
hierarchy, refer to Table 9.1 in Chapter 9.

The Control Class

Controls are actually two-part entities in .NET. When you create a control, such as a button
in a .NET program, you start by creating an object in memory. This object then creates the
actual button on the screen, so that the .NET object is managing a Windows button for you.
It’s possible to have a .NET control object without it creating a Windows control, and it is also
possible for the Windows control to be destroyed before the .NET object.

If you look in the methods of the Control class, you’ll see the CreateControl() method that
is used to force creation of the underlying Windows control. You don’t very often call this
yourself because a form will call it automatically for all its child controls at runtime.

Control is a very complex class and possesses a lot of properties, methods, and events. I’ll
list some of the main ones in this section, so that you can get a feel for just what controls can
do. Table 10.1 lists the class’s main properties.

Table 10.1: The main pr operties of the Control class.

Property Description

Anchor, Dock Controls the positioning of controls relative to form
borders.

BackColor, ForeColor Gets and sets the background and foreground colors of
the control.

BackgroundImage Represents the background image associated with the
control.

Bottom, Top, Left, Right Coordinates in pixels the bottom, top, left, and right of
the control.

Width, Height The width and height of the control in pixels.

Bounds The bounding rectangle within which this control fits.

CanFocus, CanSelect Read-only properties that indicate whether the control
can receive the focus and can be selected.

CausesValidation Indicates whether entering this control causes validation
of controls that require validation.

ContainsFocus Read-only property showing whether this control (or one
of its children) has the focus.

Controls The collection of children of this control.

ContextMenu Represents the context menu associated with this
control. The menu will be shown when the user right-
clicks on the control.

Cursor Represents the cursor that will be displayed when the
mouse is over this control.

Created Read-only property indicating whether the underlying
screen control has been created.

Disposing, Disposed Read-only property indicating whether the underlying
screen control is in the process of or has been
destroyed.

Enabled Indicates whether the control is enabled.

Focused Read-only property indicating whether the control has
the focus.

Font Gets and sets the font associated with the control.

Handle Read-only property representing the underlying window
handle. Use the Boolean IsHandleCreated to determine
whether a control has an associated handle.

Location, Size Represents the location and size of the control.

ModifierKeys, Retrieves the current state of the modifier keys (Ctrl, Alt,

Table 10.1: The main pr operties of the Control class.

Property Description

MouseButtons,
MousePosition

and Shift), the mouse buttons, and the current mouse
position.

Parent The parent of this control.

TabIndex An integer representing the tab index of this control.

TabStop A Boolean property indicating whether the user can give
the focus to this control using the Tab key.

Text The text associated with this control. Exactly what this
text represents (if anything) varies with the control type.

Visible Indicates whether the control is visible.

You’ll notice that several properties mention handles or window handles. Previously, I
explained how a control is composed of a .NET object plus a Windows control object. Every
window belonging to an application—and that includes buttons, listboxes, and scrollbars—
has a unique identifier called a window handle. If you’re going to use some part of the
underlying Windows API that isn’t wrapped in .NET yet, you may need to refer to the handle.
Because the handle belongs to the underlying Windows control, your control object won’t
have a handle until the screen control has been created.

One of the most useful of these properties is Controls. Many controls—such as
GroupBoxes and Panels—can have others as children, and Controls is a collection that
holds references to all the child controls. Because it is a standard collection, it has Add(),
Remove(), and Clear() methods that can be used to change the content, and you can obtain
an enumerator to walk over the collection.

Tip

For details on how to use enumerators with collections, see Chapter 4.

The Control class has just over 100 methods, many of which are somewhat esoteric. Table
10.2 lists some of the most commonly used methods.

Table 10.2: Commonly used methods of the Control class.

Method Description

BringToFront,
SendToBack

Sends the control to the front or back of the Z-order. (The “Z-

order” is a computer graphics term denoting the front-to-back

ordering of overlapping windows on the screen.).

Contains Verifies whether the control has a particular child.

CreateControl Forces creation of the underlying Windows control, including
the creation of the window handle and any children.

DoDragDrop Begins a drag-drop operation.

FindForm Retrieves the form hosting this control. It may not be the same
as the parent.

Focus Attempts to set the focus to this control.

FromChildHandle,
FromHandle.

Returns the control associated with a particular handle.

Table 10.2: Commonly used methods of the Control class.

Method Description

GetChildAtPoint Retrieves the child control at a particular set of coordinates.

GetNextControl Retrieves the next child control in the tab order.

GetStyle, SetStyle Gets and sets the control’s style.

Hide, Show Hides or shows the control by toggling the Visible property.

Invalidate Cause a paint message to be sent to the control.

OnClick Raises the Click event.

OnGotFocus Raises the GotFocus event.

OnKeyDown,
OnKeyPress,
OnKeyUp

Handles keyboard messages.

OnMouseDown,
OnMouseUp,
OnMouseMove

Handles mouse messages.

OnPaint Handles a paint request.

OnResize Called when the control is resized.

ResetBackColor,
ResetForeColor,
ResetFont,
ResetCursor

Sets the properties to those of the control’s parent

Scale Scales the control and any child controls.

Update Forces the control to repaint any invalid areas.

Control Styles

The style of a Control can be acquired and set using the GetStyle() and SetStyle()
methods, which both use the Windows.Forms.ControlStyles enumeration, as shown in
Table 10.3.

Table 10.3: The Windows.Forms.ControlStyles enumeration.

Member Description

AllPaintingInWmPaint WM_ERASEBKGND is ignored, and both
OnPaintBackground and OnPaint are called
directly from WM_PAINT. This can reduce flicker.

CacheText Controls cache a copy of their text, rather than
getting it from the underlying control each time.

ContainerControl Indicates whether the control is a container-like
control.

DoubleBuffer Performs double-buffered drawing to reduce flicker.

Table 10.3: The Windows.Forms.ControlStyles enumeration.

Member Description

EnableNotifyMessage If true, OnNotifyMessage() is called for each
message sent to the control.

FixedHeight, FixedWidth The control has a fixed height and/or width.

Opaque A PaintBackground event will not be called, and

Invalidate() won’t invalidate the background of the
control.

ResizeRedraw The control is redrawn when it is resized.

Selectable The control is selectable.

StandardClick Windows Forms calls OnClick when the control is
clicked. The control can also call OnClick directly if
desired.

StandardDoubleClick Windows Forms calls OnDoubleClick when the
control is double-clicked. The control can also call
OnDoubleClick directly if desired.

SupportsTransparentBackColor This control can use a transparent background.

UserPaint The control paints itself, and WM_PAINT and

WM_ERASEBKGND messages aren’t passed on
to the underlying Windows control.

UserMouse The control does its own mouse processing.

ResizeRedraw The control is completely redrawn when it is
resized.

Note

These styles are .NET control styles, not the Win32 control styles of the
underlying Windows control.

Painting and Invalidation

It is often necessary to tell a control—or, indeed, any window—that it needs to repaint itself.
This may happen for a number of reasons: The content of the control may have been
updated, or the application may have been minimized or obscured by another window.

If you need to cause a control to repaint itself, call its Invalidate() method. This causes a
paint message to be sent to the control, which will be processed in due course. In the case
of controls with complex content, it is also possible to pass Invalidate() a rectangle
indicating the region that needs updating.

Calling Invalidate() doesn’t force the control to repaint itself there and then, but simply
queues a request for future processing. If you want to force an immediate repaint, call the
control’s Update() method. Refresh() is similar to Update() in that it forces an immediate
repaint of the control and its children.

Working with Controls

A large number of controls are provided by .NET for you to use on forms, and almost all of
them are available via the Visual Studio.NET Toolbox. Figure 10.2 shows what this Toolbox
looks like.

Figure 10.2: The Visual Studio .NET Toolbox.

Labels and LinkLabels

Labels are among the simplest of controls and are used to represent simple decoration—
usually text—on forms. The Text property governs what displays on a Label, and the
UseMnemonic property determines whether & characters are to be interpreted as keyboard
shortcut mnemonic markers.

Labels can also be used to display images, and the Image property can be set to point to an
object of type System.Drawing.Bitmap. See Chapter 11 for more details on image handling
in .NET.

The label can be text or an image, and the navigation is handled in the label’s LinkClick()
handler. You can use a LinkLabel to navigate to a Web site or to another form in the
application. Various properties are available to set the colors of active, disabled, and visited
links.

Note

The LinkLabel itself doesn’t have any navigation functionality. Its purpose is
to display text or an image that behaves in the same way as a link does in a
browser.

Buttons

Everyone is familiar with buttons in graphical user interface (GUI) applications: controls
whose only purpose in life is to be clicked. Some may toggle between the on and off
positions, such as checkboxes and radio buttons, whereas normal buttons have a
momentary press-and-release action. .NET contains support for these three types of button,
all of which inherit from the abstract class ButtonBase .

ButtonBase has several useful properties that are shared by all button classes, as shown in
Table 10.4.

Table 10.4: Properties of the ButtonBase class.

Property Description

FlatStyle Governs whether the button will display flat or raised

Image Represents the image that is displayed on a button

ImageAlign Represents the alignment of the image on the button

IsDefault Determines whether a button is the default button for a form

Text Represents the text on the button

TextAlign Represents the alignment of the text on the button

The FlatStyle property can be used to create buttons that behave like those on the Internet
Explorer toolbar, which are normally flat and only pop up with a 3D border when the mouse
moves over them.

A button displays as a rectangular control that fires a Click event when the user clicks on it;
the Click event can also be fired if the user presses the Enter key when the button has the
focus. It returns to its unselected state when the Click event has been fired.

Buttons are often used to control dialogs, and you can associate a value with the button
object’s DialogResult property, which is returned when the dialog is closed:

' Associate the OK value with the button

Button1.DialogResult = System.WinForms.DialogResult.OK

Associating a DialogResult with a button has two consequences. First, it sets the value that
is returned to the parent form when the dialog is closed. Second, it causes the dialog to be
closed when the button is pressed.

Note

See Chapter 9 for more details on working with dialogs.

CheckBoxes and RadioButtons

CheckBoxes and RadioButtons are similar in that they allow the user to choose from a list of
alternatives. The difference between them is that CheckBoxes allow the user to choose a
number of items, whereas only one of a group of RadioButtons can be chosen. Figure 10.3
shows both CheckBoxes and RadioButtons being used on a form. Table 10.5 lists the
properties that CheckBox adds to ButtonBase .

Figure 10.3: CheckBoxes and RadioButtons on a form.

Table 10.5: Properties of the CheckBox class.

Property Description

Appearance Determines whether the CheckBox appears as normal or as a
latchable button.

AutoCheck Determines whether the CheckBox automatically responds to
user clicks. If false, you need to code the Click event handler to
set the state of the CheckBox.

CheckAlign Specifies the alignment of the text.

Checked A Boolean property representing the state of the CheckBox.

CheckState Represents the state of the CheckBox (Checked, Unchecked,
or Indeterminate).

ThreeState True if the CheckBox can display three states.

The Appearance property determines whether the CheckBox appears as a traditional
checkbox (as in Figure 10.3) or as a latchable button, shown in Figure 10.4.

Figure 10.4: A CheckBox with its Appearance property set to Button.

A three-state CheckBox is one that can cycle through three states—Checked, Unchecked,
and Indeterminate—the latter being shown by a grayed-out box, as in Figure 10.5.

Figure 10.5: Three-state CheckBoxes on a form.

CheckBoxes support two events over and above buttons: OnCheckedChanged, which is
fired when the checked state of the control changes, and OnCheckedStateChanged, which
is used for three-state CheckBoxes.

RadioButtons are very similar to CheckBoxes. The major differences are their appearance
(round button instead of square checkbox) and the only-one-selected behavior. Like
CheckBoxes, RadioButtons can be displayed as latchable buttons.

Grouping RadioButtons

The GroupBox control is used to create groups of RadioButtons that behave in the
traditional way, so that only one of the group can be selected. GroupBoxes can be used with
any controls, but they only have this special effect with RadioButtons.

The GroupBox has a Controls property, and you can use the Add() method to add a control
to the group.

ListBoxes

This section discusses the ListBox control and its subclasses—CheckedListBox and
ComboBox.

A ListBox displays a list of items, usually strings, in a scrolling window. If more items are
added to the list than can be displayed at once, a scrollbar is added automatically. The user
can select an item using the mouse or the keyboard. Table 10.6 lists some of the most
commonly used properties of the ListBox class.

Table 10.6: Properties of the ListBox class.

Property Description

BackgroundImage Defines an image to be used as the background for the
listbox

BorderStyle Represents the border style for the listbox

DrawMode Determines whether all items in the control are drawn by the
system or by the program

HorizontalExtent Indicates the width in pixels by which a listbox can be
scrolled horizontally

HorizontalScrollbar Determines whether the listbox displays a scrollbar for items
that are too wide

IntegralHeight Indicates that the listbox should avoid showing partial items

ItemHeight Returns the height of an item in an owner-draw listbox

Items The collection of items in the listbox

MultiColumn Indicates whether this listbox is multicolumn

PreferredHeight The total height of all the items in the listbox

ScrollAlwaysVisible Determines whether the scrollbars are always visible

SelectedIndex Represents the index of the currently selected item

SelectedIndices A collection representing the currently selected items. If
there are none, the result is an empty collection

SelectedItem The value of the currently selected item or null if there isn’t
one

Table 10.6: Properties of the ListBox class.

Property Description

SelectedItems A collection of the selected items or an empty collection if
there are none selected

SelectionMode Represents the current selection mode of the listbox

Sorted A Boolean property indicating whether the items in the
listbox are to be sorted or not

TopIndex The index of the item at the top of the listbox

I’ll briefly mention a few of the more noteworthy of these properties. The BorderStyle
property controls how the border is drawn around the control; its value must be one from the
System.Windows.Forms.BorderStyle enumeration and can be one of None, FixedSingle,
or Fixed3D, with the default being Fixed3D.

DrawMode takes one of the values from the Windows.Forms.DrawMode enumeration,
which indicates whether the items in the control are drawn by the system (Normal) or are
drawn by the program (OwnerDrawFixed for fixed height items, OwnerDrawVariable for
variable height items).

Note

An owner-draw control is one where the programmer writes code to draw
part or all of the control at runtime. This is an advanced GUI programming
topic and outside the scope of this book.

The Items property represents the list of items being displayed by the control as a
ListBox.ObjectCollection. This class is a standard .NET collection, implementing the
ICollection and IEnumerable interfaces, so it is very simple to work with the Items property if
you know how collections work. If you need more information about collections, see Chapter
4, which provides details on working with collection classes.

The selection mechanism will be familiar to anyone who has worked with Windows listboxes
in the past. ListBox controls can be set to allow single or multiple selection, which is
controlled via the SelectionMode property. This property takes one of the values from the
System.Windows.Forms.SelectionMode enumeration, namely:
§ None (nothing can be selected)
§ One (one item can be selected at a time)
§ MultiSimple (more than one item can be selected at a time)
§ MultiExtended (more than one item can be selected, and keyboard combinations,

such as Ctrl and Shift, can be used in selection)

If a ListBox supports single selection, you can use the SelectedIndex property to get or set
the index of the currently selected item. This index is zero-based, and when retrieving the
index, a value of -1 indicates that nothing is selected. You can get a reference to the
currently selected object using the SelectedItem property, which will be Nothing (null in
C#) if nothing is selected.

Multiple selection controls use the SelectedIndices and SelectedItems properties, which
return collections representing the selection. If nothing is selected, empty collections are
returned.

Table 10.7 shows some the most commonly used methods of the ListBox class.

Table 10.7: Methods of the ListBox class.

Method Description

BeginUpdate Prevents the control from repainting when adding items one by
one

EndUpdate Tells the control it can update

FindString Finds the first item in the listbox that starts with the given string.
The match isn’t case-sensitive

FindStringExact Finds the first item in the listbox that matches the given string.

The match isn’t case-sensitive

GetSelected Tells you whether the item at the given index is selected or not

IndexFromPoint Returns the index of the item at the given point

SetSelected Sets an item as selected or deselected

Sort Sorts the items in the list box alphabetically

The BeginUpdate() and EndUpdate() methods are worth mentioning in a little more detail.
The preferred way to add items to a ListBox is to create an array of items, and then use
them to set the All property of ListBox.Items, like this:

' Create an array of Strings
Dim listItems As String() = { "One", "Two", "Three" }

' Add them all to the ListBox

ListBox1.Items.All = listItems

Sometimes you don’t know what you’re going to need in advance, so you can use the
Items.Add() method to add items individually. The problem with this is that the ListBox will
want to repaint itself every time you add an item, which can make for annoying flickering.
The BeginUpdate() and EndUpdate() methods can be used to switch repainting off before
adding items, and then back on again afterwards, thus making for efficient IU updating:

' Turn updating off

ListBox1.BeginUpdate()

' Add items…
ListBox1.Items.Add(New String("One"))

ListBox1.Items.Add(New String("Two"))
ListBox1.Items.Add(New String("Three"))

' Turn updating back on

ListBox1.EndUpdate()

The ListBox class has many events, most of which are inherited from its parent Control
class. The one that is specific to this class that you’ll use often is SelectedIndexChanged,
which is fired whenever the user selects another item in the ListBox.

CheckedListBoxes

A CheckedListBox is a ListBox in which each item has a checkbox in front of it.

CheckedListBox doesn’t add much to its ListBox parent class. One significant addition is
the CheckOnClick property, which determines whether selecting the item and the checkbox
is done with one click or whether you have to check the box and select the item using two
mouse clicks. The ThreeDCheckBoxes property determines whether checkboxes appear
flat or in 3D.

The GetItemChecked() method returns true if a particular item is checked, and
GetItemCheckState() tells you the check state of an item, which may be checked,
unchecked, or indeterminate.

SetItemChecked() and SetItemCheckState() lets you manipulate the state of checkboxes
on items.

ComboBoxes

A ComboBox is a combination of a listbox and an edit control, designed to save space in that
the list is only displayed when you want to select an item. The Style property determines
how the ComboBox looks and behaves. Figures 10.6 through 10.8 show the three styles.

Figure 10.6: A ComboBox with Simple style.

Figure 10.7: A ComboBox with DropDown style showing the list hidden and text
selected in the edit control.

Figure 10.8: A ComboBox with DropDownList style showing the list displayed.

A Simple ComboBox always has the list portion visible, and the text in the edit control is
editable. The text in the edit control is also editable in a DropDown ComboBox, but the list
only drops down when the user clicks on the button. In a DropDownList ComboBox the text
is not editable, and the list appears when the button is pressed.

Note

ComboBoxes with Simple style are not often used nowadays, and it is
recommended that if you always want to display the list, use a plain ListBox
instead.

You can retrieve the text displayed in the edit control using the Text property and get the
index and value of the currently selected item in the list using SelectedIndex() and
SelectedItem().

TextBoxes

TextBoxBase is the base class that provides common functionality for all text controls. The
Windows.Forms namespace comes with two text controls, TextBox and RichTextBox,
which I’ll discuss later in this section.

TextBoxBase has a number of commonly used properties, which are listed in Table 10.8.
Many of these properties are self-descriptive, so I’ll just make special mention of a few. The
BorderStyle is the same as that of many other controls and has as its value one of the
members of the Windows.Forms.BorderStyle enumeration. Possible border styles are
None (for no border), FixedSingle (for a flat look), and Fixed3D (for a 3D look; also the
default style).

Table 10.8: Commonly used properties of the TextBoxBase class.

Property Description

AcceptsTab Determines whether the control uses tab characters instead of
causing the focus to move to the next control

AutoSize Determines whether the size of the control adjusts when the font is
changed

BackColor Represents the background color of the control

BorderStyle Represents the border style of the control

CanUndo Indicates whether the user can undo the previous operation

ForeColor Represents the foreground color of the control

Lines Gets or sets the lines of text in the control

MaxLength Represents the maximum number of characters the control will
accept

Modified Gets or sets a value indicating whether the content of the control
has been modified

Multiline Determines whether the control can display more than one line of
text

ReadOnly Determines whether the control is read-only. If true, the control
paints with a gray background

SelectedText Represents the currently selected text in the control

Table 10.8: Commonly used properties of the TextBoxBase class.

Property Description

SelectionLength Gets or sets the number of characters selected in the control

SelectionStart Gets or sets the starting position of the selection

Text Represents the text in the control

TextLength Gets the length of the text in the control

WordWrap Indicates a multiline control

The Lines property takes the form of an array of strings, which contain the text for the
control. If the Multiline property is set to True, any newline characters in the array of strings
passed to Lines will cause a new line to be added.

If you pass more than one string into a single-line TextBox, the text is displayed in one long
line with nonprintable characters representing the line breaks. You can see the difference
between a single-line and multiline edit control in Figure 10.9.

Figure 10.9: Displaying text in single-line and multiline TextBoxes.

The MaxLength property limits the number of characters that can be entered into the
control. The default value for this property is zero, which means that there is no limit.

Users can select text in a TextBox using the mouse or keyboard, and there are several
properties that can be used to get or set the selection. SelectionStart represents the zero-
based character at the start of the selection, SelectionLength gives the length, and
SelectedText is a string representing the selected text. All of these properties can be used
to set the selected text as well as retrieve it, and so can be used to edit the text in the
control.

Table 10.9 lists commonly used methods of TextBoxBase .

Table 10.9: Commonly used methods of the TextBoxBase class.

Method Description

AppendText Adds some text to the control

Clear Clears the text from the control

ClearUndo Clears information about the most recent Undo operation so it

can’t be undone

Table 10.9: Commonly used methods of the TextBoxBase class.

Method Description

Copy Copies the selection to the clipboard

Cut Cuts the selection to the clipboard

Paste Pastes the clipboard content to the control

ScrollToCaret Ensures that the caret is visible in the control, scrolling it if
necessary

Select Selects a range of text in the TextBox

SelectAll Selects all the text in the TextBox

Undo Undoes the last clipboard or text change operation

The Select() method can be used as an alternative to the SelectionStart and
SelectionLength properties when setting a selection. Undo() will undo the previous
operation if the CanUndo property is set to true:

' One button on the form cuts part of the text
Protected Sub ChangeBtn_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles ChangeBtn.Click
 ' Cut part of the text to the clipboard. This will

 ' set the CanUndo property because cutting is undoable
 TextBox1.SelectionStart = 6

 TextBox1.SelectionLength = 6
 TextBox1.Cut()

End Sub

' An 'undo' button on the form undoes the change
Protected Sub UndoBtn_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles ChangeBtn.Click
 If TextBox1.CanUndo = True Then

 TextBox1.Undo()
 TextBox1.ClearUndo()

 Else
 MsgBox("Can't undo")

 End If
End Sub

TextBoxBase has an event from Control, TextChanged, which is fired whenever the
content of the control is changed.

The TextBox Class

TextBoxBase has two controls derived from it: TextBox and RichTextBox. A TextBox
wraps the functionality of a Windows edit control, but with a few extra features. Table 10.10
lists the extra properties that TextBox adds over and above TextBoxBase .

Table 10.10: Properties that the TextBox class adds to TextBoxBase.

Property Description

AcceptsReturn If true, the Enter key puts a new line in the TextBox; if false, it

activates the form’s default button. The default value is true.

CharacterCasing Determines whether the control modifies the case of
characters as they are entered.

PasswordChar Represents the mask character used when passwords are
entered.

ScrollBars Determines which scrollbars should appear in a TextBox.

TextAlign Represents the text alignment in the control.

TextBox adds one event to TextBoxBase —TextAlignChanged, which is called when the
text alignment is changed.

The RichTextBox Class

The RichTextBox class extends TextBoxBase by supporting text formatting, which makes
it a “word processor in a control,” and it supports a number of extra properties, methods, and
events in order to support this functionality. Like the underlying Windows Rich Edit control,
the RichTextBox supports drag and drop and can contain embedded OLE objects.

Note

If you haven’t met rich text controls before, take a look at the Wordpad
accessory application. Notepad is essentially a single TextBox in a frame,
whereas Wordpad is a RichTextBox in a frame and provides a good
overview of what can be done with one of these controls.

There are more than 40 new properties for this class; Table 10.11 lists some of the most
commonly used properties.

Table 10.11: Commonly used properties that the RichTextBox class adds to TextBoxBase.

Property Description

AutoWordSelection Determines whether mouse selection snaps to whole words.

BulletIndent Represents the indentation for bullet points.

DetectUrls Determines whether the control will automatically highlight
URLs. This is true by default.

RTF A string representing all the text in the control including RTF
control codes.

SelectedRTF Gets or sets the selected RTF text in the control.

SelectedText Gets or sets the selected text in the control.

SelectionBullet Determines if a paragraph in the control is bulleted.

SelectionColor Represents the color of selected text.

Table 10.11: Commonly used properties that the RichTextBox class adds to TextBoxBase.

Property Description

SelectionFont The font of the currently selected text. Returns Nothing (null)
if the selection has more than one font.

SelectionLength Represents the number of characters selected in the control.

SelectionIndent The distance in pixels between the left edge of the text and
the left edge of the control.

SelectionRightIndent The distance in pixels between the right edge of the text and
the right edge of the control.

SelectionTabs An array of integers representing the pixel positions of tabs
within the control.

SelectionType The type of the selection, as one of the members of the
RichTextBoxSelectionTypes enumeration (e.g., Text,
Object, Empty).

ZoomFactor Represents the current zoom level for the control. The value
can be between 1/64 and 64, with the default value of 1.0
indicating no zoom.

Tip

RichTextBox makes heavy use of fonts, and you may want to refer to
Chapter 11 for more details on fonts.

The class also adds a number of methods to those it inherits from TextBoxBase in order to
support its extra functionality, as shown in Table 10.12.

Table 10.12: Commonly used metho ds that the RichTextBox class adds to TextBoxBase.

Method Description

CanPaste Tells you whether the control can paste what ’s

currently on the clipboard

Find A group of overloaded methods that search the
control for characters and strings

GetCharFromPosition Gets the character nearest to the given point

GetCharIndexFromPosition Gets the index of the character nearest to the given
point

GetLineFromCharIndex Gets the line containing a given character

GetPositionFromCharIndex Returns the position of a given character

LoadFile A group of overloaded methods to load text and
RTF files into a control

Paste Pastes the contents of the clipboard

Redo Redoes an undone operation

SaveFile A group of overloaded methods for saving the
contents of the control to a file

DataGrid

DataGrid is an extremely useful and sophisticated control that displays ADO.NET data in a
scrollable grid. An example of a DataGrid is shown in Figure 10.10.

Figure 10.10: A DataGrid displaying sample data.

The control is designed to display data from ADO.NET, but you don’t have to be connected
to a database in order to use it. The DataGrid displays data sources, which include:
§ ADO.NET DataTables
§ ADO.NET DataViews
§ ADO.NET DataSets
§ ADO.NET DataSetViews
§ Single dimension arrays
§ Any component that implements the IList or IListSource interfaces

This isn’t really the place to discuss how the ADO.NET classes work—they are pretty
complex, and we are discussing controls rather than databases. For more details about
ADO.NET and how to use it, consult Chapter 15.

To give you an idea of how a DataGrid can work with ADO.NET, a DataSet can contain one
or more DataTables, and you can use DataRelation objects to relate tables by key. A
DataGrid is sophisticated enough to be able to display and navigate the relations. The
example shown in Figure 10.10 sh1ows + markers in the first column. These indicate that
these rows have one or more relations set up, and expanding the row by pressing the + lets
you navigate to the related table and back.

There also isn’t space here to go into detail on all the features provided by DataGrid and
how to use them, because it is a very complex and fully featured control. Tables 10.13 and
10.14 detail some of the most useful properties and methods of the DataGrid class.

Table 10.13: Important properties of the DataGrid class.

Property Description

AllowNavigation Determines whether navigation to child tables is allowed

Table 10.13: Important properties of the DataGrid class.

Property Description

AlternatingBackColor Sets alternate rows of the grid to a different color to look
like a ledger

BackColor Gets or sets the background color of the grid

BackgroundColor Gets or sets the color of the non-row areas of the grid

BorderStyle The style of the DataGrid border, which may be None,
FixedSingle, or Fixed3D

CaptionText The text displayed as the grid’s caption

CaptionForeColor,
CaptionBackColor,
CaptionFont

Represents the properties of the grid’s caption

CurrentCell Represents the currently selected cell

CurrentRowIndex Represents the currently selected row

DataSource Gets or sets the data source that this grid is displaying

FirstVisibleColumn Gets the index of the first visible column

FlatMode Determines whether the grid displays in flat or 3D mode

ForeColor,
BackgroundColor

Represents the colors of the grid

GridLineStyle,
GridLineColor

Represents the properties of the grid lines

Item Represents the content of a grid cell

ReadOnly If true, the grid cannot be edited

TableStyles Gets the collection of DataGridTableStyle objects for this
grid

VisibleColumnCount,
VisibleRowCount

Gets the number of visible rows and columns

Table 10.14: I mportant methods of the DataGrid class.

Method Description

BeginEdit, EndEdit Signals the beginning and end of an edit
operation

BeginInit, EndInit Signals the beginning and end of initialization,

during which the control can’t be used

CreateGridColumn Creates a new column

Collapse , Expand Collapses or expands child relations for a
particular row

GetCellBounds Gets the bounding rectangle of a given cell

Table 10.14: I mportant methods of the DataGrid class.

Method Description

HitTest Gets information about the cell at a given point

NavigateTo, NavigateBack Navigates to and from a table

DateTimePicker

The DateTimePicker control wraps a standard Windows date-time picker control, an
example of which is shown in Figure 10.11. This control lets a user select a date from a
drop-down calendar and displays it in one of several formats.

Figure 10.11: A DateTimePicker with the calendar displayed.

Note

Despite what its name might imply, this control only lets you select a date;
the time displayed will always be the current system time.

The Format property lets you choose how the date is to be displayed, using one of the
values shown in Table 10.15.

Table 10.15: DateTimePicker formats.

Property Description

DateTimePickerFormat.Custom Uses a custom format.

DateTimePickerFormat.Long Uses the system’s long date format. This is the
default.

DateTimePickerFormat.Short Uses the system’s short date format.

DateTimePickerFormat.Time Uses the system’s time format.

There are a number of useful properties that can be used with DateTimePicker, as shown in
Table 10.16.

Table 10.16: Properties of the DateTimePicker class.

Property Description

CalendarFont,
CalendarForeColor

The font and text color for the drop-down calendar.

CalendarTitleBackColor,
CalendarTitleForeColor

Colors for the background and foreground of the title.

DropDownAlign The alignment of the calendar. Default is left-aligned.

Format The format of the date in the textbox, as detailed in the
preceding table.

MinDate, MaxDate The minimum and maximum dates on the calendar.

ShowCheckBox If true, a checkbox is shown next to the date.

ShowUpDown If true, an up-down control is used to adjust date values.

The ShowCheckBox property lets you show a CheckBox next to the date. If the checkbox is
selected, the date can be changed; if it isn’t selected, the date cannot be changed. If
ShowUpDown is set to true, an up-down control with an increment of one day is used to
adjust the date instead of using the drop-down calendar.

MonthCalendar

Still on the topic of dates and times, the MonthCalendar class encapsulates the Windows
Calendar control. Figure 10.12 shows that this is the same as the drop-down calendar used
by the DateTimePicker class.

Figure 10.12: A MonthCalendar displayed on a form.

The MonthCalendar has a number of useful properties, as summarized in Table 10.17.
Methods are available to set many of these properties, such as the bolded dates.

Table 10.17: Properties of the MonthCalendar class.

Property Description

AnnuallyBoldedDates,
MonthlyBoldedDates,
BoldedDates

Collections of DateTime objects representing dates that
are to be shown in bold on an annual, monthly, or
nonrecurring basis.

BackColor, ForeColor,
BackgroundImage

Background and foreground colors, and the background
image to display (if any).

CalendarDimensions The number of rows and columns displayed by the

Table 10.17: Properties of the MonthCalendar class.

Property Description

calendar.

MinDate, MaxDate The minimum and maximum dates that will be displayed.

SelectionStart,
SelectionEnd,

The start, end, and range of selected items in the
calendar.SelectionRange

ShowToday,
ShowTodayCircle

Determines whether the current day is shown at the
bottom of the calendar and whether it is circled.

SingleMonthSize The minimum size needed on the screen to display a
month (read-only).

TitleBackColor,
TitleForeColor

Colors of the title bar.

TodayDate Represents today ’s date. By default this is the date when

the control was created, but it can be reset by assigning
a different DateTime to this property.

TodayDateSet True if the TodayDate has been explicitly set by the
user.

Up-Down Controls

An up-down control consists of a text box plus a small vertical scrollbar, which is used to
change the value being displayed.

.NET gives you two up-down classes, DomainUpDown and NumericUpDown, both of
which derive from the UpDownBase class.

The NumericUpDown class provides an up-down control that displays a numeric value,
which is incremented and decremented using scrollbar buttons. Table 10.18 shows the
properties of the NumericUpDown class. Value can be used to get and set the value, and it
is validated against the Maximum and Minimum. If validation fails, an ArgumentException
will be thrown. A DomainUpDown control displays strings from an Object collection by
clicking the up and down buttons. Table 10.19 shows the properties of this class. Items
represents the collection of strings held by the control, and you can use the normal collection
Add(), Remove(), and Clear() methods to maintain the list.

Table 10.18: Properties of the NumericUpDown class.

Property Description

DecimalPlaces The number of decimal places to display. The default is
zero.

Hexadecimal True if values are displayed in hex. The default is false.

Increment The increment value to use when the up or down button is
clicked. The default is 1.

Maximum The maximum value that can be displayed. The default is
100.

Table 10.18: Properties of the NumericUpDown class.

Property Description

Minimum The minimum value that can be displayed. The default is 0.

ReadOnly True if the control is read-only, in which case the user
cannot enter text into the textbox.

ThousandsSeparator True if a thousands separator is to be displayed. The
default is false.

Value The value being displayed in the control.

Table 10.19: Properties of the DomainUpDown class.

Property Description

Items The collection of items.

SelectedIndex Gets or sets the selected item by index.

SelectedItem Gets or sets the selected item by reference.

Sorted If true, the list items are maintained in sorted order.

Wrap If true, the list wraps when the beginning or end is reached.

GroupBox

A GroupBox is a container for other controls that has an optional title, and it is commonly
used for two purposes. It can help visibly group controls that belong together, and if used to
contain a set of RadioButtons, it will cause them to act together as a group. Figure 10.13
shows a GroupBox containing a group of RadioButtons.

Figure 10.13: A GroupBox containing a group of RadioButtons.

Unlike a Panel, a GroupBox doesn’t have any scrolling capability, so you cannot add
controls outside the bounds of the box.

You can add controls to a GroupBox in Visual Studio by placing them within the boundary of
the box. In order to add or remove children in code, use the Add() and Remove() methods
on the Controls property that GroupBox inherits from Control.

Panel

A Panel is a control that can contain other controls. Panels are similar to GroupBoxes, but
there are three main differences between them:
§ Panels can scroll
§ Panels can have a border style
§ Panels cannot display a title

Like GroupBoxes, they have virtually no functionality of their own, You use them to group
controls for visual emphasis so that you can move them in a group, and so that you can
enable or disable a group of controls simultaneously. Figure 10.14 shows a Panel containing
four CheckBox controls; in this example, the Panel’s AutoScroll property has been set to
True so that scrollbars are automatically provided when controls are positioned outside the
visible area of the Panel.

Figure 10.14: A scrollable Panel containing four CheckBox controls.

The Panel in Figure 10.14 also shows a 3D border. By default, Panels have no border, but
you can choose to set a simple line or 3D border using the BorderStyle property.

Note

Adding RadioButtons to a Panel makes them act as a group, so that only
one can be selected at a time.

If you are using Visual Studio .NET, you can add controls to a Panel by placing them onto
the Panel in the Designer. If you want to add controls to a Panel in code, use the Add()
method:

panel1.Controls.Add(myButton)

As with everything that inherits from the Control class, the Controls property provides
access to the collection of child controls.

Scrollbars and TrackBar

.NET provides four classes that provide a slider capability:
§ ScrollBar—The base class for scrollbars
§ HScrollBar—Implements a horizontal scrollbar
§ VScrollBar—Implements a vertical scrollbar

§ TrackBar—Implements a slider

The scrollbar classes implement the typical scrollbars seen on the sides of windows,
listboxes, and other controls that have a scrolling capability. These are almost always
supplied and used by the component that needs them, so you very seldom have anything to
do with scrollbars nowadays.

If you need some sort of slider in your UI, use a TrackBar control, which is a scrollbar
specially adapted for use as a standalone control. Figure 10.15 shows a TrackBar in place
on a form.

Figure 10.15: A TrackBar control on a form.

As with scrollbars, the slider that you drag along the track is known as the thumb, and you
can click on the track itself to cause the thumb to jump between tick marks. The TrackBar
properties in Table 10.20 show how you can configure the look and operation of the object.

Table 10.20: Properties of the TrackBar class.

Property Description

AutoSize Indicates whether the control will autosize to use the
minimum amount of space

BackgroundImage The background image, if any

LargeChange , SmallChange The large and small change increments

Minimum, Maximum The minimum and maximum values (and hence the
range) of the TrackBar

Orientation Indicates whether the TrackBar is horizontal (the
default) or vertical

TickFrequency Indicates how often tick marks appear

TickStyle Indicates where the tick marks are placed in relation
to the track

Value The current location of the thumb between the
minimum and maximum values

A “large change,” typically 10 percent of the range, is triggered by clicking on the track or
using the PgUp/PgDn keys. A “small change,” typically one unit, is triggered by using the
arrow keys to move the thumb.

ImageList

An ImageList is a nonvisible control that is used to hold a list of images. It isn’t used on its
own, but is used to provide lists of images to other controls that need them, such as:
§ Images for the buttons on a toolbar
§ Large and small icons to be used with a ListView
§ Images used in a TreeView

An ImageList maintains a collection of images, and you can use the usual collection
methods such as Add() and Remove() to maintain the list. See the Immediate Solution
“Working with Toolbars” for an example of how ImageLists are used in practice.

ListView and TreeView

Everyone is familiar with the Windows Explorer application, which uses a tree control in the
left pane and a list control in the right pane. The .NET ListView and TreeView controls wrap
the Windows tree and list controls. Because they’re often used together in applications in
this way, I’ll discuss both in this section.

The TreeView Control

A TreeView is a control that displays a hierarchy of items in the form of a tree. The
programmer has to load the control with data items representing the nodes, and the control
takes care of all the run-time operations including displaying the tree, interacting with the
user, and raising events. Each node in the tree has a caption and an optional pair of images,
which are used to represent selected and unselected nodes.

The following code fragment shows how a TreeView can be constructed and populated with
nodes:

Private tv As TreeView

Public Sub New()

 …
 ' Create and setup a TreeView

 tv = New TreeView()
 tv.Location = New Point(30, 30)

 tv.Size = New Size(120, 150)

 ' Set the ImageList
 tv.ImageList = ImageList1

 ' Add it to the form

 Controls.Add(tv)

 ' Add child nodes
 AddNodes()

End Sub

Private Sub AddNodes()
 ' Create and add a root node

 Dim tn As New TreeNode("Root", 0, 0)
 tv.Nodes.Add(tn)

 ' Add a child node
 Dim tn1 As New TreeNode("Child1", 1, 1)

 tn.Nodes.Add(tn1)
End Sub

The code starts by creating a TreeView object and setting its size and position. I then
associate an ImageList with the control, which contains the images that are going to be used
by the nodes, and then add the control to the form. Setting up the child nodes involves
creating TreeNode objects and adding them to the hierarchy. The TreeNode constructor in
use takes three arguments: the caption string and the indices of the images in the ImageList
that are going to be used when the node is selected and unselected.

TreeNodes have a Nodes property that holds references to their children, and so that you
can add the first ones to the tree, the TreeView also has a Nodes property that refers to the
root node(s) in the hierarchy. In the example, the root node is added directly to the
TreeView, and the child node is added to the root node. The main problem with building
TreeViews is keeping track of where you need to add nodes when you are building the
structure.

This code produces the tree shown in Figure 10.16.

Figure 10.16: A TreeView control with two nodes.

Commonly used properties and methods of the TreeView class are summarized in Tables
10.21 and 10.22.

Table 10.21: Commonly used properties of the TreeView class.

Property Description

BackgroundImage The background image, if any.

BorderStyle The style of the control border. Default is a 3D border.

CheckBoxes True if checkboxes are shown next to the image on each
node.

Table 10.21: Commonly used properties of the TreeView class.

Property Description

HotTracking True if the tree nodes are highlighted as the mouse
moves over them.

ImageList The control holding the images for the nodes.

LabelEdit True if the user can edit the node labels.

Nodes The collection of TreeNodes managed by this TreeView.

SelectedNode The currently selected node, or null (Nothing) if no node is
selected.

ShowLines True if lines are drawn between nodes. Default is true.

ShowPlusMinus True if the expand button is shown next to a node that has
children.

ShowRootLines True if lines are shown joining nodes to the root.

Sorted True if nodes in the tree are sorted.

TopNode The node visible at the top of the TreeView.

VisibleCount The number of visible nodes.

Table 10.22: Commonly used methods of the TreeView class.

Method Description

BeginUpdate, EndUpdate Disables and reenables redrawing of the tree. Used
when many nodes are to be updated to save multiple
redraws.

CollapseAll, ExpandAll Hides or shows all child nodes.

GetNodeAt Gets the node at a point.

GetNodeCount Returns the number of nodes in the tree.

The ListView Control

A ListView displays a list of items in one of four formats:
§ Using large icons
§ Using small icons
§ As a list
§ As a report

If you’re familiar with the ways in which you can display files in Windows Explorer, then you’ll
have a pretty good idea of what the ListView formats look like. Figure 10.17 shows a
ListView displayed in Report format. It also shows the use of optional column headers and
the way in which text is edited if it is too long to fit into a column.

Figure 10.17: A ListView in Report format.

As with the TreeView, using a ListView involves populating the control with the items it is to
display; in this case, the items are ListItem objects. The following code fragment shows how
a ListView can be constructed and populated with items:

Private lv As ListView

Public Sub New()

 …
 ' Create a ListView, position and size it

 lv = New ListView()
 lv.Location = New Point(8, 8)

 lv.Size = New Size(160, 136)
 lv.ForeColor = SystemColors.WindowText

 ' Set up the ImageList that holds the large icons

 lv.LargeImageList = ImageList1

 Controls.Add(lv)

 ' Add the items
 AddItems()

End Sub

Private Sub AddItems()
 ' Create some list items

 Dim item1 As New ListViewItem("Team one", 0)
 Dim item2 As New ListViewItem ("Team two", 1)

 Dim item3 As New ListViewItem ("Team three", 2)

 ' Add them to the list

 lv.Items.Add(item1)
 lv.Items.Add(item2)

 lv.Items.Add(item3)
End Sub

The code first creates a ListView and sets its size, position, and foreground color. Because a
ListView can display items using large or small icons, each ListView has two ImageList
properties. In this example, I’m setting the one that holds the large icons. The AddItems()
function creates new ListItems, each with a caption and an icon index, and adds them to the
list.

This code produces the ListView shown in Figure 10.18.

Figure 10.18: A form containing a ListView control.

Commonly used properties and methods of the ListView class are summarized in Tables
10.23 and 10.24.

Table 10.23: Commonly used properties of the ListView class.

Property Description

Activation Specifies how the user activates the item (single or double-
click).

Alignment The alignment of items in the window.

AllowColumnReorder If true, users can drag columns to reorder them.

AutoArrange True if icon views are autoarranged.

BackgroundImage The background image, if any.

BorderStyle The style of the control border. Default is a 3D border.

CheckBoxes If true, every item will display a checkbox.

Columns The collection of column headers.

FocusedItem Returns the item that has the focus.

HoverSelection True if items are selected by hovering over them with the

Table 10.23: Commonly used properties of the ListView class.

Property Description

mouse.

Items The collection of list items.

LargeImageList The ImageList containing icons for Large Icon view.

MultiSelect True if multiple selection is allowed.

Scrollable True if scrollbars are visible.

SelectedItems The collection of currently selected items.

SmallImageList The ImageList containing icons for Small Icon view.

Table 10.24: Commonly used methods of the ListView class.

Method Description

ArrangeIcons Arranges the icons in a given format.

BeginUpdate,
EndUpdate

Disables and reenables redrawing of the control. Used when
many items are to be updated to save multiple redraws.

Clear Removes all items from the tree.

EnsureVisible Ensures that a given item is visible, scrolling it into view if
necessary.

GetItemAt Gets the item at a point.

Menus

Menus are represented by four classes, as listed in Table 10.25.

Table 10.25: The .NET Menu classes.

Class Description

Menu The abstract base class for all menu classes.

MainMenu Represents the main menu bar for a form

MenuItem Represents a menu item

ContextMenu Represents a pop-up menu

Menus for an application consist of MenuItem objects, which can themselves contain other
MenuItems to implement submenus. MenuItems are then stored in a MainMenu, which can
be attached to a form or contained in a ContextMenu if it is to be used as a pop-up context
menu.

Visual Studio.NET provides a visual menu editor, but it is very simple to manipulate menu
items in code. MenuItems within a Menu are accessed through the MenuItems property,
which returns a Menu.MenuItemCollection object representing the collection of MenuItems
belonging to that menu. As its name implies, Menu.MenuItemCollection is a nested class
defined within Menu whose sole purpose is to hold a collection of MenuItems. You can use
the methods on MenuItemCollection to add and remove MenuItems, like this:

' References to MenuItems
Private WithEvents item1 As MenuItem

Private WithEvents item2 As MenuItem

' Create a MainMenu
Dim main1 As New MainMenu

' Create a couple of MenuItems

item1 = New MenuItem("foo")
item2 = New MenuItem("bar")

' Add the items

main1.MenuItems.Add(item1)
main1.MenuItems.Add(item2)

Note how I’ve declared the MenuItem objects in this code. Because the whole point of a
menu item is that someone is going to select it at some time, I declared a WithEvents
reference to set up event handling, and then created the actual items later on because
WithEvents and object creation cannot be completed in one step.

Tip

If you want to add a separator bar, simply use a single dash as the text for the
MenuItem.

The Add() method is used to add the MenuItems to the collection, and you can also use the
Remove() and Clear() methods to remove one or all items from the menu. If you know all
the menu items you want to add ahead of time, it is more efficient to use the
MenuItems.AddRange() method to add them in one array:

' Create an array

Dim a1(1) As MenuItem
a1(0) = item1

a1(1) = item2

' Add the items
main.MenuItems.AddRange(a1)

Because menus are mainly used with forms, two Immediate Solutions dealing with using
menus were provided in Chapter 9, “How Do I Work with Menus on Forms?” and “How Do I
Associate a Context Menu with a Form?”

PictureBox

A PictureBox is a control that displays graphics from a bitmap, icon, JPEG, GIF, or other
image file. It is a very simple class, having few properties and methods.

The Image property is used to associate the PictureBox with an image, and the SizeMode
property is used to control how the image is displayed in the control. Table 10.26 lists the
possible values that SizeMode can take.

Table 10.26: Possible values for the PictureBox SizeMode property.

Property Description

PictureBoxSizeMode.Normal The image is placed in the top-left corner
and is clipped to the bounds of the control.

PictureBoxSizeMode.StretchImage The image is stretched or shrunk to fit the
PictureBox.

PictureBoxSizeMode.AutoSize The PictureBox is resized to fit the image.

PictureBoxSizeMode.CenterImage The image is centered in the control.

ProgressBar

A ProgressBar, shown in Figure 10.19, lets you show the progress of an operation by
displaying a bar proportional in size to the time the operation has taken so far. The
ProgressBar control is a wrapper for the underlying Windows control.

Figure 10.19: A ProgressBar control on a form.

A ProgressBar has Minimum and Maximum properties, which default to 0 and 100
respectively, and a Value property that represents the current value. You can assign an
integer to Value in order to set the position of the control, or alternatively, you can use
ProgressBar’s two methods: Increment() and PerformStep(). Increment() increments the
value by a variable integer amount and wraps back to the minimum if an increment operation
takes the value past the maximum. PerformStep() increments the value by a fixed amount,
the size of which is set through the Step property.

StatusBar

A StatusBar, shown in Figure 10.20, is typically displayed at the bottom of a window or form
and is used to display graphical or text information to the user. Status bars are normally for
display only, and it is unusual for them to interact with the user.

Figure 10.20: A StatusBar control at the bottom of a form, containing two panels and a
resize grip.

StatusBars often display text, but can also display one or more panels, as shown in Figure
10.20. The following code fragment shows how to create a StatusBar and attach it to a form:

Private sb As StatusBar

Public Sub New()
 …

 ' Create a StatusBar. The constructor takes no arguments
 sb = New StatusBar()

 ' Set its initial text

 sb.Text = "My Status Bar"

 ' Add it to the form
 Controls.Add(sb)

End Sub

This code fragment produces a StatusBar like the one in Figure 10.21.

Figure 10.21: A StatusBar displaying text.

To change the text, simply assign a new value to the Text property. A StatusBar has a set of
default properties, as listed in Table 10.27.

Table 10.27: Default StatusBar properties.

Property Description Value

BackgroundImage Represents a reference to the background
image

null (Nothing in
VB)

Dock Indicates where the bar docks DockStyle.Bottom

Font Represents the StatusBar font The container’s
font

ShowPanels Determines whether panels should be
shown

False

SizingGrip Indicates whether a sizing grip should be
displayed

True

TabStop Indicates whether the user can tab to the
StatusBar

False

The collection of panels owned by a StatusBar is held in the Panels property, and it is empty
by default. To add a panel to the bar, you need to create a StatusBarPanel object, set its
properties, and add it to the collection:

Private sb As StatusBar

Private sbp1 As StatusBarPanel

Public Sub New()
 …

 ' Create a StatusBar. The constructor takes no arguments
 sb = New StatusBar()

 ' Set its initial text

 sb.Text = "My Status Bar"

 ' Add a panel
 sbp1 = New StatusBarPanel()

 sbp1.Text = "Panel1"
 sb.Panels.Add(sbp1)

 ' Make the panel visible

 sb.ShowPanels = True

 ' Add it to the form
 Controls.Add(sb)

End Sub

Like the StatusBar, a StatusBarPanel has a set of default properties, which are listed in
Table 10.28.

Table 10.28: Default StatusBarPanel properties.

Property Description Value

Alignment Represents the
alignment of the text in
the panel

HorizontalAlignment.Left

AutoSize Determines whether the
panel autosizes to text

StatusBarPanelAutoSize.None

BorderStyle The panel border style StatusBarPanelBorderStyle.Sunken

Icon Represents the icon to
display on the panel

null (Nothing in VB)

MinWidth Represents the minimum
width of the panel in
pixels

10

Style Determines whether the
panel style is text or
owner-draw

StatusBarPanelStyle.Text

Text The text in the panel A zero-length string

ToolTipText The text to be displayed A zero-length string

Table 10.28: Default StatusBarPanel properties.

Property Description Value

on the tooltip

Width Represents the width in
pixels

100

ToolBar

A ToolBar is a dockable window that contains a number of buttons; an application can have
more than one ToolBar, and they are usually docked at the top of the main window. The
ToolBar class contains a number of methods and properties that help you create and work
with toolbars.

Each ToolBar object has a Buttons property that represents the collection of
ToolBarButton objects displayed by the ToolBar. You can use the normal collection
methods (Add(), Remove(), Clear()) to manage the buttons or make use of the Editor dialog
provided by Visual Studio.

ToolBar buttons can be of three types—normal, toggle, and drop-down—and can display
text, an image, or both. A toggle button toggles between its up and down state, whereas a
drop-down button displays a menu when an arrow next to the button is pressed.

Table 10.29 lists important properties of the ToolBar class.

Table 10.29: Important properties of the ToolBar class.

Property Description

Appearance Determines whether the ToolBar buttons are flat or 3D.

BorderStyle Determines the ToolBar border. The default is no border.

Buttons The collection of ToolBarButton objects hosted by the
ToolBar.

ButtonSize The size of the buttons on the ToolBar; the default is 22
pixels high by 24 pixels wide.

Divider True if the ToolBar displays a divider between it and the
menu.

DropDownArrows True if drop-down buttons will display arrows.

ImageList Represents the collection of images for the ToolBar
buttons.

ImageSize Represents the size of each image in the ImageList.

ShowToolTips True if tooltips are to be shown for each button.

TextAlign Represents the alignment of text and images on ToolBar
buttons. The default is ToolBarTextAlign.Underneath.

Wrappable True if buttons will wrap to a new line when the ToolBar
gets too narrow.

The images to be displayed on the buttons are held by an ImageList object associated with
the ToolBar.

SystemInformation

Although it isn’t a control that you can place on a form, the SystemInformation class is part
of the Windows Forms namespace and is very useful if you need to obtain information about
the operating system. The class has a large number of shared (static) properties that can
provide information about UI parameters, network availability, operating system settings, and
hardware capabilities.

Tables 10.30 and 10.31 list some useful properties of the SystemInformation class.

Table 10.30: Common SystemInformation properties relating to the operating system, hardware, and network.

Property Description

BootMode Gets a value that specifies how the system
was started (e.g., Normal or Safe mode).

ComputerName Gets a string that holds the computer name.

DBCSEnabled True if the system can handle double-byte
characters.

DebugOS True if it is a debug version of the operating
system.

MidEastEnabled True if the system is enabled for Hebrew
and Arabic languages.

MonitorCount Returns the number of monitors.

MousePresent, MouseWheelPresent Contains mouse properties.

Network True if the computer is connected to a
network.

Secure True if the operating system implements
security (e.g., Windows NT and Windows
2000).

UserDomainName Gets the user’s domain name.

UserInteractive True if the current process is running in
interactive mode.

UserName Gets the name of the logged-in user.

Table 10.31: Common SystemInformation properties relating to the UI.

Property Description

BorderSize Gets the size of a window border in pixels

CaptionButtonSize Gets the size of a title bar button in pixels

CaptionHeight Gets the height of a window title bar in pixels

CursorSize Gets the size of a cursor in pixels

Table 10.31: Common SystemInformation properties relating to the UI.

Property Description

DoubleClickSize, DoubleClickTime Gets the limits in space and time for two clicks to
be considered a double-click

HorizontalScrollBarHeight Gets the height of a horizontal scrollbar in pixels

IconSize Gets the default size of an icon in pixels

MenuHeight Gets the height of one line of a menu in pixels

SmallIconSize Gets the default size of a small icon in pixels

WorkingArea Gets the size of the working area, that is, that
part of the screen that can be used by
applications

TabControl

A TabControl manages a set of TabPage objects, which are used to create the “tabbed
dialog” effect seen in many Windows programs. An example is shown in Figure 10.22.

Figure 10.22: A Windows tabbed dialog.

Each page can hold its own set of controls. When the user clicks on a tab, the TabControl
causes the requisite set of controls to be displayed. Table 10.32 lists the common properties
of the TabControl class.

Table 10.32: Common properties of the TabControl class.

Property Description

Alignment Determines to which side of the control the tabs are
displayed.

Appearance Determines whether the tabs appear as tabs, buttons, or flat
buttons.

DisplayRectangle The area of the control not used by the tabs and borders.

DrawMode Indicates whether the tabs are owner-draw or not.

HotTrack Indicates whether the tabs are highlighted when the mouse
passes over them.

ImageList Holds images for tabs that want to display them.

MultiLine True if there can be more than one row of tabs. If false,
navigation arrows will be shown at the ends of the single
row.

Padding The amount of padding around items in tabs.

Table 10.32: Common properties of the TabControl class.

Property Description

SelectedIndex The index of the currently selected tab, or -1 if there isn’t a

current selection.

SelectedTab Gets or sets the currently selected tab.

SizeMode Represents how tabs are sized: large enough for their text,
stretched to fill the row, or fixed size.

TabCount Returns the number of tabs.

TabPages Returns the collection of tab pages.

The Alignment property lets you position the tabs at the top, bottom, left, or right of the
control. This property lets you create tabbed forms that look like notebooks, as shown in
Figure 10.23.

Figure 10.23: A tabbed dialog in notebook format.

Timer

Timer is a nonvisual control that implements a timer that raises an event at user-defined
intervals.

The Interval property sets the interval in milliseconds at which Timer events will be raised,
and the Start() and Stop() methods are used to control the Timer.

If you create a Timer in code, it is important to call the Dispose() method when you’ve
finished with it because the Timer uses system resources that otherwise wouldn’t be freed
up until the Timer is garbage collected or your program exits.

TrayIcon

The TrayIcon control lets you create an entry in the System Tray, the collection of icons that
is normally situated at the right end of the taskbar. The control’s Click event is fired when a
user double-clicks on the icon. You can also associate a ContextMenu with the control,
which will display when a user right-clicks on the icon, as shown in Figure 10.24.

Figure 10.24: A TrayIcon control displaying its icon in the System Tray and showing a
ContextMenu.

The Provider Controls

Provider controls consist of a set of three controls that provide new properties for other
controls on a form. If you add a HelpProvider control to a form, it adds three new properties
to every control on the form, as shown in Figure 10.25.

Figure 10.25: The three properties added to controls by a HelpProvider.

The new properties include:
§ A help string that is displayed if the F1 key is pressed while the control has the focus
§ A topic in a help file that can be used to provide context-sensitive help
§ A Boolean property indicating whether the HelpProvider control is active for the control

The ToolTip control works in the same way, but only adds one new property to each control.
The ToolTip is displayed when the mouse hovers over the control.

The ErrorProvider control provides a simple way to indicate that there is an error associated
with a control. It adds a single property called Error on ErrorProvider1 to each control, and
if a string is assigned to this property, an error icon is displayed next to the control. Figure
10.26 shows a TextBox with an error displayed.

Figure 10.26: An ErrorProvider control associated with a TextBox.

Positioning Controls on Forms

There are four properties that can be used to position and size controls on forms:
§ Location—Sets the control’s X and Y position in pixels
§ Size—Sets the control’s width and height in pixels
§ Anchor—Affixes the control to one or more borders of the form

§ Dock—Connects the control to one or more borders of the form

Location takes as its value a System.Drawing.Point object, and you can set it in code like
this:

TextBox1.Location = new System.Drawing.Point(xpos, ypos)

The xpos and ypos values are the X and Y positions in pixels.

Size takes as its value a System.Drawing.Size object, and you can set it in very much the
same way:

TextBox1.Size = new System.Drawing.Size(xval, yval)

Once again, xval and yval give the X and Y dimensions in pixels.

The Control class also provides you with two other properties that let you build sophisticated
layouts and save you a lot of code while you’re doing it. The Anchor property lets you
“anchor” one or more edges of a control to a form border, so that if the form is resized the
control will be as well.

Figures 10.27 and 10.28 show two views of a form containing a TextBox that is anchored to
the right and left borders of the form. You can see that the TextBox automatically resizes to
fit the width of the form.

Figure 10.27: Form with anchored control before resizing.

Figure 10.28: Form with anchored control after resizing.

The Anchor property has as its value one of the members of the AnchorStyles
enumeration. None obviously means the control isn’t anchored at all, whereas All means
that it is anchored on all four borders. Top, Bottom, Left, and Right anchor the control to
the corresponding border, and the set is completed by a number of combination styles, such
as TopLeft, LeftRight, TopLeftRight, and so on.

The Anchor style can be set in code, and there’s also a graphical way of setting the styles in
the Property Editor in Visual Studio, as shown in Figure 10.29.

Figure 10.29: Setting the Anchor property for a control in Visual Studio.

Dropping down the ComboBox for the Anchor property displays the graphical chooser, with
the gray rectangle in the middle representing the control and the four rectangles to the top,
bottom, left, and right representing the anchoring points. Clicking on an anchoring point
selects or deselects it. Anchor points display in dark gray when selected.

Dock is similar to Anchor, but it determines which border of the form a control will dock to.
When a control is docked to a form, it adheres to one border and extends the entire width or
height of the form.

The value of the Dock property is taken from the DockStyle enumeration. None means that
it isn’t docked at all; Bottom, Left, Right, and Top dock the control to the appropriate
border, whereas Fill docks the control to all borders and adjusts its size accordingly.

Note

You need to be careful when using Fill, as it will cause the control to hide all
other controls on the form.

Related solutions: Found on page:

How Do I Create a Windows
Forms Application?

402

How Can I Create a New Form
and Display It?

406

Setting the Tab Order of Controls

The Tab key can be used to navigate among the controls on a form. Most controls
participate in the tab order, and you can use the Boolean TabStop property to include or
exclude controls from the tab ordering.

Each control also has a TabIndex property, which can be set either from code or Visual
Studio. To set the tab order from Visual Studio, select the View | Tab Order menu item. A
number appears at the top left of each control, as shown in Figure 10.30. You should click
on controls in the order in which you want them to participate in the tab order. When you’re
done, select View | Tab Order again to exit Tab mode.

Figure 10.30: Adjusting the tab order for the controls on a form.

To set the tab ordering from code, set the TabIndex property of controls to an integer value
greater than or equal to zero.

Controls within a GroupBox have a decimal TabIndex that incorporates the TabIndex of the
GroupBox. For instance, if a GroupBox has a TabIndex of 5, the first control it contains will
have a TabIndex of 5.0, the second 5.1, and so on.

Using Labels for Form Navigation

Labels take part in the tab ordering of the form, but don’t receive the focus. Instead, the
focus passes to the next control in the ordering. This feature can be used to let users
navigate around a form using keyboard shortcuts.

The UseMnemonic property determines whether “&” characters will be interpreted as
marking a keyboard shortcut mnemonic. If this property is set to True, pressing Alt plus the
mnemonic character selects the next control after the label in the tab ordering.

Simulating Browser Links

You can use a LinkLabel control to display a label that looks like a link in a browser. Select
the LinkLabel control in the Toolbox, draw it on a form, and then use the properties listed in
Table 10.33 to set its behavior.

Table 10.33: Properties of the LinkLabel class.

Property Description

ActiveLinkColor Represents the color used for active links

DisabledLinkColor Represents the color used for disabled links

LinkArea Gets or sets the range of text in the label that is treated as a
link

LinkBehavior Gets or sets the behavior of a link

LinkColor Represents the color used for normal links

Links Represents the collection of links contained within the
control

LinksVisited Gets or sets a Boolean value indicating whether a link has
been “visited”or not

VisitedLinkColor Represents the color used for visited links

The LinkBehavior property determines how the link behaves. The default setting is
LinkBehavior.SystemDefault, but you can also set it to be underlined only when the mouse
is over the text (LinkBehavior.HoverUnderline) or never to be underlined
(LinkBehavior.NeverUnderline).

Any number of links can be represented by the text within the control, and they’re held in the
Links property.

You can set colors using members of the Color class. There is a large number of colors
predefined as shared (static) members of the Color class, or you can use the FromARGB()
method to define your own colors in terms of red, green, and blue values:

LinkLabel1.LinkColor = Color.FromARGB(126,126,0)

It isn’t necessary for all the text in the LinkLabel to be displayed as a link. You can use the
LinkArea property to set how much of the text is treated as a link. To do this, create a Point
object, and assign the start and end character indices to the X and Y values:

' Treat characters 13 thru 16 as a link. Remember that the index

' is zero-based
Dim p As New Point()

p.X = 12
p.Y = 15

LinkLabel2.LinkArea = p

How Do I Create a Group of RadioButtons?

A group of RadioButtons can be created in two ways. If you’re using the Visual Studio
Designer, create a GroupBox or a Panel, and then place RadioButton controls inside the
box. This will form a group of buttons, and you’ll only be able to choose one of them at a
time. Figure 10.13 shows RadioButton controls inside a GroupBox.

In code, create a GroupBox object, and then use the Add() method on its Controls
property to add the RadioButtons to a group:

' Create a GroupBox
Dim gp As New System.Windows.Forms.GroupBox

' Add some RadioButtons to the group…

Dim rb1 As New System.WinForms.RadioButton
Dim rb2 As New System.WinForms.RadioButton

gp.Controls.Add(rb1)

gp.Controls.Add(rb2)

Working with TextBoxes

Two varieties of TextBox controls are provided in the .NET Framework. TextBoxes hold
unformatted text, which is displayed in a single font, whereas RichTextBoxes can hold fully
formatted text.

Both are easily created by selecting the appropriate control from the Toolbox and drawing on
a form.

Getting and Setting Content

The Lines property is an array of Strings that represent the content of a multiline TextBox.
The Text property is a single string that also represents the content and is useful when you
don’t want to consider lines separately. Content can be set by simply assigning an array to
the Lines property:

' Create an array of Strings

Dim myStrings As String() = { "First line", "Second line", "Third
line" }

' Add them to the textbox
TextBox1.Lines = myStrings

Single- and Multiline TextBoxes

By default, TextBoxes display a single line of text, and any newline characters are displayed
as nonprinting characters. The Multiline property can be set to true, in which case the
TextBox will display multiple lines of text, and newline characters in text will produce line

breaks. The WordWrap property determines whether a multiline TextBox will word wrap at
the end of lines.

Working with Selections

The SelectionStart, SelectionLength, and SelectionText properties represent selected
text within a TextBox. The following code shows how they can be used to edit content within
a control:

Protected Sub ChangeBtn_Click(ByVal sender As Object, _
 ByVal e As System.Event)

 ' Select some text and change it…
 TextBox1.SelectionStart = 6

 TextBox1.SelectionLength = 6
 TextBox1.SelectedText = "foo"

End Sub

You can, of course, also use these properties to find out whether any text is currently
selected. Note that setting the selection start and length doesn’t actually highlight the text.
The Select() method can be used as an alternative way of selecting text, taking the start and
length as parameters:

' Select some text…
TextBox1.Select(6, 6)

Tip

By default, selected text will not be highlighted when the TextBox does not
have the focus. If you want selected text to be highlighted regardless of what
has the focus, set the HideSelection property to False .

Changing the Case of Characters

The CharacterCasing property lets you change the case of characters as they are entered
into a TextBox. The value is one of the members of the Windows.Forms.CharacterCasing
enumeration and can be Normal (to leave the text as it is), Lower (to convert to lowercase),
or Upper (to convert to uppercase).

How Do I Know When the Content of a Text Control Has
Changed?

TextBox and RichTextBox controls will fire a TextChanged event whenever their content
has changed. By handling this event, you’ll be able to tell when the user has modified the
content of the control.

Tip

Make sure that you don’t modify the content of the TextBox control in the
TextChanged event handler, or you may end up with another event being
fired while you’re in the middle of handling the present one. Likewise, beware
of creating two text controls whose TextChanged handlers affect each other’s
content.

Entering Masked Passwords into TextBoxes

The PasswordChar property of TextBox can be used to create a TextBox that can be used
for password entry, and which will mask what the user types:

' Set the password character
TextBox1.PasswordChar = "*"

How Do I Let the User Pick One of an Array of Strings?

You can use a ListBox or ComboBox to allow a user to pick one of an array of strings, or if
space is limited, consider using a DomainUpDown control. This is a control that maintains a
list of Strings and displays them one by one in a TextBox in response to the user clicking up
and down buttons. Figure 10.31 shows a DomainUpDown control displaying a string.

Figure 10.31: A DomainUpDown control.

If you know the strings you want to display in the control, create a String array, and then add
the array in one operation:

' Create a String array
Dim js() As String = {"one", "two", "three", "four"}

' Add it to the control

DomainUpDown1.Items.AddRange(js)

The Items property represents the collection of strings managed by the control; you can
either use the AddRange() method to add an array in one operation, or use the Add()
method to add strings one by one.

If you want the control to wrap when it gets to the start or end of the items, set the Wrap
property to true, and set the Sorted property to true if you want the items to be maintained in
sorted order.

The SelectedIndex and SelectedItem properties let you get and set the selected item by
zero-based index or by reference. An index of -1 or a null reference means that there is
nothing selected:

' Set the selection to the first item
DomainUpDown1.SelectedIndex = 0

How Can I Show the Value of a TrackBar?

It’s very simple to display the current value represented by the position of the TrackBar
thumb in an edit control.

Place a TrackBar onto a form, and set its Minimum and Maximum properties accordingly.
Then add a TextBox called TextBox1. Double-clicking on the TrackBar in the Designer will
add code for the Scroll event, which is triggered whenever the value changes. Simply add
the one line of code that sets the TextBox content to the current value of the TrackBar, like
this:

Protected Sub Trackbar1_Scroll(ByVal sender As Object, _

 ByVal e As System.EventArgs)
 TextBox1.Text = Trackbar1.Value.ToString()

End Sub

How Do I Use ListBoxes, CheckedListBoxes, and
ComboBoxes?

The three controls—ListBoxes, CheckedListBoxes, and ComboBoxes—can be simply
created by selecting the appropriate item in the Toolbox and drawing them onto a form.

Setting Properties

There are several properties that can be applied to ListBoxes. BorderStyle determines how
the border will be drawn around the ListBox, and it is set to one of the values from the
System.Windows.Forms.BorderStyle enumeration. The BorderStyle.None style will draw
the ListBox with no border, BorderStyle.Single will give it a simple line border, while
BorderStyle.Fixed3D will give a beveled 3D look.

The Boolean Sorted property governs whether the list of items will be sorted or not. If it is
set to true, then all items will be sorted in ascending order when they are added.

The Boolean IntegralHeight property determines whether ListBoxes will display partial items
or not. If set to true, the ListBox will adjust its height so that it is only displaying whole items.

The MultiColumn and ColumnWidth properties can be used to create multicolumn
ListBoxes. ColumnWidth sets the width of each column in pixels, and a value of zero can

be used to get a default value. The following code fragment shows how to create the ListBox
shown in Figure 10.32:

' Set ListBox to multi-column
ListBox2.MultiColumn = True

ListBox2.ColumnWidth = 50

' Add items…
ListBox2.Items.Add(New String("One"))

…
ListBox2.Items.Add(New String("Eight"))

Figure 10.32: A multicolumn ListBox.

The SelectionMode property determines how the user is going to be able to select items
from the ListBox. The value is taken from the System.Windows.Forms.SelectionMode
enumeration, which may be None (if nothing can be selected), One (for single selection),
MultiSimple (for simple multiple selection), or MultiExtended (for multiple selection that
permits the use of the Ctrl and Shift keys to build selections).

Adding Items

ListBoxes have an Items property, which is a collection that holds all the items currently
displayed by the ListBox. There are two ways to add items to a ListBox:
§ Create an array of items to add them all at once
§ Add items one at a time

The most efficient way to add items to a ListBox is to create an array—usually of Strings—
and then add the array using the Items.AddRange() method:

' Create an array of Strings

Dim listItems As String() = { "One", "Two", "Three" }

' Add them all to the ListBox
ListBox1.Items.AddRange(listItems)

If you don’t know what you need to add, you can add items one by one:

' Add an item to the ListBox

ListBox1.Items.Add(new String("New Item"))

If you want to add a lot of items in this way, the ListBox will want to update itself each time
you add an item, which can cause the display to flicker. The solution to this is to switch
updating off until you’ve finished adding items using the BeginUpdate() and EndUpdate()
methods:

' Turn updating off

ListBox1.BeginUpdate()

' Add items…

ListBox1.Items.Add(New String("One"))
ListBox1.Items.Add(New String("Two"))

ListBox1.Items.Add(New String("Three"))

' Turn updating back on
ListBox1.EndUpdate()

Add() will always add an item to the end of the list; you can insert an item into the list by
using Insert(). The index you provide is the index at which the new item will be inserted:

' Insert an item at index 2
ListBox1.Items.Insert(2, New String("New"))

Note

If you insert items into a sorted ListBox, the new items will not be sorted
correctly because you have specified the position to which they’re added.

Finding Out What Is Selected

It’s common to want to find out what is currently selected in a ListBox. The SelectedIndex
property represents the zero-based index of the item that is currently selected. The value of -
1 denotes that nothing is currently selected. SelectedItem returns the value of the currently
selected item, so you can retrieve the string associated with an item, like this:

' Get the selected index

Dim ix As Integer = ListBox1.SelectedIndex

' Display it in a message box
MsgBox("Item selection: index=" + ix.ToString() + _

 ", item=" + ListBox1.SelectedItem.ToString() + "'")

Note the use of the ToString() method to convert both the index and the item into strings for
display. You can also use SelectedIndex to set the selected item in case you want to
display a ListBox with a particular item selected by default. If you don’t select an item,
nothing will be selected in the ListBox:

' Select the second item
ListBox1.SelectedIndex = 1

If you are using a multiple-selection control, you need to use two alternative properties,
SelectedIndices and SelectedItems, which return collections holding information about the
currently selected items. These are standard collection objects that implement ICollection
and IEnumerable, so they can be manipulated using any of the techniques discussed in
Chapter 4. The following example shows how you can find out how many elements are
selected by enumerating over the collection:

' Get the collection of indices

Dim mbIdx As ListBox.SelectedIndexCollection =
ListBox1.SelectedIndices

' How many elements are selected?
MsgBox("Selected " + mbIdx.Count.ToString() + " items")

' Set up an enumerator to iterate over the collection

Dim en As IEnumerator = mbSel.GetEnumerator
While en.MoveNext = True

 Console.WriteLine(en.Current)
End While

Handling Item Selection Notification

A ListBox will fire a SelectedIndexChanged event when a different item is selected. Double-
clicking on a ListBox in the Designer will add a SelectedIndexChanged handler to your form
class, like this:

Protected Sub ListBox1_SelectedIndexChanged(ByVal sender As _
 System.Object, ByVal e As System.EventArgs)

 // Handler code goes here
End Sub

As usual, the arguments to the handler function are superfluous and are more useful in C#
code than in VB. Once in the handler, you can query the SelectedIndex property to find out
which index has been selected:

Protected Sub ListBox1_SelectedIndexChanged(ByVal sender As Object,
_
 ByVal e As System.EventArgs)
 ' Get the selected index

 Dim ix As Integer = ListBox1.SelectedIndex

 ' Display it in a message box
 MsgBox("Item selection: " + ix.ToString())

End Sub

Do not use SelectedIndex if you are using a multiselection ListBox because each time you
add a new item to the selection, it will report the index of the first item. Use the
SelectedIndices property to handle multiple selections.

Working with CheckedListBoxes

CheckedListBoxes differ from standard ListBoxes in that they have a checkbox for every
item. Additional methods in the CheckedListBox class let you manipulate these
checkboxes.

It is important to note that CheckedListBoxes usually do not select the item when the item’s
checkbox is checked or unchecked. You can use the CheckOnClick property to determine
whether selection and selection of the checkbox state are incorporated into one click.

GetItemChecked() returns a Boolean telling you whether a given item is checked. As usual
with ListBoxes, the index is zero-based. GetItemCheckState() provides you with more
information, returning a value from the Windows.Forms.CheckState enumeration. This
value may be Checked, Unchecked, or Indeterminate (grayed out).

If CheckedListBox1.GetItemCheckState(0) = _

 WinForms.CheckState.Checked Then
 MsgBox("Item 0 is checked")

You can use the SetItemChecked() and SetItemCheckState() methods to set the check
state of items from code:

CheckedListBox1.SetItemCheckState(0,
WinForms.CheckState.Indeterminate)

If you want to know which items are checked, you can either loop through the code calling
GetItemCheck() and GetItemCheckState() for each item, or use the GetCheckedIndices()
method to return a collection of all the checked items.

Working with ComboBoxes

ComboBoxes are created and populated in exactly the same way as ListBoxes.
ComboBoxes can be displayed in three ways:
§ A ComboBox with the Simple style always shows the drop-down list, and the text in

the edit control is editable.
§ A ComboBox with the DropDown style only shows the drop-down list when the button

next to the edit control is pressed. The text in the edit control is editable.
§ A ComboBox with the DropDownList style only shows the drop-down list when the

button next to the edit control is pressed. The text in the edit control is not editable.

The DroppedDown Boolean property indicates whether the list is currently dropped down,
and MaxDropDownItems indicates the maximum number of items that will be shown in the
drop-down list.

SelectedIndex indicates the zero-based index of the currently selected item, with a value of
-1 indicating that there’s no selection. SelectedItem returns the value of the currently
selected item, or Nothing (null) if nothing is selected.

If the text in the edit control portion of the ComboBox is editable, you can use
SelectionStart and SelectionLength to find out which portion of the edit control is selected,
and then use SelectionText to retrieve the selected text. The Text property represents the
text in the edit control.

Working with StatusBars

It is very common in applications to display a status bar at the bottom of a form, which can
be used to pass information to the user. To add a status bar to a form in Visual Studio.NET,
select the StatusBar control from the Toolbox and drop it onto the form. This produces a
nearly invisible default StatusBar with no text and a resizing grip at the bottom right, which is
docked to the bottom of the form, as shown in Figure 10.33.

Figure 10.33: A default StatusBar on a form.

Text and Panels

It is common for a StatusBar to display a text string, and you can set this text string by using
the Text property. If the StatusBar is going to display a fixed text string, you can use the
Property Browser to set the text; if you want to change the text at runtime, simply assign the
text you want to display to the Text property:

StatusBar1.Text = "foo"

When you update the Text property, you’ll find that the StatusBar shows the new text
immediately. You do not need to tell it to repaint itself. This happens because status bars are
repainted automatically during idle processing (i.e., when your application has nothing else
to do), so the current text will appear on the status bar without intervention on your part.

A StatusBar control can also host one or more panels. To add panels in Visual Studio, find
the Panels property in the Property Browser, and press the button to the right in order to
bring up the StatusBarPanel Collection Editor window (see Figure 10.34).

Figure 10.34: The StatusBarPanel Collection Editor.

Each panel is represented by a StatusBarPanel object, and this editor window provides you
with a simple way of creating new StatusBarPanel objects and setting their properties. To
create a new panel, click the Add button, and then adjust the properties accordingly.

The Alignment property determines how the text will be aligned within the panel; the default
is left-aligned. AutoSize controls whether the panel will automatically size itself to the text,
and BorderStyle determines how the text will appear on the StatusBar; the default (and
most normal) value is Sunken.

Panels are not displayed by default; if you want to display them, you need to set the
ShowPanels property to true.

Working with ToolBars

Just about every application nowadays uses one or more toolbars, which in .NET are
represented by the Windows.Forms.ToolBar class. A toolbar consists of a window
containing a number of buttons, which may display text and/or a bitmap.

Using a ToolBar in an application is a fairly long-winded, although not very complex process:
1. Add a ToolBar control to your form.
2. Add an ImageList to the form, and fill it with images.
3. Associate the ImageList with the ToolBar.
4. Add buttons to the ToolBar and set their images.
5. Add handlers for the buttons.

I’ll show you how to use a ToolBar from within Visual Studio.NET, although it is quite
possible to do this purely in code without any wizard help.

Setting Up the ToolBar

To set up a ToolBar, start by selecting the ToolBar control from the Toolbox and dropping it
onto the form. This produces an empty ToolBar docked at the top of the form. Drag an
ImageList onto the form as well, and then click on the button to the right of the Images
property in order to bring up the Image Collection Editor, as shown in Figure 10.35.

Figure 10.35: The Image Collection Editor dialog.

Use the Add button to browse for images to use on the toolbar buttons; images for use on
toolbars are usually bitmap files, 16×16 pixels in size. You can see in Figure 10.35 that I’ve
added three images, which have been given the indices 0, 1, and 2. You can then associate
the ImageList with the ImageList property of the ToolBar.

The next task is to add the buttons to the toolbar. As you might expect, the ToolBar object
holds a collection of ToolBarButton objects, which is accessible through the Buttons
property. You can either create ToolBarButton objects manually and add them to buttons,
or in Visual Studio, you can click on the button to the right of the Buttons property to bring
up the ToolBarButton Collection Editor, as shown in Figure 10.36.

Figure 10.36: The ToolBarButton Collection Editor dialog.

Use the Add button to add as many buttons as required, and set their ImageIndex
properties to point to the appropriate bitmap in the ImageList. Once you’ve done this, you
can build and run the application. You should see the toolbar displaying the buttons as
shown in Figure 10.37.

Figure 10.37: A form showing a ToolBar control with two buttons.

Note how the buttons display as 3D. If you want Explorer type buttons that are flat until the
mouse moves over them, use the ToolBar’s Appearance property to change the buttons’
appearance to Flat.

Handling Button Events

Toolbar buttons give rise to Click events when they are pressed, just like ordinary buttons,
so you can add a Click handler by double-clicking on one of the toolbar buttons in the
Designer. You’ll find, though, that no matter how many buttons you have on your toolbar,
you only get one event handler. You have to use the button field of the
ToolBarButtonClickEventArgs object to find out which button was clicked:

Protected Sub ToolBar1_ButtonClick(ByVal sender As System.Object, _
 ByVal e As System.WinForms.ToolBarButtonClickEventArgs) _

 Handles ToolBar1.ButtonClick
 ' Check which button was pressed

 If e.button = ToolBarButton1 Then
 MessageBox.Show("Button 1 pressed!")

 ElseIf e.button = ToolBarButton2 Then
 MessageBox.Show("Button 2 pressed!")

 Else

 MessageBox.Show("Whoops…")
 End If

End Sub

Using DropDownButtons, ToggleButtons, and Separators

Although most items on the toolbar will be standard push buttons, it is also possible to use
three other button types:
§ DropDownButtons—Display a menu when clicked
§ ToggleButtons—Toggle between up and down each time they are clicked
§ Separators—Do not display as buttons, but instead introduce a gap into the sequence

of buttons on the toolbar

If you are using Visual Studio, you can use the ToolBarButton Collection Editor to set the
style of a button to DropDownButton, ToggleButton, or Separator. If you are creating your
toolbar from code, set the button’s Style property:

ToolBarButton3.Style = ToolBarButtonStyle.DropDownButton

In order to use a drop-down button, create a ContextMenu and associate it with the
DropDownMenu property of the button.

Using TreeViews

A TreeView control displays a hierarchical collection of items and is very similar in
appearance to the left pane of Windows Explorer.

Setting Up the TreeView

To set up a TreeView, start by dragging a TreeView control from the Toolbox onto a form
and positioning and sizing it accordingly. Then define the items to be displayed in the tree,
which are called nodes and are represented by TreeNode objects. If you have used
Windows Explorer, you’ll be familiar with the fact that nodes in a TreeView usually have a
small graphic associated with them, and that the graphic changes to show whether a node is
selected or not.

The images used for selected and unselected nodes are held in an ImageList, so the next
task is to add an ImageList object to the form and fill it with images. You can do this by
clicking on the button to the right of the Images property of the ImageList and choosing
graphics files in the Image Collection Editor, as shown in Figure 10.35. Once you’ve done
this, set the ImageList property of the TreeView to point to the ImageList you’ve just
created, so that the TreeView knows what images it has to use.

Adding Nodes

Nodes are added to the TreeView by clicking on the button to the right of the Nodes
property, which brings up the TreeNode Editor shown in Figure 10.38.

Figure 10.38: The TreeNode Editor dialog.

When you first display the editor, you’ll only be allowed to add a root node. Once you’ve
added the root node, you can select any node in the tree and add children. The fields at the
bottom of the dialog let you change the text and the two icons that are associated with a
node. Figure 10.39 shows the result of adding four nodes to a TreeView.

Figure 10.39: A TreeView containing four nodes.

Note

It is quite acceptable to have more than one root node in a TreeView.

TreeView Display Options

The TreeView has several properties that let you control the appearance of the node
hierarchy. These properties are summarized in Table 10.34.

Table 10.34: Properties affecting the appearance of a TreeView.

Property Description

BorderStyle Defines the style of the control border. Default is a 3D
border.

CheckBoxes True if checkboxes are shown next to the image on
each node.

HotTracking True if the tree nodes are highlighted as the mouse
moves over them.

Indent Represents the indentation of child nodes, in pixels.

LabelEdit If true, node label text can be edited.

Scrollable If true, the control will show scrollbars when needed.

ShowLines True if lines are drawn between nodes. Default is true.

ShowPlusMinus True if the expand button is shown next to nodes that
have children.

ShowRootLines True if lines are shown joining nodes to the root.

Sorted True if nodes in the tree are sorted.

Handling Events

Once you have loaded the TreeView with nodes, the control will take care of all interactions
with the user, but you will usually want to know when an item in the hierarchy has been
selected. Double-clicking on the TreeView control in the Designer adds an AfterSelect event
handler to your form, which is called when a new item has been selected. This handler takes
a TreeViewEventArgs object as an argument, which gives you details on what has been
selected:

Protected Sub TreeView1_AfterSelect(ByVal sender As System.Object, _
 ByVal e As System.WinForms.TreeViewEventArgs) _

 Handles TreeView.AfterSelect
 If e.Node = myNode Then

 ' myNode was selected
 End If

End Sub

As you can see from the code fragment, the most important member of the
TreeViewEventArgs class is the Node property, which tells you the node that has been
selected.

Using ListViews

A ListView control displays a list of items in a number of different formats and is very similar
in appearance to the right pane of Windows Explorer.

Setting Up the ListView

To set up a ListView, start by dragging a ListView control from the Toolbox onto a form and
positioning and sizing it. You then need to define the items to be displayed in the list, which
are called items and are represented by ListItem objects. If you’ve used Windows Explorer,
you’ll be familiar with the fact that items in a ListView can be displayed as text, or with a
large or small icon.

The images used for the large and small icons are held in two ImageLists, so you need to
add two ImageList objects to the form and fill them with appropriate icons. You can do this
by clicking on the button to the right of the Images property of the ImageList and choosing
graphics files in the Image Collection Editor, as shown in Figure 10.35. Once you’ve done
this, set the SmallImageList and LargeImageList properties of the ListView to point to the
ImageLists you just created.

Adding Items

ListItems are added to the ListView by clicking on the button to the right of the ListItems
property, which displays the ListItem Collection Editor shown in Figure 10.40.

Figure 10.40: The ListItem Collection Editor for adding ListItems to a ListView.

The important entries are the Text, which appears when a ListView is displaying in text
mode, and the ImageIndex, which governs which images from the LargeImageList and
SmallImageList are used to display an item. An item can consist of more than one column,
and the SubItems collection lets you add extra String items for new columns.

Once you’ve set up the list items, you can use the View property on the ListView to set the
initial display mode for the control. There are four possible views:
§ LargeIcon
§ SmallIcon
§ List
§ Report

LargeIcon and SmallIcon views display the ListItems as rows of icons with the text
underneath each item. List view displays only the text, and Report view displays the text plus
any SubItems that have been defined. If you are using Report view, you should also define
column headers using the Columns property.

There are a number of properties that can be used to affect the appearance of a ListView.
These properties are summarized in Table 10.35.

Table 10.35: Properties that affect the appearance of a ListView.

Property Description

Alignment Indicates the alignment of icons in the window.

BackgroundImage Indicates the background image, if any.

BorderStyle Indicates the style of the control border. Default is a 3D
border.

CheckBoxes If true, every item will display a checkbox.

GridLines True if grid lines are drawn between items.

HoverSelection True if items are selected by hovering over them with the
mouse.

LabelEdit True if item labels can be edited.

MultiSelect True if multiple selection is allowed.

Handling Events

You often want to know when the user has selected an item in the ListView. Double-clicking
on the control in the Designer adds a SelectedIndexChanged handler, which is called every
time an object is selected or deselected. Somewhat unusually, you do not receive any
information about which item has been selected, so you have to look at the control’s
SelectedItems collection:

Protected Sub ListView1_SelectedIndexChanged(ByVal sender _
 As System.Object, ByVal e As System.EventArgs) _

 Handles ListView1. SelectedIndexChanged
 If ListView1.SelectedItems.Count = 0 Then

 MessageBox.Show("Nothing selected", "ListView" _
 MessageBoxButtons.OK, MessageBoxIcon.Information)

 Else
 MessageBox(ListView1.SelectedItems.Count.ToString() & _

 " items selected", "ListView", _
 MessageBoxButtons.OK, MessageBoxIcon.Information)

 End If
End Sub

ListView controls permit multiple selection by default, so the SelectedItems collection holds
the references to all the currently selected items.

Creating Tabbed Forms

Tabbed forms and dialogs are a very common feature of many Windows applications, and
.NET provides the TabControl and TabPage classes to help you build and manage them.
Figure 10.41 shows a form containing a TabControl with two TabPages.

Figure 10.41: A form containing a TabControl with two TabPages.

The TabControl occupies the area within the hashed border. It manages two TabPage
objects through its TabPages collection property. Each of the TabPages has a Text
property, the value of which is shown on the tab. In order to add TabPages to the
TabControl, click on the button to the right of the TabPages property in the Property
Browser, and the TabPage Collection Editor is displayed, as shown in Figure 10.42.

Figure 10.42: The TabPage Collection Editor for maintaining the collection of TabPage
objects owned by a TabControl.

Once you’ve added pages, you can place controls onto the pages just like you place them
onto a form; simply click on the tabs to switch to another page.

Using the TabControl’s Appearance property, you can also display the tabs in two other
forms: as buttons (see Figure 10.43) and flat buttons (see Figure 10.44).

Figure 10.43: A TabControl displaying tabs as buttons.

Figure 10.44: A TabControl displaying tabs as flat buttons.

Using Timers

The Timer control fires a Timer event at user-defined intervals and provides a simple way to
perform an operation for a fixed time or a preset number of times.

To use a Timer, select the control on the Toolbox and drop it onto a form. Because it is a
nonvisual control, its icon appears in the panel at the bottom of the Form Designer window.
Use the Interval property to set the number of milliseconds between Timer events. Double-
clicking on the Timer icon adds an event handler to the form; this method is called every time
the Timer fires its event.

The following code shows how a Timer can be used on a form to update a ProgressBar
control:

' Counts the number of times the timer has ticked
Private ticks As Integer

' Form constructor

Sub New()
 ticks = 0

 ' Start the timer

 Timer1.Start()
End Sub

Protected Sub Timer1_Tick(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' Increment the tick count

 ticks = ticks + 1

 ' Update the ProgressBar
 Progress1.Value = Progress1.Value + 1

End Sub

Note that if you add a Timer in code (rather than using the Form Designer), you must call its
Dispose() method when you are finished with it because Timers use system resources that
should be freed up as soon as possible. The Form Designer inserts code into your project
that disposes the Timer for you.

How Do I Host ActiveX Controls on a Windows Form?

It is possible to host existing ActiveX controls on a Windows Form by providing a suitable
wrapper. This topic is covered in more detail in Chapter 16.

How Do I Create My Own Controls?

The UserControl class is used as the basis for creating your own custom controls. It gives
you a blank form on which to draw and provides you with all the infrastructure supplied by
the Control class hierarchy.

Creating and using a custom control isn’t very hard, as you’ll see from the following example.
Start by creating a Windows Control Library project called VBCustom, which creates a
control class that derives from UserControl. You should see some code like this in your
project:

Imports System.ComponentModel
Imports System.Drawing

Imports System.Windows.Forms

Public Class Control1
 Inherits System.Windows.Forms.UserControl

 …
End Class

For simplicity, this control will only have two properties:
§ Integer, which represents the number of times it has been clicked (read-only)
§ Title string (read-write)

Initializing the Control

To initialize the control, start by adding the property that represents the number of times the
control has been clicked. This is stored as an integer value, and clients get access to it via a
read-only property:

Private timesClicked As Integer

ReadOnly Property Clicks() As Integer

 Get
 Clicks = timesClicked

 End Get
End Property

Don’t forget to initialize timesClicked to zero in the Sub New() or C# constructor.

You can then add the title string and provide access to it via a read-write property:

Private ts As String

Property TitleString() As String

 Get
 TitleString= ts

 End Get
 Set

 ts = Value
 Invalidate()

 End Set
End Property

Notice the call to Invalidate() in the Set clause. If someone changes the string, you’ll want
the control to update itself immediately in order to display the changed string.

Overriding the OnPaint Method

OnPaint is the method where all the drawing of your control’s UI is done, so you need to
override it in your class:

' Override the OnPaint method

Protected Overrides Sub OnPaint(ByVal e As _
 System.Windows.Forms.PaintEventArgs)

 ' Call the base class
 MyBase.OnPaint(e)

 ' Draw a string

 Dim s As String
 s = ts + ": clicked " + timesClicked.ToString + " times"

 ' We need to convert the ClientRectangle (which is an integer

 ' Rectangle) to a floating-point RectangleF. There are
 ' conversion operators, but they can't be used from VB,

 ' hence the rather inelegant construction
 Dim rct As New System.Drawing.RectangleF(ClientRectangle.Left, _

 ClientRectangle.Top, ClientRectangle.Width, _
 ClientRectangle.Height)

 e.Graphics.DrawString(s, Font, New SolidBrush(ForeColor), rct)
End Sub

In this routine, I put together a string consisting of the values of two of the control’s
properties, so I can get some visual feedback that the control is working and responding to
events. OnPaint() is passed a PaintEventArgs object, one of whose members is a
Graphics object representing the control’s drawing area on the screen. You use the
DrawString() method of this Graphics object to display the string within the bounding
rectangle of the control using the default font and color; however, you run into one minor
problem.

The System.Drawing namespace, which encapsulates all the Windows GDI functionality,
contains two classes to represent rectangles: Rectangle (which uses integer coordinates)
and RectangleF (which uses floating point). It turns out that the ClientRectangle property
that the control inherits from UserControl is a Rectangle, whereas DrawString() requires a
RectangleF. A rather inelegant but simple way around this problem is to use the coordinates
of the ClientRectangle to initialize a RectangleF, and then use that RectangleF in the call
to DrawString().

Handling Mouse Events

The control needs to update the click count every time a user clicks the mouse over it and to
display the current count. In order to do that, you need to override one of the mouse event-
handler methods:

' Override the OnMouseDown method

Protected Overrides Sub OnMouseDown(ByVal e As _
 System.Windows.Forms.MouseEventArgs)

 ' Remember to tell the base class
 MyBase.OnMouseDown(e)

 ' Increment the click count

 timesClicked = timesClicked + 1

 ' Invalidate to update the screen
 Invalidate()

End Sub

There are two important points to note in this code. First, the base classes do all the clever
delegate and event operations, so all you have to do is to override the appropriate handler. It
is important that the base class method gets called; otherwise it won’t have a chance to
notify any clients listening for this event. Second, remember to call Invalidate() when the
click count has been changed. Invalidate() requests a repaint, so OnPaint() gets called in

order to display the updated count on the screen. If you don’t call Invalidate(), you can click
on the control, but you won’t see the text change on the screen until something else forces a
repaint.

Testing Out the Control

Once you have defined the basic functionality of the control, you need to test it out in a
project. Start by doing a test build of the control; if all is okay, you should find that a new
Control1 item has been added to the end of the Windows Forms section of the Toolbox.

To test the control, add a new Windows application project to your solution in Visual Studio
by right-clicking on the Solution name in the Solution Explorer and selecting Add | New
Project from the context menu.

Before you can use the control, you have to add a reference to the control’s assembly to the
project. Right-click on the References folder and choose Add Reference from the context
menu.

Note

References in .NET serve the same purpose and are used in much the
same way as references in earlier versions of VB. They import information
that tells the compiler all about components; in the case of .NET, the
information that was included in type libraries is made available through
metadata.

You can now select a custom control from the Toolbox and place it on the form, where you
should see the text displayed, as in Figure 10.45.

Figure 10.45: A custom control displayed on a form.

The control properties have attributes attached to them, so you’ll be able to modify the
TitleString using the Property Browser, as shown in Figure 10.46.

Figure 10.46: Properties of a custom control displayed in the Property Browser.

You can see how the two properties appear in the General category and how the description
string appears in the bottom pane of the browser. The Clicks property appears in gray
because it is read-only; TitleString is in black because it is editable.

Chapter 11: The Drawing Namespaces
By Julian Templeman

In Depth

This chapter provides an introduction to the System.Drawing namespace that encapsulates
.NET’s basic graphics functionality, which is known as GDI+.

The name GDI+ comes from the original Windows graphics library, which was called the
Graphical Device Interface. It is a library of simple 2D graphics designed to draw lines and
shapes, draw text, and display bitmaps. There is no 3D functionality in any of GDI+. If you
need 3D graphics, you are going to have to consider using Direct3D, the details of which are
outside the scope of this book.

System.Drawing contains all the basic functionality, and more advanced drawing features
are provided by four other namespaces:
§ System.Drawing.Drawing2D—Provides advanced 2D and vector graphics
§ System.Drawing.Imaging—Provides advanced image processing
§ System.Drawing.Text—Provides typography functionality
§ System.Drawing.Printing—Provides printing functionality

I am not going to go into the features provided by these four namespaces in any detail, but
I’ll introduce any functionality they provide that is needed for common tasks.

GDI Drawing Basics

I’ll start by describing the basic drawing functionality provided by GDI+ including the use of
brushes and pens, the Graphics class, how to represent dimensions, and how to work with
color.

The Graphics Class

An understanding of the Graphics class is fundamental to being able to use GDI+, as it
represents the drawing surface on which all output is displayed. GDI+ uses the idea of a
graphics object to provide a device-independent way of producing graphical output: You
write code to draw on a graphics object, and the GDI+ code fills in the actual pixels on the
screen.

The graphics object acts as an intermediary between you and the screen. You send it data
to be drawn, and it can provide you with information about the display. I’ll discuss the
Graphics class in more detail once I’ve covered a few basic points.

Note

If you’ve come across device contexts in Windows programming, you are
well on your way to understanding the Graphics class because a graphics
object wraps a device context.

Basic Data Structures

Drawing operations tend to use points and rectangles a lot, and System.Drawing provides a
set of classes to represent these data structures.

Point and PointF are structures—value types—that both represent a simple (X,Y) point. The
difference between them being that Point uses integer coordinates, whereas PointF uses
floats. Tables 11.1, 11.2, and 11.3 summarize the main members of the Point classes.

Table 11.1: Members of the Point structure.

Member Description

IsEmpty True if both X and Y are zero

X The X coordinate

Y The Y coordinate

Equals True if this point contains the same coordinates as another

Offset Translates this point by a specified amount

ToString Returns a string representing the point

+, - Addition and subtraction operators

==, != Equality operators

Table 11.2: Shared methods belonging to the Point structure.

Method Description

Ceiling Rounds the coordinates of a PointF up to the nearest whole number

Round Rounds the coordinates of a PointF down to the nearest whole number

Truncate Truncates the coordinates of a PointF

Table 11.3: Members of the PointF structure.

Member Description

IsEmpty True if both X and Y are zero

X The X coordinate

Y The Y coordinate

+, - Addition and subtraction operators

==, != Equality operators

In addition, operators are defined to convert between Point and Size, Point and PointF, and
PointF and Point.

The Rectangle and RectangleF structures are similar in that they are value types
representing rectangles, and differ in that Rectangle uses integer coordinates, whereas
RectangleF uses floats.

Note

Rectangles are always aligned along the X and Y axes. If you want to
rotate rectangles, you need to investigate the Drawing2D functionality.

Tables 11.4, 11.5, and 11.6 summarize the main members of the Rectangle classes.

Table 11.4: Members of the Rectangle structure.

Member Description

Table 11.4: Members of the Rectangle structure.

Member Description

IsEmpty True if both X and Y are zero

X, Y The X and Y coordinates of the top-left corner

Top, Left,
Bottom, Right

The coordinates of the top, left, bottom, and right of the rectangle

Width, Height The width and height of the rectangle

Location Gets or sets the coordinates of the top-left corner

Size A Size that represents the height and width of the rectangle

Contains True if this rectangle contains a given rectangle or point

Equals True if this point contains the same coordinates as another

FromLTRB Creates a rectangle from top, left, bottom, and right values

Inflate Inflates the rectangle

Intersect Returns a rectangle representing the intersection between two
other rectangles

IntersectsWith True if this rectangle intersects another

Offset Translates this point by a specified amount

ToString Returns a string representing the rectangle

Union Returns a rectangle representing the union of two other rectangles

==, != Equality operators, operating on the size and location of rectangles

Table 11.5: Shared methods belonging to the Rectangle structure.

Method Description

Ceiling Rounds the coordinates of a RectangleF up to the nearest whole
number

Round Rounds the coordinates of a RectangleF down to the nearest
whole number

Truncate Truncates the coordinates of a RectangleF

Union Returns a rectangle representing the union of two rectangles

Table 11.6: Members of the RectangleF structure.

Member Description

IsEmpty True if both X and Y are zero

X, Y The X and Y coordinates of the top-left corner

Top, Left, Bottom, Right The coordinates of the top, left, bottom, and right of
the rectangle

Width, Height The width and height of the rectangle

Table 11.6: Members of the RectangleF structure.

Member Description

Location Gets or sets the coordinates of the top-left corner

Size A Size that represents the height and width of the
rectangle

Contains True if this rectangle contains a given rectangle or
point

Equals True if this point contains the same coordinates as
another

FromLTRB Creates a rectangle from top, left, bottom, and right
values

Inflate Inflates the rectangle

Intersect Returns a rectangle representing the intersection
between two other rectangles

IntersectsWith True if this rectangle intersects another

Offset Translates this point by a specified amount

ToString Returns a string representing the rectangle

==, != Equality operators, operating on the size and
location of rectangles

In addition, operators are defined to convert between Rectangle and RectangleF in both
directions. RectangleF has two shared methods—Truncate() and Union().

The Size and SizeF structures represent the size of a rectangular region by a pair of Width
and Height properties. As before, Size uses integer coordinates, whereas SizeF uses floats.

Tables 11.7, 11.8, and 11.9 summarize the main members of the Size classes.

Table 11.7: Members of the Size structure.

Member Description

Height The height of a rectangular region

Width The width of a rectangular region

IsEmpty True if both height and width are zero

Equals Tests whether the height and width of two Sizes are equal

ToString Returns a string representing the Size

+, - Addition and subtraction operators

==, != Equality operators

Table 11.8: Shared methods belonging to the Size structure.

Method Description

Ceiling Rounds the coordinates of a SizeF up to the nearest whole number

Table 11.8: Shared methods belonging to the Size structure.

Method Description

Round Rounds the coordinates of a SizeF down to the nearest whole
number

Truncate Truncates the coordinates of a SizeF

Table 11.9: Members of the SizeF structure.

Member Description

Height The height of a rectangular region

Width The width of a rectangular region

IsEmpty True if both Height and Width are zero

Equals Tests whether the height and width of two Sizes are equal

ToPointF Returns a Point representing the SizeF

ToSize Returns a Size representing the SizeF

ToString Returns a string representing the SizeF

+, - Addition and subtraction operators

==, != Equality operators

In addition, conversions are supplied for Size to SizeF, SizeF to Size, Size to Point, and
SizeF to PointF.

Color

Colors are represented in .NET by the Color structure. Color values are denoted by four 32-
bit integer values—Alpha, Red, Green, and Blue—where Alpha is the transparency and the
other three represent the red, green, and blue components of the color.

.NET provides a large number of standard colors, which are defined as part of the
System.Drawing.KnownColor enumeration. This is a very large enumeration with well over
100 members, and its values tend to fall into two groups:
§ Colors representing items on the screen, such as WindowText, Control, and

ActiveCaption. These may be altered if the user uses the Control Panel to change the
desktop color scheme.

§ Fixed RGB (red, green, blue) values representing named standard colors, such as
Azure, Cornflower, LightGray, and MediumPurple.

The Color structure also possesses a number of static methods that will return color objects
corresponding to the known colors, so that you can easily use them within API calls:

' Create a one pixel wide pen having the color Coral
Dim pen2 As New Pen(System.Drawing.Color.Coral, 1)

Tables 11.10 and 11.11 list the important properties and methods of the Color class.

Table 11.10: Properties of the Color class.

Property Description

Table 11.10: Properties of the Color class.

Property Description

A Gets the “alpha” (transparency) component of the color

R, G, B Gets the red, green, and blue components of the color

IsEmpty True if this color is uninitialized

IsKnownColor True if this color corresponds to a predefined color

IsNamedColor True if this color has a name

Name Returns the name of this color

Table 11.11: Methods of the Color class.

Method Description

Equals Tests for equivalence of color objects

FromARGB,
FromKnownColor,
FromName

Creates a color object

GetBrightness,
GetHue, GetSaturation

Gets the Hue, Saturation, Brightness (HSB) components of a
color

ToARGB Returns the value of this color as Alpha, Red, Green, and
Blue components

ToKnownColor Returns the KnownColor member corresponding to a color

==, != Tests for equality of colors

Note that the Color class doesn’t have constructors, but instead uses static factory methods
to return references to color objects, like this:

Dim c2 As Color = Color.FromKnownColor(KnownColor.Chartreuse)

The GetBrightness(), GetHue(), and GetSaturation() methods return values that
correspond to the color’s coordinates in the alternative HSB representation space.

Drawing Implements: Pens and Brushes

The Pen and Brush classes encapsulate the line thickness, line styles, fill patterns, and
colors that you use for drawing on the screen. Pens are used for drawing the outlines of
shapes, lines, and curves, and brushes are used for filling areas.

Pens

Pens have two basic properties: a width and a fill color or pattern. The pattern is provided by
one of the Brush classes, so that you can arrange to draw lines with a texture or gradient fill
if desired. Table 11.12 lists the most important properties of the Pen class.

Table 11.12: Important properties of the Pen class.

Property Description

Table 11.12: Important properties of the Pen class.

Property Description

Alignment Gets or sets the alignment of objects drawn with this pen
(see Table 11.13)

Brush Gets or sets the Brush associated with this pen

Color Gets or sets the color of this pen

DashPattern Gets or sets the array of custom dashes and spaces used
for drawing

DashStyle Represents the dash style used for this line

LineJoin Represents the way in which lines join

MiterLimit Represents the limit of the thickness of the join on a mitered
corner

PenType Specifies the kind of pen

StartCap, EndCap Represents the start and end caps of the line

Transform A matrix describing how objects drawn with this pen will be
transformed

Width Gets or sets the width of the pen in pixels

The alignment describes how the pen is aligned relative to the lines that it draws, and this
alignment is represented by a member of the PenAlignment enumeration as shown in Table
11.13.

Table 11.13: The PenAlignment enumeration.

Member Description

Center The pen is aligned with the center of the line being drawn.

Inset The pen is aligned with the inside of the line being drawn.

Left The pen is aligned to the left of the line being drawn.

Outset The pen is aligned with the outside of the line being drawn.

Right The pen is aligned to the right of the line being drawn.

The dash style sets the style of dashed lines drawn with this pen, and the style is
represented by a member of the DashStyle enumeration as shown in Table 11.14.

Table 11.14: The DashStyle enumeration.

Member Description

Custom Specifies a user-defined custom line style

Dash Specifies a dashed line

DashDot Specifies a line with a repeating dash-dot pattern

DashDotDot Specifies a line with a repeating dash-dot-dot

Table 11.14: The DashStyle enumeration.

Member Description

Dot Specifies a dotted line

Solid Specifies a solid line (the default value)

Note

Unlike in previous versions of GDI, dashed and dotted lines can be more
than one pixel thick.

Line caps are represented by members of the LineCap enumeration and specify how the
ends of lines will be drawn. End cap types include round, square, triangular, and custom.
The PenType will be one of the members of the System.Drawing.Drawing2D.PenType
enumeration and can take one of the values shown in Table 11.15. Table 11.16 lists the
most important methods of the Pen class.

Table 11.15: The PenType enumeration.

Member Description

HatchFill The pen will be filled with a hatch pattern.

LinearGradient The pen will be filled with a linear gradient fill.

PathGradient The pen will be filled with a path gradient fill.

SolidColor The pen will be filled with a solid color (default).

TextureFill The pen will be filled with a bitmap texture.

Table 11.16: Methods of the Pen class.

Method Description

Clone Creates an exact copy of this pen

Dispose Releases the Windows resources used for this pen

MultiplyTransform Multiplies the transform matrix by another matrix

ResetTransform Resets the transform matrix to identity

RotateTransform Rotates the local geometric transform

ScaleTransform Scales the local geometric transform

SetLineCap Sets the start and end linecaps for this pen

TranslateTransform Translates the local geometric transform

As you’ll notice, most of these methods are concerned with the transforms used with this
pen. See the Immediate Solutions section “Using Transforms” for more information about
transforms and how they work.

The Dispose() method frees up the underlying system resources used by this pen object.
Although these will be freed up for you when the pen object is garbage collected or when the
program finishes, it is a good idea to call Dispose() once you’ve finished with the pen object
in order to make efficient use of system resources.

Using Standard Pens

If you want to get a pen to represent one of the standard colors, use the
System.Drawing.Pens class. This class contains static methods for each of the predefined
colors in the Color class and saves you from having to create a pen and set its color
manually:

' Methods in Pens return a reference to a new Pen

Dim p As Pen = Pens.AliceBlue

If you want a pen to represent one of the standard colors used for UI elements, use the
System.Drawing.SystemPens class. This class contains static methods for each of the
predefined UI colors. Here’s an example of how SystemPens is used:

' Get a pen initialized with the color used for highlighted text
Dim p As Pen = SystemPens.HighlightText

Table 11.17 lists all the colors that can be retrieved using the properties of the SystemPens
class.

Table 11.17: Properties of the SystemPens class.

Property Description

ActiveCaptionText The color of text on the title bar of an active window

Control The color of a button or other control

ControlDark The colors of the shadowed parts of 3D elements

ControlDarkDark The colors of the very darkest parts of 3D elements

ControlLight The color of the highlights of 3D elements

ControlLightLight The color of the very lightest parts of 3D elements

ControlText The color of text on controls

GrayText The color of disabled text

Highlight The color of a highlighted background

HighlightText The color of highlighted text

InactiveCaptionText The color of text on the title bar of an inactive window

InfoText The color of text on a tooltip

MenuText The color of text on a menu

WindowFrame The color of a window frame

WindowText The color of a window’s text

Brushes

Classes derived from the abstract base class Brush are used for filling the interiors of
shapes. Two brush classes are defined in System.Drawing:
§ SolidBrush—Defines a brush made up of a single color
§ TextureBrush—Defines a brush that fills the interior of a shape with an image

The SolidBrush class has very few members, and all the significant members are
summarized in Table 11.18. TextureBrush is slightly more complex, and its properties and
methods are described in Tables 11.19 and 11.20. See the Immediate Solutions section
“Using Transforms” for more information about transforms and how they work.

Table 11.18: Important members of the SolidBrush class.

Member Description

SolidBrush Constructor that takes a color

Clone Creates an exact copy of this brush

Dispose Releases the Windows resources used for this brush

Color Gets or sets the color of this brush

OnSystemColorChanged Called when a system color changes

Table 11.19: Properties of the TextureBrush class.

Property Description

TextureBrush Constructors that take Image and Rectangle arguments

Image Gets the image associated with this brush

Transform Gets or sets the matrix representing the transformation of this
brush

WrapMode Represents the wrapping mode for the image

Table 11.20: Methods of the TextureBrush class.

Method Description

Clone Creates an exact copy of this TextureBrush

MultiplyTransform Multiplies the transform matrix by another matrix

ResetTransform Resets the transform matrix to identity

RotateTransform Rotates the local geometric transform

ScaleTransform Scales the local geometric transform

TranslateTransform Translates the local geometric transform

Using Standard Brushes

If you want a brush to represent one of the standard colors, use the
System.Drawing.Brushes class. This class contains static methods for each of the
predefined colors in the Color class:

' Create a solid brush initialized with Azure

Dim br As Brush = Brushes.Azure

If you want a brush to represent one of the standard colors used for UI elements, use the
System.Drawing.SystemBrushes class. This class contains static methods for each of the
predefined UI colors. Here’s an example of how you can use SystemBrushes:

' Get a brush initialized with the color used for the desktop

Dim br1 As Brush = SystemBrushes.Desktop

Table 11.21 lists all the colors that can be retrieved using the properties of the
SystemBrushes class.

Table 11.21: Properties of the SystemBrushes class.

Property Description

ActiveBorder The color of the border of an active window

ActiveCaption The color of the title bar of an active window

ActiveCaptionText The color of text on the title bar of an active window

AppWorkspace The color of text on the title bar of an active window

Control The surface color of 3D elements

ControlDark The shadow color of 3D elements

ControlDarkDark The darkest color of 3D elements

ControlLight The highlight color of 3D elements

ControlLightLight The lightest color of 3D elements

ControlText The color of text on controls

Desktop The color of the desktop

Highlight The color of a highlighted background

HighlightText The color of highlighted text

HotTrack The color used to represent hot-tracking

InactiveBorder The color of the border of an inactive window

InactiveCaption The color of the title bar of an inactive window

Info The background color of a tooltip

Menu The background color of menus

ScrollBar The background color of a scrollbar

Window The color of a window background

WindowText The color of text on controls

More Advanced Brushes

The System.Drawing.Drawing2D class defines three more advanced brush types:
§ HatchBrush—Defines a foreground color, a background color, and a hatch pattern.

Hatch styles are chosen from the HatchStyle enumeration.
§ LinearGradientBrush—Fills using a gradient between two or more colors. This class

can use both standard two-color gradients as well as custom user-defined multicolor
gradients.

§ PathGradientBrush—Shades between the center of a path and the outside boundary.
Various properties, such as Blend, can be used to affect where the gradient starts and
how fast the color changes.

Details of the Graphics Class

As previously mentioned, the Graphics class represents a device-independent abstraction
of a drawing surface, and it implements a large number of methods that allow you to draw
basic shapes.

Note that the Graphics class does not have any constructors; instead, you use a form’s
CreateGraphics() method to get a reference to a graphics object. This is because a
graphics object is actually a .NET wrapper around a Windows system object, which is called
a device context. CreateGraphics() tells GDI+ to obtain a graphics object for you:

' Get a Graphics object
Dim g As Graphics = CreateGraphics()

' Use it

g.DrawLine(pen1, 10, 10, 100, 100)

If you call CreateGraphics() within a function, the underlying system object will be released
when the graphics object is garbage collected. In order to release it earlier, you can call the
Dispose() method on the graphics object to release its resources. You obviously have to
make sure that you don’t try to use the graphics object after you have called Dispose().

Note

It is good practice to hold onto Graphics objects for as short a time as
possible, because the supply of underlying system objects may be limited
on some systems.

Once you have obtained a graphics object, you can use it to draw on the form. Table 11.22
lists the main methods of the Graphics class involved with producing graphical output.
Other, nondrawing methods of the Graphics class are shown in Table 11.23.

Table 11.22: Drawing methods in the Graphics class.

Method Description

Clear Fills the drawing surface with a given color

DrawArc Draws an arc from an ellipse

DrawBezier, DrawBeziers Draws one or more Bezier curves

DrawCurve, DrawClosedCurve Draws open or closed curves specified by an array
of points

DrawEllipse Draws an ellipse

DrawIcon Draws an icon

DrawImage Draws an image

DrawLine , DrawLines Draws one or more lines

DrawPie Draws a pie chart segment

DrawPolygon Draws a polygon

DrawRectangle,
DrawRectangles

Draws one or more rectangles

DrawString Draws a string

FillClosedCurve Fills a closed curve specified by an array of points

Table 11.22: Drawing methods in the Graphics class.

Method Description

FillEllipse Draws a filled ellipse

FillPie Draws a filled pie chart segment

FillPolygon Draws a filled polygon

FillRectangle, FillRectangles Draws one or more filled rectangles

Table 11.23: Other methods in the Graphics class.

Method Description

Dispose Releases the Windows resources used by this graphics
object

Finalize Called when this graphics object is garbage collected

Flush Forces immediate execution of all graphics commands in the
queue

FromHdc Creates a graphics object from a Windows HDC handle

FromHwnd Creates a graphics object from a Windows HWND

FromImage Creates a graphics object from an image object

GetHdc Returns the Windows HDC representing this graphics object

GetNearestColor Gets the color nearest to a given color

IsVisible Indicates whether a point or rectangle is contained in the clip
region for this graphics object

MeasureString Returns the Size of a string drawn in a given font

SetClip, ResetClip Sets or resets the clip region associated with this graphics
object

ResetTransform Resets the graphics transform associated with this graphics
object

RotateTransform Adds a rotation to the graphics transform associated with this
graphics object

Save , Restore Saves or restores the state of a graphics object

ScaleTransform Adds scaling to the graphics transform associated with this
graphics object

TransformPoints Uses the current transform to transform an array of points

TranslateTransform Adds a translation to the graphics transform associated with
this graphics object

The properties of the Graphics class provide a link to the capabilities of the actual display
device, and you can use them to set and query those capabilities. The most useful
properties are listed in Table 11.24.

Table 11.24: Properties in the Graphics class.

Property Description

CompositingMode Determines whether pixels from an image will overwrite
(CompositingMode.SourceCopy) or are combined with
the background pixels (CompositingMode.SourceOver)

CompositingQuality Represents the quality level used for compositing

DpiX The horizontal resolution in pixels supported by the
graphics object

DpiY The vertical resolution in pixels supported by the graphics
object

InterpolationMode Specifies how data is interpolated between points

PageScale The scale between world units and page units

PageUnit The unit of measure used for page coordinates

SmoothingMode The rendering quality (default, antialiased, high speed, high
quality)

Transform The current graphics transform

The PageUnit property determines the units to be used for drawing, as it takes one of the
values from the GraphicsUnit enumeration. If you do not set this property, it will take the
default value of GraphicsUnit.Pixel, and the drawing will be done in pixels. Table 11.25 lists
the other units that you can choose.

Table 11.25: Members of the GraphicsUnit enumeration.

Member Unit of Measurement

Display 1/75 of an inch

Document Document units (1/300 inch)

Inch Inches

Millimeter Millimeters

Pixel Pixels

Point Printers points (1/72 inch)

World User-defined world coordinates

Here’s how you would draw lines using millimeters as the units:

' Create a Graphics object
Dim gr As Graphics = CreateGraphics()

' Set the units to millimeters

gr.PageUnit = GraphicsUnit.Millimeters

' Draw a line using a black pen
gr.DrawLine(Pens.Black, 10, 10, 20, 20)

' Dispose of the Graphics object

gr.Dispose()

The advantage of using units in this way is that the graphics you draw will come out the
same size—within device limitations—on whatever screen or printer is used. If you use
pixels, your graphics will come out a very different size on a 72 dots-per-inch screen than on
a 600 dots-per-inch printer.

Graphics Objects and Painting

You have seen how to obtain a graphics object and create graphical output, but you will find
that it is very easy to “lose” the graphics that you have drawn on the form. Whenever
anything causes your form window to need updating—such as minimizing it to the taskbar
and then restoring it or placing another window on top of it and then removing it—you will
find that .NET restores the “system” parts of the window, such as the caption, scrollbars, and
controls, but you are responsible for redrawing your graphics.

In order to handle the redrawing, forms get sent a paint event when it is necessary for them
to repaint their content, and it is in the OnPaint() function that you should redraw the content
of your form:

Protected Overrides Sub OnPaint(ByVal e As _

 System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Get the repaint graphics object

 Dim gr As Graphics = e.Graphics

 ' Handle repainting here
End Sub

This function gets passed a PaintEventArgs object that contains two useful properties. The
first is ClipRectangle, which tells you the area of the form that needs repainting, and the
second is Graphics, which returns a reference to the graphics object you should use for
painting.

Once you have a Graphics reference, you can use it to redraw your graphics on the screen;
this does, of course, presuppose that you have saved the details that you have to redraw!
Note that you should not call Dispose() in this graphics object. You did not create it, so it is
not up to you to dispose of it!

Fonts

Text fonts in .NET are represented by two classes in the System.Drawing namespace,
Font and FontFamily. A font object defines a set of characteristics for text display including
the font face (the font name), text size, and style attributes. A FontFamily object represents
a group of type faces that are similar but may differ in style. The style attributes for fonts are
defined in the FontStyle enumeration (see Table 11.26) and will be familiar to anyone who
has used a word processor.

Table 11.26: The members of the FontStyle enumeration.

Member Description

Table 11.26: The members of the FontStyle enumeration.

Member Description

Bold Represents bold text

Italic Represents italic text

Regular Represents regular text

Strikeout Represents text with a line through it

Underline Represents underlined text

Table 11.27 lists all the properties of the Font class; note that they are read-only because a
font object cannot have its characteristics changed once it has been created. Table 11.28
lists the important methods of this class. Note that there are several that let you convert
between Windows API font structures and GDI+ fonts.

Table 11.27: Properties of the Font class.

Property Description

Bold True if this font is bold (read-only)

FontFamily Returns the FontFamily for this font (read-only)

Height Returns the height of this font (read-only)

Italic True if this font is italic (read-only)

Name Returns the name of this font (read-only)

Size Returns the size of this font (read-only)

SizeInPoints Returns the size of this font in points (read-only)

Strikeout True if this font is struck-out (read-only)

Style Returns a FontStyle object describing the style of this font (read-
only)

Underline True if this font is underlined (read-only)

Unit Returns the graphics units used for this font (read-only)

Table 11.28: Important methods of the Font class.

Method Description

Clone Creates an exact copy of this font object

Dispose Releases Windows resources for this font

FromHdc Creates a font from a Windows HDC

GetHeight Gets the height of a font in a specified Graphics context

ToHfont, FromHfont Converts to or from a Windows HFONT

ToLogFont, FromLogFont Converts to or from a Windows LOGFONT structure

Handling Images

The System.Drawing.Image class is an abstract base class that has two derived classes:
Bitmap and Metafile. The first of these will be familiar to all GUI programmers, so I’ll
describe it in more detail later in this section.

The second class, Metafile, represents a Windows metafile, which provides a way of storing
the commands used to create an image rather than the pixel and color information. This
means that although you “display” a bitmap, you speak of “replaying” a metafile to
regenerate the image, and it makes metafiles very suitable for use where you may need to
display an image on different devices or use different aspect ratios or color depths. Because
metafiles are rather specialized, I won’t discuss them any further.

The Image Class

The base for all the image classes is Image , which provides a number of useful methods
and properties. Because this is an abstract class, you cannot create an image object, but
you can use Image references to refer to objects of derived types. Table 11.29 lists some of
the most important properties of the Image class. The pixel format describes how pixels are
formatted—such as 8 or 24 color bits per pixel—and these formats are described by the
PixelFormat enumeration.

Table 11.29: Important properties of the Image class.

Property Description

Height The height of the image

HorizontalResolution The horizontal resolution of the image

Palette Gets or sets the palette used for this image

PhysicalDimension Gets a SizeF object describing the dimensions of this image

PixelFormat The pixel format

RawFormat Gets the format of this image

Size Returns a Size object describing the dimensions of the
image

VerticalResolution The vertical resolution of the image

Width The width of the image

Image formats are described by the ImageFormat class, which has its members listed in
Table 11.30. Table 11.31 lists the most important methods of the Image class.

Table 11.30: Important members of the ImageFormat class.

Member Description

BMP Specifies Windows bitmap format

EMF Specifies the Enhanced Windows Metafile format

GIF Specifies the GIF image format

Icon Specifies the WIndows icon image format

JPEG Specifies the JPEG image format

PNG Specifies the W3C PNG image format

Table 11.30: Important members of the ImageFormat class.

Member Description

TIFF Specifies the TIFF file format

WMF Specifies the Windows Metafile format

Table 11.31: Important methods of the Image class.

Method Description

FromFile Creates an image from data in a file

FromHBITMAP Creates an image from a Windows HBITMAP

FromStream Creates an image from a stream

GetBounds Returns the bounds of the image

GetThumbnailImage Returns a thumbnail of this image

Save Save the image to a file

The FromFile() and Save() methods will read and write images in a variety of formats as
defined by the ImageFormat enumeration described earlier. The following line of code
shows how to save a bitmap as a JEPG file:

myImage.Save("thisdir/thisfile.jpeg", PixelFormat.JPEG);

The Bitmap Class

Bitmap objects are used to represent images. They can be initialized with data from a file or
created in memory and built up manually.

The Bitmap class contains a dozen constructors that let you create and initialize bitmaps in
a variety of ways:
§ From an existing image object
§ From a stream or a file
§ From a resource
§ As a blank bitmap of a specified size

The following code fragment shows how to create a Bitmap from an image in a JPEG file:

Dim bm As New Bitmap("c:\temp\image.jpg")

The Bitmap class has no properties except those it inherits from Image . Table 11.32 lists
the important methods of the Bitmap class.

Table 11.32: Important methods of the Bitmap class.

Method Description

Clone Creates an exact copy of a Bitmap

FromHicon Creates a Bitmap from a copy of a Windows HICON

FromResource Creates a Bitmap from a resource

GetHbitmap Returns a Windows HBITMAP representing this object

Table 11.32: Important methods of the Bitmap class.

Method Description

GetHicon Returns a Windows HICON representing this object

GetPixel, SetPixel Gets or sets a pixel in the Bitmap

MakeTransparent Makes a color transparent for this Bitmap

SetResolution Sets the resolution for the Bitmap

The Icon Class

The Icon class is used to represent icons, which are small bitmaps used by the system to
represent objects and can be thought of as bitmaps with a transparent background.

Icon objects can be created in a number of ways, such as:
§ From a stream
§ From a Win32 icon handle (an HICON)
§ From a file
§ From a resource
§ From another icon object

Icons can be converted to bitmaps using the ToBitmap() method.

The SystemIcons class represents a set of icons that are provided by the system and can
be used in any application. These icons are provided as a set of properties as listed in Table
11.33. Many of these properties will be familiar from their use in message boxes and other
system dialogs.

Table 11.33: Properties of the SystemIcons class.

Property Description

Application The default application icon

Asterisk The system asterisk icon

Error The system error icon

Exclamation The system exclamation icon

Hand The system hand icon

Information The system information icon

Question The system question icon

Warning The system warning icon

WinLogo The Windows logo

Printing

The System.Drawing.Printing namespace provides the printing functionality for GDI+. In
this section, I’ll provide an overview of how the printing process operates and the main
classes involved. In the Immediate Solutions, I’ll show how you can get a document to a
printer in a practical way.

Table 11.34 lists the main classes involved in the printing process.

Table 11.34: The main classes involved in the printing process.

Class Description

PrintDocument Sends output to a printer, making use of a PrintController to
control the process

PageSettings Represents a set of page settings, such as paper size

PrinterSettings Represents a set of printer settings, such as the printer name
and duplex capability

PrintController An object responsible for outputting individual pages, which
calls a PrintPage event handler

PrintPageEventArgs An object passed to a PrintPage event handler that passes
information to and from a PrintController

The PrintDocument Class

PrintDocument is the main class involved in printing, and a PrintDocument object
represents a reusable object that sends output to a printer. The following outline describes
the sequence of events involved in using a PrintDocument:

1. Create the PrintDocument object.
2. Set its parameters, including the printer to be used and page and printer settings, but

not the document details.
3. Register a callback function to be called for each page.
4. Call the Print() function to start printing.

This object is reusable in that you do not associate the details of what is to be printed with
the PrintDocument object; therefore, you can call Print() more than once in order to print
more than one document.

The PrintDocument class has four properties as summarized in Table 11.35.

Table 11.35: The four properties of the PrintDocument class.

Property Description

DefaultPageSettings Gets or sets a PageSettings object that represents the
default page settings, such as paper size and orientation

DocumentName Gets or sets a string representing the document name

PrintController Gets or sets a PrintController object that controls the
printing process

PrinterSettings Gets or sets a PrinterSettings object that controls how and
where the document is printed

The Settings Classes

The printer settings—such as color options and available paper sizes—are represented by a
PrinterSettings object. The page parameters—such as paper size and orientation—are
represented by a PageSettings object. The PageSettings object is based on the printer

settings because it is only reasonable to, for instance, offer landscape orientation or color
printing if the printer supports it.

These classes have many properties and few commonly used methods. Tables 11.36 and
11.37 list the most useful properties of each class. Note especially the InstalledPrinter
property, which returns a list of all installed printers.

Table 11.36: Important properties of the PrinterSettings class.

Property Description

CanDuplex True if the printer can do double-sided printing

Collate True if the document is to be collated

Copies Gets or sets the number of copies to print

DefaultPageSettings Gets the default PageSettings object for this printer

Duplex True if the printer is set for duplex printing

FromPage , ToPage Indicates the first and last pages to print

InstalledPrinters Returns a list of the names of all installed printers

IsDefaultPrinter True if the PrinterName property matches the default printer

IsValid True if the PrinterName property matches an installed printer

MaximumCopies Get the maximum number of copies supported by the printer

PaperSizes Returns the collection of paper sizes supported by the printer

PaperSources Returns the collection of paper source trays available on the
printer

PrinterName Represents the printer name

PrinterResolutions Represents the range of resolutions supported by the printer

PrintToFile True if the output is being sent to a file

SupportsColor True if the printer supports color printing

Table 11.37: Important properties of the PageSettings class.

Property Description

Bounds Returns a rectangle representing the bounds of the page.

Color True if the page is printing in color.

Landscape A Boolean value representing the landscape setting.

Margins The margins for this page in hundredths of an inch. The
default margin is one inch on all sides.

PaperSize The current paper size as a PaperSize object.

PaperSource The current paper source, for example,
PaperSourceKind.Upper for the upper bin.

PrinterResolution The X and Y resolution of the printer.

PrinterSettings The PrinterSettings object associated with this

Table 11.37: Important properties of the PageSettings class.

Property Description

PageSettings object.

The PrintController Class

PrintDocument uses a PrintController object to perform the printing process.
PrintController is an abstract class that defines the standard methods needed for printing
documents, and it is extended by three classes in System.Drawing.Printing:
§ StandardPrintController—Used for normal printer output
§ PreviewPrintController—Used for print preview
§ PrintControllerWithStatusDialog—Has a status dialog to show how the printing job is

progressing

There are only four methods that these classes need to implement, which are listed in Table
11.38.

Table 11.38: Methods of the PrintController class.

Method Description

OnStartPrint Called at the start of the print process

OnStartPage Called at the start of each page

OnEndPage Called at the end of each page

OnEndPrint Called at the end of the print process

Printing Events

Every time a page is printed, the PrintDocument will raise a PrintPage event, and you need
to provide a handler to do the actual printing. The number of PrintPage events that are
raised will depend on how the PrintDocument has been set up; there are two main
configurations.

One configuration uses the FromPage and ToPage properties of the PrinterSettings object
to specify the range of pages to be printed. This determines how many times PrintPage
events are raised. This works well if you know in advance how many pages need to be
printed, but often you don’t. In this case, it is up to the handler to indicate whether printing is
to continue or not; how it does this is covered later in this section.

A print handler function looks like this:

Private Sub myPagePrintFunction(ByVal sender As Object, _
 ByVal ev As PrintPageEventArgs)

 ' Print the page
End Sub

The first argument is common to all the event handlers and tells you who originated the
event. In the case of printing, this information is not usually of interest. The second argument
is more interesting because it lets you communicate with the PrintController object in
charge of the printing process. Properties of the PrintPageEventArgs object let the

PrintController pass information to you, and you can also use properties to tell the
PrintController how to proceed after a particular page has printed.

As an example, if you are printing from page to page, you use the HasMorePages property
of the PrintPageEventArgs object to tell the PrintController whether to continue:

Private Sub myPagePrintFunction(ByVal sender As Object, _
 ByVal ev As PrintPageEventArgs)

 ' Print the page
 ev.HasMorePages = true ' if more to print, or false if we're done

End Sub

Table 11.39 lists the properties of the PrintPageEventArgs class.

Table 11.39: Properties of the PrintPageEventArgs class.

Property Description

Cancel Set to true if the job should be cancelled.

Graphics Gets the graphics object associated with this page. Use this
for output.

HasMorePages Set to true if another page should be printed.

MarginBounds Returns the rectangle of the page inside the margin.

PageBounds Indicates the rectangle enclosing the entire page.

PageSettings Retrieves the PageSettings object for the current page.

How Do I Draw on a Form?

In order to perform any drawing on a form, you need to use the CreateGraphics() member
of the Form class to get a graphics object:

' Get a Graphics object
Dim g As Graphics = CreateGraphics()

CreateGraphics() obtains a graphics object from the system and returns a reference to it.
Using a method rather than a constructor to obtain graphics objects hides the precise way in
which these objects are obtained, cached, and/or recycled.

In earlier versions of Windows, there was a limited supply of the underlying system device
context objects. Therefore, it was very important that you did not hold on to these any longer
than absolutely necessary, or else you could severely impact system performance. These
limitations do not exist in later versions of Windows, but you are still strongly advised to hold
on to graphics objects for the shortest possible time.

If you create a graphics object using GetGraphics(), it will release its resources when it gets
garbage collected or when the application finishes. In order to make good use of resources,
call the object’s Dispose() method to release the underlying device context object when you
are finished with it.

Using Members of the Graphics Class

Once you have obtained a graphics object, you can use the members of the class to draw on
the form. The Graphics class has a number of methods that allow you to perform simple 2D
output, including:
§ Lines
§ Rectangles
§ Polygons
§ Arcs, ellipses, and pie chart segments
§ Bèzier curves
§ Open and closed curves
§ Strings
§ Icons and images

A summary of the drawing functions is provided in Table 11.22. The following code example
shows how these functions are used:

' Draw a line from (10,10) to (100,100)
g.DrawLine(pen1, 10, 10, 100, 100)

' Draw a filled rectangle, size 50 by 50, at (200,200)

g.FillRectangle(brush1, 200, 200, 50, 50)

There are several important points to note from these lines of code. All drawing takes place
through the graphics object, so that all drawing methods are part of the Graphics class.
Pens and brushes are used to define the drawing properties for the current operation: Pens
are used where outlines are being drawn, and brushes are used when shapes are being
filled. See the Immediate Solution section “Working with Pens and Brushes” for details on
how to set up and use these objects.

Note

Unlike in earlier versions of Windows, the pen or brush is included in every
function call rather than being selected into a device context.

Coordinates are specified in pixels, with the origin at the top left of the form. You can choose
from a number of coordinate systems by setting the PageUnit property of the graphics
object to one of the values in the GraphicsUnit enumeration, as shown in Table 11.25.

Here’s an example showing how to set the units so that coordinates are specified in
millimeters:

Dim g As Graphics = GetGraphics()

' Set up to draw in millimeters
g.PageUnit = GraphicsUnit.Millimeter

' Draw a line from (10,10) to (100,100)

g.DrawLine(pen1, 10, 10, 100, 100)

If you want to use another custom coordinate system, you’ll have to use transforms, which
are described in the Immediate Solution “Using Transforms.” You’ll also need to use
transforms if you want to draw ellipses, rectangles, or other shapes that are not aligned
along the X and Y axes.

Related solutions: Found on page:

How Do I Create a Windows
Forms Application?

402

Related solutions: Found on page:

How Can I Create a New Form
and Display It?

406

Working with Colors

Colors are represented by the System.Drawing.Color structure, and a color is defined by
four components. The “Alpha” component represents the transparency, whereas the actual
color itself is represented by red, green, and blue values. All these components are
represented by integers in the range 0–255.

A large number of predefined colors—more than 120—are provided as properties of the
Color class, and you can use these directly in API calls and when creating pens and
brushes. The following code shows how you can use a standard color and find its
components:

' Define a Color as RosyBrown

Dim myColor As Color = Color.RosyBrown

' Print out its components
Console.WriteLine("R={0}, G={1}, B={2}, A={3}", _

 myColor.R, myColor.G, myColor.B, myColor.A)

Executing this code gives the following output:

R=188, G=143, B=143, A=255

An Alpha value of zero means complete transparency, and 255 means no transparency, so
this color is as “solid” as possible.

The “known colors” are also provided as members of an enumeration, KnownColor, which
is used in several API calls. As well as named colors, this enumeration also contains entries
for system colors, such as the colors of buttons and window text.

Note that you cannot modify the color components using the R, G, B, and A properties.
Once created, colors are effectively read-only, and you can only modify color values by
creating a new one. The various overrides of the FromARGB() method let you create a color
from a set of components. So, I could create a new color based on RosyBrown, like this:

' Define a Color as RosyBrown
Dim myColor As Color = Color.RosyBrown

' Create a new color based on RosyBrown, with alpha=255

Dim myNewColor As Color = Color.FromARGB(255, myColor.R+10, _
 myColor.G-20, myColor.B+40)

You can also create colors by using a reference to the KnownColor enumeration:

' Create a color representing the color of title bars on
' active windows

Dim myKnownColor As Color = _

 Color.FromKnownColor(KnownColor.ActiveCaption)

The alpha components of colors provide you with some interesting graphic effects. In Figure
11.1, all three lines have full Alpha values of 255, so there is no transparency. In Figure
11.2, the horizontal line is the last one drawn, and its Alpha value has been set to 125, so it
has a significant degree of transparency.

Figure 11.1: Lines with Alpha=255.

Figure 11.2: The horizontal line has an Alpha component of 125.

Here’s the code for drawing the transparent line:

' Create a color based on Plum, with Alpha=125
Dim ctr As Color = Color.FromARGB(125, Color.Plum)

' Create a 10-pixel wide pen and draw the line

Dim pen6 As New Pen(ctr, 10)
g.DrawLine(pen6, 75, 125, 225, 125)

Converting Colors

The ColorTranslator class provides several methods for converting to and from other color
types used in Windows programs, such as:
§ Win32 colors represented as integers
§ HTML colors represented as strings
§ OLE colors represented as integers

Working with Pens and Brushes

The Pen class lets you create objects that are used to draw lines and outlines, and have
properties such as colors, thickness, and line styles. A Pen reference is passed as a
parameter to all drawing functions that involve drawing lines. The Brush class performs the
same function for those drawing functions that involve filling shapes.

Creating and Using Pens

Pens have three fundamental properties—color, width, and line style. Four constructors are
provided to let you create pens in a variety of ways:

§ From a color with a default width of 1.0
§ From a color and a width
§ From a brush with a default width of 1.0
§ From a brush and a width

Initializing a pen from a brush means copying the color attribute from the brush. The
following code shows how to create pens of various types:

' A black pen, default width of one pixel

Dim pen1 As New Pen(Color.Black)

' A red pen, width of two pixels
Dim pen2 As New Pen(Color.Red, 2)

' A pen initialized from a brush, width of ten pixels

Dim pen3 As New Pen(myBrush, 10)

It is also possible to create pens representing standard system colors using the
Drawing.Pens class, which has one property for each of the standard colors:

' Create a one-pixel wide lime green pen

Dim spen As Pen = Pens.LimeGreen

Pens also have a Color property that lets you get or set the color of the pen. Line styles are
set using the DashStyle property, which in turn uses members of the DashStyle
enumeration. Consult Table 11.14 for all the possible members of this enumeration. Figure
11.3 shows two lines drawn with Dash and Dot styles.

Figure 11.3: Pens showing the Dash and Dot DashStyle properties.

Here’s the code that produces those lines:

' Create a dashed pen 5 pixels wide, and draw a line

Dim pen4 As New Pen(c2, 5)
pen4.DashStyle = Drawing.Drawing2D.DashStyle.Dash

g.DrawLine(pen4, 100, 100, 150, 150)

' Create a dotted pen 3 pixels wide, and draw a line
Dim pen5 As New Pen(Color.Goldenrod, 3)

pen5.DashStyle = Drawing.Drawing2D.DashStyle.Dot
g.DrawLine(pen5, 200, 100, 175, 150)

The DashPattern property lets you define custom line styles by providing an array that gives
the sizes of each dash and space. Here’s an example:

' Create an array of sizes
Dim patt(5) As Single

patt(0) = 0.5
patt(1) = 1

patt(2) = 1.5
patt(3) = 2

patt(4) = 2.5

' Create a 4-pixel wide pen and set its DashPattern
Dim pattPen As New Pen(Color.Blue, 4)

pattPen.DashPattern = patt

g.DrawLine(pattPen, 75, 125, 225, 125)

Note that the sizes of the dashes and spaces are relative to the width of the pen. Figure 11.4
shows the output from this code.

Figure 11.4: A custom dashed pen.

Before moving on to brushes, let me briefly mention end caps, which determine what lines
look like at their start and end. For very narrow lines, end caps normally don’t matter, but as
lines get thicker the style of the end points becomes more noticeable, and you may not want
the default straight-cut termination. The Pen class defines the StartCap and EndCap
properties, which let you select values from the LineCap enumeration that determines how
the line ends are drawn. Figure 11.5 shows a line with a round start cap and a triangular end
cap.

Figure 11.5: A pen with a round start cap and triangular end cap.

Here’s the code to set up and use that pen:

' Create a medium purple pen
Dim c2 As Color = Color.FromKnownColor(KnownColor.MediumPurple)

Dim pen3 As New Pen(c2, 10)

' Set the end caps
pen3.StartCap = Drawing.Drawing2D.LineCap.Round

pen3.EndCap = Drawing.Drawing2D.LineCap.Triangle

' Draw a line

g.DrawLine(pen3, 140, 20, 180, 60)

Creating and Using Brushes

The System.Drawing namespace defines an abstract base class called Brush, together
with two concrete brush classes, SolidBrush and TextureBrush. As you might expect, a
SolidBrush paints using a solid color, whereas TextureBrush paints using a texture
supplied as an image.

SolidBrush is a very simple class: It uses a simple constructor that takes a color as an
argument and a Color property, which lets you get or set the color of the brush:

Dim br1 As New Brush(Color.DarkGoldenRod)

g.FillRectangle(br1, 100, 10, 100, 100)

TextureBrush is slightly more complex because you need to set up the Image that is going
to be used for the texture and control how it is going to be used. Here’s an example showing
how to set up and use the small bitmap shown in Figure 11.6 in a TextureBrush.

Figure 11.6: A bitmap for use in a TextureBrush.

You can use this bitmap as follows:

' Create the Graphics object
Dim g As Graphics = CreateGraphics()

Try

 ' Open the bitmap - edit the path for your own
 ' filename!

 Dim bm As Bitmap = Bitmap.FromFile("c:\dev\data.bmp")

 ' Create the TextureBrush
 Dim tbr As New TextureBrush(bm)

 ' Use it to fill a rectangle

 g.FillRectangle(tbr, 50, 50, 100, 100)
Catch ex As Exception

 MessageBox.Show(ex.ToString, "Error", MessageBoxButtons.OK, _
 MessageBoxIcon.Exclamation)

End Try

Note how I’ve enclosed the code—especially the creation of the bitmap—in a Try block, as
this provides a chance to trap errors, such as a bad file name. Figure 11.7 shows the result
of running this code.

Figure 11.7: A rectangle filled with a TextureBrush.

More Advanced Brushes

The System.Drawing.Drawing2D namespace defines three extra brush classes:
§ HatchBrush—Fills using one of a fixed set of hatch patterns
§ LinearGradientBrush—Fills with a gradient fill
§ PathGradientBrush—Can interpolate along a path

I’ll briefly discuss the use of the first two brush classes in the list. A HatchBrush is
constructed from a hatch pattern, a foreground color, and a background color. You can
construct a HatchBrush like this:

Dim hbr1 As New HatchBrush(HatchStyle.Vertical, _
 Color.ForestGreen, Color.Honeydew)

You can see the results of using all six possible hatch patterns (Vertical, Horizontal,
ForwardDiagonal, BackwardDiagonal, Cross, and DiagonalCross) in Figure 11.8.

Figure 11.8: The six hatch patterns used by HatchBrush.

To construct a LinearGradientBrush, you specify two points and two colors, and the color
at each point is interpolated. Here’s an example showing how to create a
LinearGradientBrush:

Dim lbr As New LinearGradientBrush(New PointF(50, 50), _

 New PointF(200, 200), Color.Black, Color.White)

The reference points are given as (50,50) for black and (200,200) for white; all points in
between will have their values interpolated. Figure 11.9 shows the result of running this
code.

Figure 11.9: A LinearGradientBrush filling a rectangle.

Using Transforms

Transforms are a powerful feature of GDI+ that enable you to get some impressive effects.
In fact, transforms form the basis of many 2D and 3D graphics packages. An understanding
of how they work and what they do is essential if you want to produce professional graphics.
In GDI+, transforms can be applied to graphics objects, to pens, and to brushes.

This isn’t the place for a full tutorial in graphics transforms, but I’ll present enough
information to get you started. The basic idea is that you take coordinates and transform
them before display, using combinations of scaling, rotation, and translation. As a simple
example, suppose you take the point (10,10) and apply a translation of (10,20) to it; this
means that you add 10 to the X coordinate and 20 to the Y coordinate, giving an output of
(20,30). The same transform could be applied to a rectangle and would have the effect of
shifting all four corners of the rectangle by 10 in X and 20 in Y.

The following code example shows transforms in use. I create a TextureBrush and use
transforms to show how they affect the way the texture is painted onto the screen. I start with
some simple code for creating a TextureBrush from an image and use it to paint a
rectangle:

Dim bm As Bitmap = Bitmap.FromFile("c:\dev\data.bmp")

' Create the TextureBrush

Dim tbr As New TextureBrush(bm)

' Use it to fill a rectangle
g.FillRectangle(tbr, 50, 50, 100, 100)

The image produced by this code is shown in Figure 11.7 (in the previous solution). I then
add a transform to rotate the brush by 45 degrees:

' Create the TextureBrush and rotate it
Dim tbr As New TextureBrush(bm)

tbr.RotateTransform(45)

' Use it to fill a rectangle

g.FillRectangle(tbr, 50, 50, 100, 100)

The output is shown in Figure 11.10. You can see that the fill pattern has been rotated by 45
degrees.

Figure 11.10: Using a transform to rotate a brush.

You can do exactly the same thing to introduce scaling and translation. If you want to apply
more than one transformation you can, but you need to be aware that the order in which you
apply the transforms matters. A minute’s thought will enable you to figure out that rotating
something about the origin by 45 degrees and then translating it by 20 units in X is not the
same as translating it by 20 units and then rotating by 45 degrees about the origin!

You can see this difference quite clearly in Figures 11.11 and 11.12, which apply a 45-
degree rotation before and after a 2x scaling in X.

Figure 11.11: Applying rotation and then scaling to a brush.

Figure 11.12: Applying scaling and then rotation to a brush.

Representing Transforms

This section provides an introduction to the math involved in transforms.

Homogeneous transforms in 2D are represented by an equation like this:

P' = P M

where P is the original point, P’ is the transformed point, and M is a 3-by-3 transformation
matrix. The elements in the transformation matrix govern the amount of translation, scaling,
and/or rotation that will be applied to the point. As an example, translation fills in two of the
elements in the matrix:

 1 0 0

 0 1 0
 Tx Ty 1

Tx and Ty are the amounts of translation required in the X and Y directions, respectively.

In order to make the matrix multiplication work correctly, points are represented by
homogeneous coordinates, which are vectors of the form:

 x
 y

 1

Multiplying the transformation matrix and the point matrix together gives you the resulting
vector:

 x + Tx

 y + Ty
 1

For completeness, scaling fills in two diagonal elements of the matrix:

 Sx 0 0

 0 Sy 0
 1 0 1

Sx and Sy are the scaling factors required in the X and Y directions, respectively.

The rotation matrix looks like this:

 cos θ sin θ 0

 -sin θ cos θ 0

 0 0 1

where θ is the angle of rotation in radians.

How Do I Handle Repainting?

Whenever a form needs repainting, it gets sent a paint event. These paint events may arise
because .NET has determined that part or all of your form needs repainting, or it may arise
from a call to Invalidate(), which can be used to cause a form to repaint from within code.

Paint events are handled by the OnPaint() function, which you should override in the form
class:

Protected Overrides Sub OnPaint(ByVal e _

 As System.Windows.Forms.PaintEventArgs)
 ' Handle repainting here

End Sub

You get passed a PaintEventArgs object, which has two properties of interest:
§ ClipRectangle—Defines the area of the form that needs repainting. You can use this if

you have a complex form and don’t want to waste your time updating areas that don’t
need it.

§ Graphics—Provides a reference to a graphics object that you must use for painting to
the screen. It is important that you don’t create your own Graphics reference for
painting, and that you don’t try to call Dispose() on the one you are given.

The following code example shows how to display a string on the screen that will get
redrawn every time the form needs to be updated:

Protected Overrides Sub OnPaint(ByVal e _
 As System.Window.Forms.PaintEventArgs)

 ' Get the Graphics object for repainting
 Dim gr As Graphics = e.Graphics

 ' Strings need a font and a brush, so create a gradient

 ' brush and a suitable font
 Dim lb As New LinearGradientBrush(New Point(10, 20), _

 New Point(200, 20), Color.Blue, Color.Red)
 Dim fnt As New Font("Verdana", 45, FontStyle.Regular)

 gr.DrawString("My String", fnt, lb, 10, 10)

End Sub

Figure 11.13 shows the result of running this code.

Figure 11.13: A string being displayed on a form using the OnPaint() handler.

Working with Fonts

A basic knowledge of fonts is essential if you are going to output any text using GDI+. In this
section, I cover the basic information you need to know in order to start working with fonts on
forms.

There are two classes that represent fonts in GDI+. Font represents an individual font and
consists of a font face name, a size, and style attributes. An example of a font would be
Times Roman, 12 point bold. FontFamily represents families of related fonts, which have
similar characteristics but differ in details. An example of a FontFamily would be the
Franklin Gothic collection of fonts, which includes Franklin Gothic Book, Franklin Gothic
Medium, Franklin Gothic Heavy, and several others.

Creating Fonts

Creating fonts is simple, but there are no fewer than nine constructors that let you build fonts
by specifying combinations of the following attributes:
§ Font family, either by name or by providing a FontFamily object
§ Font size
§ Style attributes
§ Another existing font

Here’s an example showing how to create a font:

' Create a font from a family name, a size and a style

Dim fnt As New Font("Verdana", 25, FontStyle.Regular)

The font styles will be familiar to anyone who has used a word processor. They are all
members of the FontStyle enumeration and are listed in Table 11.26. By default, the size is
in printer’s points (1/72 in.), but several constructor overloads take a final parameter that lets
you specify the units in which you are specifying the size:

' Create a font with a size in millimeters
Dim fnt As New Font("Verdana", 25, FontStyle.Regular, _

 GraphicsUnit.Millimeters)

The members of the GraphicsUnit enumeration are listed in Table 11.25. The Size property
tells you the size of the font in the current units, and the SizeInPoints property tells you the
size in points if you are using different units.

Drawing Text

The GDI+ DrawString() function is used to draw text on a form. There are several overloads
for this function, but they all require four elements:
§ The string to be drawn.
§ The font object to be used.
§ The brush to be used for filling the font.
§ The place at which the text should be drawn, which may be given as X and Y

coordinates, as a point, or as a bounding rectangle.

Fonts are drawn as outlines filled by a brush, which you specify. You must provide a brush to
fill the font, or you will receive a runtime error. Here’s a simple example showing how to
create and use a font to draw a string:

' Create a solid black brush

Dim br As SolidBrush = Brushes.Blue

' Create a 25 point font
Dim fnt As New Font("Tahoma", 25, FontStyle.Regular)

' Draw the string at 50,50

gr.DrawString("Another", fnt, br, 50, 50)

The result is shown in Figure 11.14. Although it may not be easy to see from the black and
white illustration, strings drawn in this way are only filled and do not have an outline.

Figure 11.14: Displaying a string filled with a SolidBrush.

Drawing String Outlines

In order to draw outlines around characters, you have to use a graphics path. The
GraphicsPath class is one of the basic building blocks of GDI+ and simply holds a list of
points and their connections. They are used to draw the outlines of shapes, fill the interiors
of shapes, and create clipping regions. All the standard drawing functions, such as
DrawRectangle(), create paths, and you can also create your own. I will not go into detail
about paths, but if you are interested, refer to the documentation for the
System.Drawing.Drawing2D.GraphicsPath class.

In order to display the outline of a string, you need to create a GraphicsPath, and then add
the string to it, which has the effect of adding the points and connections that represent the
letters to the path. Once you have added the string to the path, you can use the DrawPath()
and FillPath() methods to either draw the outline or fill the interior of the path. Here’s an
example showing how to add a string to a path and then draw its outline:

' Create a GraphicsPath

Dim gp As New GraphicsPath(FillMode.Winding)

' Add a string to the path
gp.AddString("Path", New FontFamily("Impact"), FontStyle.Regular, _

 40, New PointF(30, 70), New StringFormat())

' Draw the path using a black pen
graphicsObject.DrawPath(Pens.Black, gp)

The argument to the GraphicsPath constructor determines the way in which shapes will be
filled. Because I am not concerned with filling shapes, it doesn’t matter which value I select.
The AddString() method has a number of parameters: the string to be displayed, followed
by the FontFamily to be used, the style, the size, and the position. The final parameter is a
StringFormat object, which can be used to hold special formatting information, such as
“right to left rendering.” No special StringFormat is needed here, so I simply create a default
object. Figure 11.15 shows the result.

Figure 11.15: A string displayed as an outline using a path.

Drawing Rotated Text

If you want to draw rotated text—or any other shape, for that matter—you need to set the
transform of the graphics object you are using before drawing. If you are unfamiliar with
graphics transforms, read the Immediate Solution section “Using Transforms” before
continuing.

Drawing rotated text is simply a matter of setting a rotation before drawing. The following
example displays a string as an outline and draws it rotated by 45 degrees:

' Create a GraphicsPath

Dim gp As New GraphicsPath(FillMode.Winding)

' Add a string to the path
gp.AddString("Path", New FontFamily("Impact"), FontStyle.Regular, _

 40, New PointF(120, 70), New StringFormat())

' Rotate by 45 degrees
gr.RotateTransform(45)

' Draw the path

gr.DrawPath(Pens.Black, gp)

' Reset the transform
gr.ResetTransform()

The result of this code is shown in Figure 11.16. Note that rotations are cumulative, so
calling RotateTransform(15) and then RotateTransform(30) will rotate by 45 degrees. The
ResetTransform() method clears the current transform.

Figure 11.16: A string displayed as an outline and rotated.

Enumerating Fonts

If you want to find out which fonts are available to you, use the InstalledFont-Collection
class from the System.Drawing.Text namespace. The following code fragment shows how
to create an InstalledFontCollection object and use its Families property to enumerate all
the available fonts:

Imports System.Drawing

Imports System.Drawing.Text

Module Module1

 Sub Main()
 ' Create the InstalledFontCollection

 Dim ifc As New InstalledFontCollection()

 Dim ff As FontFamily

 ' Enumerate over each member of the collection
 For Each ff in ifc.Families

 Console.WriteLine(ff)
 Next

 End Sub
End Module

The following are the first few lines of output displayed on my system:

[FontFamily: name=Century Gothic]
[FontFamily: name=Comic Sans MS]

[FontFamily: name=Courier New]
[FontFamily: name=Garamond]

[FontFamily: name=Georgia]

Note

The InstalledFontCollection class appears to return only True Type and
Open Type fonts.

How Do I Display Images on a Form?

Images can be displayed using the DrawImage() member of the Graphics class. This
function has 30 overrides, which provide you with a lot of ways to specify how you want the
image to be drawn. All of them, however, require the same basic information:
§ The image to be drawn
§ The position at which it is to be drawn
§ The space in which the image is to be drawn

Here’s how to display a JPEG file on a form in response to a button click:

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 ' Create a Graphics object to draw on
 Dim g As Graphics = CreateGraphics()

 Try

 ' Create the bitmap
 Dim bm As New Bitmap("c:\dev\animals09.jpg")

 ' Draw it on the form

 g.DrawImage(bm, 10, 10)
 Catch ex As Exception

 MessageBox.Show(ex.ToString(), "Error", _
 MessageBoxButtons.OK, MessageBoxIcon.IconHand)

 End Try
End Sub

The first task is to create a graphics object to draw on. Once that has been done, I create a
new bitmap object, passing over the name of the file as the only parameter. It is a good idea
to enclose this operation in a Try block in case there is anything wrong with the file name or
the file itself. I then use DrawImage() to draw the entire image on the screen at position
(10,10) and implement a Catch handler that will display a MessageBox if anything goes
wrong with opening or displaying the file. Figure 11.17 shows the result of running this code.

Figure 11.17: Displaying an image on a form.

You can, of course, apply transforms to images when you plot them. If I add the following
few lines of code, I can change the image to the one shown in Figure 11.18:

Try
 ' Create the bitmap

 Dim bm As New Bitmap("c:\dev\animals09.jpg")
 ' Draw image half the size, so calculate the new

 ' height and width

 Dim ht As Integer = bm.Height * 0.5
 Dim wd As Integer = bm.Width * 0.5

 ' Translate by 100 pixels in X

 g.TranslateTransform(100, 0)

 ' Rotate by 90 degrees
 g.RotateTransform(90)

 ' Draw it half size

 g.DrawImage(bm, 10, 10, wd, ht)

 ' Reset the transform again
 g.ResetTransform()

 Catch ex As Exception
 MessageBox.Show(ex.ToString(), "Error", _

 MessageBoxButtons.OK, MessageBoxIcon.IconHand)
 End Try

Figure 11.18: Displaying a transformed image on a form.

How Do I Print?

Printing in GDI+ makes use of the classes, structures, and enumerations defined in the
System.Drawing.Printing namespace. The main classes you need to know about are listed
in Table 11.34. Remember that you’ll have to import the System.Drawing.Printing
namespace before you can do any printing.

Finding and Choosing a Printer

The InstalledPrinters property of the PrinterSettings class returns a list of strings
containing the names of all installed printers. The following code fragment shows how to use
this property to print out a list of all the printers installed on the system:

Imports System.Drawing.Printing

Module Module1

Sub Main()

 ' Create a PrinterSettings object
 Dim ps As New PrinterSettings()

 ' Get the list of installed printers

 Dim en As IEnumerator = ps.InstalledPrinters.GetEnumerator

 ' Print out all the printer names
 While en.MoveNext = True

 Console.WriteLine(en.Current)
 End While

End Sub
End Module

The InstalledPrinters property returns a collection of strings containing all the printer
names, so you can use an enumerator to iterate over the collection in the normal way.

You can also use the PrinterSettings object to find out about a printer as follows:

' Choose the first printer in the list
ps.PrinterName = ps.InstalledPrinters.Item(0)

Console.WriteLine("Set printer to {0}",
ps.InstalledPrinters.Item(0))

' See what it can do…
If ps.IsDefaultPrinter = True Then

 Console.Write(" default")
Else

 Console.Write(" not default")
End If

If ps.SupportsColor = True Then

 Console.Write(", supports color")
Else

 Console.Write(", monochrome")

End If

If ps.CanDuplex = True Then
 Console.Write(", double-sided")

Else
 Console.Write(", single-sided")

End If

Console.WriteLine()

This code selects the first printer from the list of installed printers and sets it as the
PrinterName property of the PrinterSettings object. This means that any reference to
printer properties will now refer to the named printer. Once the name has been set, the
IsDefaultPrinter, SupportsColor, and CanDuplex properties are used to determine what
the printer can do.

Setting Up a Print Document

All printing is done through PrintDocument objects, so the first task you need to undertake
is to create a PrintDocument and connect it to a printer:

' Create the PrintDocument object
Dim pd As New PrintDocument()

' Set its properties, especially the printer name

pd.PrinterSettings.PrinterName = "LaserJet"

Once you have created the PrintDocument, you can set its properties. There are four
properties that you might want to use:
§ DefaultPageSettings—Gives you access to the page settings
§ DocumentName—Represents the name of this document and may be used in printer

progress or cancel dialogs, or in spooler messages
§ PrintController—Represents the controller object responsible for actually doing the

printing
§ PrinterSettings—Represents the printer settings this PrintDocument is using

You can see an example of the PrinterSettings in use in the preceding code. Note that you
do not associate the document to be printed with the PrintDocument object: The idea is that
once you have set up a PrintDocument object, you can use it to print more than one
document.

The DefaultPageSettings and PrinterSettings objects give you access to objects that let
you control the output. You can find details of the properties of these classes in Tables 11.36
and 11.37.

Creating a Print Handler

The actual printing process is carried out on behalf of the PrintDocument by a
PrintController object. If you don’t create another PrintController yourself, the
PrintDocument will work with a StandardPrintController that is suitable for default output

to most printers. If you want to manually specify print preview, you can create a
PreviewPrintController object that handles printing to print preview windows.

PrintController classes have four methods:
§ StartPrint—Called at the start of the job
§ StartPage—Called at the start of each page
§ EndPage—Called at the end of each page
§ EndPrint—Called at the end of the job

You don’t have to worry about what these methods do unless you want to customize the
printing process by deriving your own PrintController class.

You interact with the printing process by responding to the four events that are fired by the
PrintController:
§ BeginPrint—Raised at the start of the job before the first page prints
§ EndPage—Raised after the last page has been printed
§ PrintPage—Raised in order to print each page
§ QueryPageSettings—Raised immediately before each PrintPage event in case you

want to change the page settings

Immediately after each call to StartPage() the PrintController raises a PrintPage event,
and you need to provide a handler for this event in order to do the printing for the current
page. The following code shows how you would define a handler routine and attach it to the
PrintController:

' Create the PrintDocument object

Dim pd As New PrintDocument()

' Add the page callback method
AddHandler pd.PrintPage, AddressOf myPagePrintFunction

' Set its properties, especially the printer name

pd.PrinterSettings.PrinterName = "LaserJet"

' Print
pd.Print()

…

' Define the handler function
Private Sub myPagePrintFunction(ByVal sender As Object, _

 ByVal ev As PrintPageEventArgs)
 ' Print the page

End Sub

I then add the event handler for the PrintPage event using the AddHandler statement.
Once that is done, Print() tells the PrintController to start the print process, and it will call
myPrintPageFunction() every time a page needs to be printed.

The PrintPageEventArgs object passed to the handler provides information about the page
to be printed and can also be used to communicate back to the PrintController. The most
important properties that are passed via the PrintPageEventArgs object are:
§ Graphics—Gives you a reference to the Graphics you should use for all output. This

Graphics object is mapped onto the printer.
§ MarginBounds—Tells you the portion of the current page that is inside the margins.
§ PageBounds—Tells you the size of the current page.
§ PageSettings—Gives you access to the page settings.

You can also communicate back to the PrintController using two properties:
§ Cancel—Set to true if the job should be cancelled
§ HasMorePages—Set to true if the job still has more pages to print

The HasMorePages property is useful when you don’t know exactly how many pages you
need to print. If there is another page, set it to true before returning, and the PrintController
will raise the PrintPage event once more.

Printing Multipage Documents

If you are printing a form and everything fits on one sheet of paper, the task is simple. You
only need one call to the page print handler, and you simply draw everything to the
PagePrintEventArgs.Graphics object as you would to the screen.

If your output does not fit on one sheet of paper, you’ll have to calculate what is to be printed
in each call to the handler. Just how you do this depends on the form of your document. The
following complete example shows how to print the contents of a text file:

Imports System.IO
Imports System.Drawing

Imports System.Drawing.Printing

Module Module1
 Public Class PrintFile

 ' Font to use for printing
 Private fnt As Font

 Private str As StreamReader
 ' Page counter

 Private pageCount As Integer

 ' Handler function
 Private Sub myPagePrintFunction(ByVal sender As Object, _

 ByVal ev As PrintPageEventArgs)
 pageCount = pageCount + 1

 Console.WriteLine(ÇPage: {0}È, pageCount)

 Dim s As String
 Dim linesPerPage As Single = 0

 Dim yPosition As Single = 0

 Dim count As Integer = 0

 Dim leftMargin As Single = ev.MarginBounds.Left
 Dim topMargin As Single = ev.MarginBounds.Top

 ' Calculate the lines per page based on the page height and the

 ' font size
 linesPerPage = ev.MarginBounds.Height / _

 fnt.GetHeight(ev.Graphics)
 Console.WriteLine(" lines/page: {0}", linesPerPage)

 ' Read the file, printing each line

 While True
 ' Have we filled the page?

 If count >= linesPerPage Then
 Console.WriteLine("Going to end of page")

 Goto endOfPage
 End If

 ' Get a line

 s = str.ReadLine
 Console.WriteLine("Line {0} <{1}>", count, s)

 ' If ReadLine returns null, we're done
 If s Is Nothing Then

 Console.WriteLine("Going to end of file")
 Goto endOfFile

 End If

 ' Output the line
 yPosition = topMargin + (count * fnt.GetHeight(ev.Graphics))

 ev.Graphics.DrawString(s, fnt, Brushes.Black, leftMargin, _
 yPosition, New StringFormat())

 count = count + 1
 End While

endOfPage:
 ev.HasMorePages = True

 Return
endOfFile:

 ev.HasMorePages = False
 Return

 End Sub

 ' Function to do the printing
 Public Sub DoPrint(ByVal s As String)

 Console.WriteLine("Printing…")
 Try

 str = New StreamReader(s)
 Try

 ' Create a font to use
 fnt = New Font("Arial", 10)

 ' Create the PrintDocument
 Dim pd As New PrintDocument()

 ' Assume we're using the default printer
 ' Add the handler

 AddHandler pd.PrintPage, AddressOf __
 Me.myPagePrintFunction

 ' And print
 pd.Print()

 Finally
 str.Close()

 End Try
 Catch e As Exception

 Console.WriteLine(e.ToString())
 End Try

 End Sub
 End Class

 Sub Main()

 ' Create an object and do the printing
 Dim pd As New PrintFile()

 pd.DoPrint("c:\temp\value.txt")

 End Sub

End Module

The program starts by importing the three namespaces needed by the example—
System.Drawing for the GDI+ functionality, System.Drawing.Printing for the printing, and
System.IO for the file I/O.

The printing process is encapsulated in the PrintFile class, which has several members:

§ fnt—A font object that represents the font to be used for printing. This is created at the
start of the job and used each time a page is printed.

§ str—A StreamReader object that handles reading the text file.
§ pageCount—An integer that holds the current page number.
§ DoPrint()—Opens the file, creates a PrintDocument object, and starts the printing

process.
§ myPrintPageFunction()—Handles the PrintPage event and does the printing for each

page.

The Main() function simply creates a PrintFile object and calls DoPrint() with a suitable file
name. DoPrint() creates a StreamReader to read the file, and then creates a font for
printing. Finally, a PrintDocument object is created, and my event handler,
myPrintPageFunction(), is added to its list of event handlers using AddHandler.

Note

If you are not familiar with AddHandler or the notion of events, consult
Chapter 2.

Notice how the code uses nested exceptions and a Finally block. The outer Try…Catch
block catches all exceptions and prints an error message to the console. The inner Try uses
a Finally clause to ensure that the StreamReader will be closed if an exception occurs
during the printing process. Because I have not provided a Catch clause in the inner Try,
any exceptions will automatically be propagated back to the outer block for processing.

Most of the work is done in the event handler, myPrintPageFunction(), which starts by
printing the current page number to the console. I then extract the left and top margin
information from the PrintPageEventArgs argument and calculate the number of lines per
page by dividing the height of the printable area by the height of the current font.

Tip

In production code, assuming that the font isn’t going to change partway
through the printing process, the number of lines per page could be calculated
once at the start of the job.

The output of each page is done by a While loop, which first checks to see if enough lines
have been printed. If they haven’t, another line is obtained from the StreamReader using its
ReadLine() function. When the StreamReader gets to the end of the input stream,
ReadLine() will return a null reference (Nothing in VB). I use this reference to tell the
PrintDocument that there is nothing more to print.

The PrintDocument object will keep calling the event handler as long as the
HasMorePages member of the PrintPageEventArgs object is set to true. By setting it to
false, I ensure that no more pages will be printed.

If I get a string back from the StreamReader, it gets printed with DrawString() using
properties from the Font and PrintPageEventArgs objects to ensure that it is printed in the
correct place. The loop continues to print pages until the maximum is reached, and then the
function exits, setting HasMorePages to true in order to tell the PrintDocument that there is
more to print.

Chapter 12: Other Namespaces
By Julian Templeman

The Other .NET Namespaces

This chapter introduces a number of namespaces that don’t naturally fit into any of the other
chapters, but which are nevertheless useful in their own right. I will introduce you to six:
§ System.Threading—Used to write multithreaded code
§ System.Globalization—Used to provide culture-specific information
§ System.SystemProcess—Used for writing Windows service applications
§ System.Diagnostics—Used to monitor application execution and write to the Event

log
§ System.Text—Contains (among other things) classes to represent character

encodings and classes for converting characters to and from bytes
§ System.Text.RegularExpression—Used to access the .NET regular expression

engine in order to use regular expressions in code

Threading

The System.Threading namespace provides you with classes and interfaces for writing
multithreaded code. Threading is a very complex topic and writing good multithreaded code
is not a trivial task, so this section does not intend to teach you how to design and write
multithreaded code, but only provides an overview of how threading works and how you
might use it.

What Are Threads?

Every programmer is used to the idea of multitasking, where two or more programs execute
simultaneously. Unless you’re running on a multiprocessor machine, these programs aren’t
really running simultaneously. Instead, the processor is giving each program a time-slice of a
few milliseconds and is switching between running programs to give the illusion of
simultaneity. Modern operating systems, such as Windows 2000, schedule program
execution intelligently, so that if one program is blocked waiting for input, other programs get
more chances to execute.

The same idea of parallel execution can be applied within programs as well as between
them, and at its simplest, a thread can be thought of as a function that is executing at the
same time as the rest of the program. Function calls are normally synchronous, so that the
calling function blocks until the call returns. When you start a thread, the call returns
immediately, and the thread function is then running in parallel with the calling code, using
the same time-slicing mechanism that the operating system uses for multitasking programs.

Every process consists of at least one thread that the main function runs on, and if it doesn’t
create any more, it is a single-threaded program. If the process creates more threads, it
becomes multithreaded, and there are then several issues that you need to think about,
which I’ll cover in the following sections.

Every thread within a process has data associated with it, including its own program stack
and set of register contents, known as the thread’s context. When the operating system
wants to switch between threads, it needs to save the context of the current thread and load
into memory the context of the thread it is going to run next. This process is called a context
switch and takes a small (but measurable) amount of time.

When Are Threads Useful?

Threads can be useful in several circumstances, and I’ll describe several of the most
common.

First, there’s the background task . Imagine that you want to put a spinning logo in the top left
corner of a form. You have a sequence of images, so you want to display each of them for a
short amount of time. How are you going to integrate this into the rest of the application? It
would be great if you could somehow set up a loop that displays the images while the rest of
the program runs. Running the image display code in a separate thread will let you do this.
Another example is background printing: If your application wants to print, you don’t want the
user to have to wait while the data is sent to the printer and the call to Print() returns. If you
do the printing in a separate thread, it can execute in the background and not impact the rest
of the application.

Second, there’s performing a task more than once. Suppose you have an image-processing
program that takes an image and performs some operation on it. You could split the image
into four parts and run four copies of the image-processing routine, each of which processes
a quarter of the image. This can result in great time savings on multiprocessor machines, but
is unlikely to be very useful on single-processor machines because of the overhead of
context switching between the threads.

Third, there are those cases where using threads is a natural way to structure a program.
Consider the case of a Web or mail server, which sits on a port waiting for clients to connect.
The server can handle more than one client, so how it is going to handle the first client while
still waiting for the second one to call? This is made difficult by the fact that waiting on a port
is a blocking operation, so the server can’t easily go off and do something else. The answer
is to use a separate thread to handle each client. When a client connects, the server starts a
thread to handle the session with the client, and then loops around and waits for the next
client. In this model, the main server thread spends most of its time blocked waiting for
clients to call in, and each client is running the same code in a different thread. In addition,
talking to six clients is no more complex than talking to one, because you simply have to
start six identical threads.

Thread Synchronization

You may need to synchronize threads for two reasons: use of shared resources and timing.

Each thread has its own stack and set of registers, which means that each thread function
has its own set of local variables because local variables are declared on the stack. So local
variables in different threads cannot interfere with one another because they are created on
different stacks.

Global variables are a different matter because they belong to the process as a whole.
Therefore, they are accessible by all threads in the process. This immediately gives rise to
potential problems because its possible for two threads to access the same global variable,
resulting in data corruption. You can see how this works in Figure 12.1.

Figure 12.1: Two threads using the same global variable.

Thread A sets the value of the global variable globalX to 3. At this point, a context switch
occurs and Thread B gets to execute; it sets the value of globalX to 4. When Thread A gets
another turn; it uses the value of globalX, unaware that it has been changed by Thread B.
These errors can be very hard to fix because they often depend on timing. If, the next time
you run the program, swapping between Threads A and B doesn’t happen at exactly the
same points, the same errors may not occur.

This problem of shared resources isn’t restricted to global variables, but can occur with any
resource that is shared between threads, including files and database tables. Operating
systems that support multithreaded programs provide mechanisms that allow a thread to
claim exclusive usage of a resource for a period of time—a lock, if you like.
System.Threading provides the Mutex class, and objects can use mutexes to get exclusive
use of a resource.

Sometimes you might want other threads to have read access to a resource provided that
only one thread can write to it. The ReaderWriterLock class provides this functionality for
.NET classes.

Note

Code that is written so that it executes correctly when accessed
concurrently by multiple threads is called thread-safe code.

The second need for thread synchronization concerns timing. If it is important for one thread
to wait until another has reached some point in its operation—for example, suppose the
second thread has to prepare some data for the first thread to use—events can be used as
signals between the threads. An event is simply a flag that is set or unset and can be shared
between threads. One thread acquires the event, and one or more of the others wait for the
event to be set.

The Thread Class

The System.Threading.Thread class represents an operating system thread. Some of the
most commonly used properties and methods of this class are listed in Tables 12.1 and
12.2.

Table 12.1: Commonly used properties of the Thread class.

Property Description

CurrentPrincipal Gets or sets the thread’s current security principal

CurrentThread Gets a reference to the currently running thread

IsAlive Returns True if the thread has been started and is not dead

Table 12.1: Commonly used properties of the Thread class.

Property Description

IsBackground If true, this thread is a background thread

Name Gets or sets the name for this thread

Priority Gets or sets the priority for this thread

ThreadState Gets the state of this thread

Table 12.2: Commonly used methods of the Thread class.

Method Description

Abort Kills the thread

Interrupt Interrupts a thread that is in the WaitSleepJoin state

Join Waits for a thread to terminate

Resume Resumes a suspended thread

Sleep Sends a thread to sleep for a period

Start Starts a thread

Suspend Suspends a thread

Controlling Threads

Once a Thread object has been created and has been passed the address of a function to
execute, you call its Start() method to begin execution. The thread function executes, and
when it returns, the thread has finished executing. The underlying operating system thread is
then dead, even though the Thread object still exists. You can check the thread’s state using
the IsAlive property to see if it has died.

If you want to terminate a thread, you can call the Abort() method. You need to be careful
when calling this method, though, because it simply stops the thread dead in its tracks. In
some cases—for example, a thread that is spinning a logo at the top of a form—this won’t
matter, but in other cases, it can lead to serious problems. Because Abort() simply stops the
thread, the thread function has no chance to tidy up. If it was in the middle of updating a
database or writing a file, this could result in corrupted data.

In these cases, it is better to use some kind of flag, which the thread function checks from
time to time and can be set to indicate that it ought to exit. The “abort flag” can be a simple
Boolean variable, and when it is set, the thread function can tidy up before exiting.

The Suspend() and Resume() methods can be used to temporarily stop a thread from
executing, and then restart it again. These methods suffer from the same problem as
Abort() because the thread is suspended from outside without having any opportunity to
make sure that it has finished its current operation. Once again, if this is going to be a
problem, it is better to use a flag-driven method to request a suspension rather than simply
calling Suspend().

Sleep() is used to put a thread to sleep for a period of time—normally specified as a number
of milliseconds. This is a very useful method because a sleeping thread does not use
processor time. A sleeping thread may be interrupted—for instance, by program termination
or machine shutdown—in which case a ThreadInterruptedException will be thrown.

Note

See the Immediate Solution “Creating Windows Service Applications” for an
example of how to create and use threads in a Windows application.

Thread State and Priority

The ThreadState enumeration, listed in Table 12.3, describes the possible states a thread
can occupy.

Table 12.3: Members of the ThreadState enumeration.

Member Description

Aborted The thread has been aborted and is now dead.

AbortRequested The thread is being requested to abort.

Background The thread is being executed as a background thread.

Running The thread is running.

Stopped The thread is stopped (this value is for internal use only).

StopRequested The thread is being asked to stop (this value is for internal
use only).

Suspended The thread has been suspended.

SuspendRequested The thread has been asked to suspend.

Unstarted The thread has not yet been started.

WaitSleepJoin The thread is blocked on a call to Wait(), Sleep(), or Join().

Before the Start() method is called, a thread is Unstarted, and it then moves to a Running
state. The Pause() method puts the thread into a Suspended state, and a subsequent call
to Resume() puts it back into the Running state. The IsAlive property returns true if the
thread has been started and is not yet dead; that is, if it is in the Running, Background,
Suspended, SuspendRequested, or WaitSleepJoin states.

A foreground thread runs indefinitely, whereas a background thread terminates once the last
foreground thread has stopped. It is often useful to make threads started by your application
background threads, because they will automatically shut down when the program
terminates. You can use the IsBackground property to change the foreground or
background state of a thread.

Every thread has a priority relative to other threads in the process. By default, threads are
created with an average priority, and you can adjust the thread priority by assigning a new
value to the Thread object’s Priority property. This takes a member of the ThreadPriority
enumeration, whose values are listed in Table 12.4.

Table 12.4: Members of the ThreadPriority enumeration.

Member Description

Highest The thread has the highest priority.

AboveNormal The thread has a higher than normal priority.

Normal The thread has an average priority.

BelowNormal The thread has a lower than normal priority.

Table 12.4: Members of the ThreadPriority enumeration.

Member Description

Lowest The thread has the lowest priority.

All threads are initially created with a Normal priority. Beware of playing with thread priorities
too much. The operating system uses thread priorities to decide when to run threads, and
the algorithms used can be complex. This means that adjusting thread priorities may not
always return the results you want.

The Synchronization Classes

The System.Threading namespace contains several classes that help with thread
synchronization. The Interlocked class contains four shared thread-safe methods for
operating on variables. All four of these methods are atomic, so that they won’t be
interrupted by thread context switches:
§ Increment—Increments a variable
§ Decrement—Decrements a variable
§ Exchange—Sets a variable to a value and returns the original value
§ CompareExchange—Compares two values for equality and replaces the destination

value if they are equal

The Mutex Class

Mutex provides a simple synchronization mechanism that allows one thread to get exclusive
access to a shared resource. Threads attempt to acquire a mutex; one will achieve it, and
the others will block until the owning thread has finished and releases it.

The following skeleton code shows how a mutex might be used:

' Importing this namespace makes using classes easier

Imports System.Threading

' This Mutex is used to synchronize two threads
Dim mtx As New Mutex()

' The AcquireData method is running on one thread

Public Sub AcquireData()

 ' Try to get the Mutex
 mtx.WaitOne()

 ' Acquire the data…

 ' Release the mutex

 mtx.ReleaseMutex()
End Sub

' The UseData method is running on a second thread

Public Sub UseData()
 ' Try to get the Mutex

 mtx.WaitOne()

 ' Use the data…

 ' Release the mutex
 mtx.ReleaseMutex()

End Sub

Code in the first thread calls AcquireData(), which attempts to acquire the mutex object via
a call to WaitOne(). If the mutex is available, this call returns immediately, and the calling
thread then “owns” the mutex. The function then acquires its data. If during this time the
second thread calls UseData(), it will block at the call to WaitOne() because the mutex isn’t
available. At some point AcquireData() finishes its task and releases the mutex by calling
ReleaseMutex(). This causes the call to WaitOne() in UseData() to return, so that it can use
the data.

This process may sound simple, but there are a lot of subtle problems that can arise when
synchronizing threads in this way. What if UseData() has opened a file or used some other
resource that AcquireData() needs? It’s possible that UseData() will block waiting for
AcquireData() to release the mutex, but UseData() needs the resource that AcquireData()
has before it can complete its task and release the mutex. The result is deadlock, with both
threads blocked and unable to move forward. Designing applications so that deadlock
cannot occur can be difficult.

The SyncLock Statement in Visual Basic

The Visual Basic SyncLock statement provides an alternative to using mutexes in many
cases. It allows the programmer to synchronize a block of code on some type of object, and
only one block synchronized on a given object can execute at any given time.

Note

SyncLock is part of the Visual Basic language. Programmers working in
other .NET languages, such as C# and Visual C++, need to use the Monitor
class, described in the next section.

As an example, consider the idea of a multithreaded program that is using a single
ArrayList object to store a set of program-wide data values. Functions are available to add
data to the list, remove a value from the list, search the list for a value, and print the list. The
problem is that these functions can be called from different threads, so how can the search
and print functions be sure that the add or remove functions aren’t modifying the list at the
same time?

One approach is to use SyncLock to synchronize blocks of code on the ArrayList object, as
shown in the following code fragments:

' The Add method can run on any thread…
Public Sub Add(ByVal o As Object)

 ' Lock on the list
 SyncLock myArrayList

 myArrayList.Add(o)

 End SyncLock
End Sub

' The Print method can run on any thread as well

Public Sub Print()
 ' Lock on the list

 SyncLock myArrayList
 ' Print the list

 Dim ie As IEnumerator = myArrayList.GetEnumerator()
 While ie.MoveNext()

 Console.WriteLine(o.ToString())
 End While

 End SyncLock
End Sub

The SyncLock statements enclose blocks of code, and only one block of code can be
executed at one time. So, if the Print() function is executing, Add() will block at the start of
the SyncLock until the print has finished. In this way, Print() can be sure that other
functions aren’t modifying the list while it is being printed.

One drawback with SyncLock is that you have to be sure that you have protected every use
of the ArrayList. If you have a piece of code that manipulates the ArrayList without putting
it in a SyncLock block, you may end up with data corruption.

The Monitor Class

SyncLock is specific to Visual Basic, but the Monitor class provides a general mechanism
that can be used from any .NET language to synchronize access to objects using locks.

Every object in .NET has a lock that can be acquired by a thread. Once this lock has been
acquired—once the monitor has been entered—no other thread can acquire it until the
owning thread lets it go, or exits from the monitor. It is easy to rewrite the Add() function
from the previous example to use Monitor directly:

' The Add method can run on any thread…
Public Sub Add(ByVal o As Object)

 ' Lock on the list
 Monitor.Enter(myArrayList)

 ' Use the list

 myArrayList.Add(o)

 ' Release the monitor
 Monitor.Exit(myArrayList)

End Sub

As a general principle, you should only synchronize on private or internal objects. Using
public objects can lead to deadlocks because some object might decide to lock the object for
reasons of its own.

Monitor also includes a wait/notify mechanism that allows one thread to wait until it is told to
continue via a notification from another thread, using the Wait(), Pulse(), and PulseAll()
methods. When it is in a synchronized block, a thread can call Wait(), which effectively puts
the thread to sleep. It will wait in this state until it is woken up by another thread calling
Pulse() or PulseAll().

Globalization

The System.Globalization namespace contains a number of classes that define culture-
related information, such as:
§ Language
§ Country or region
§ Calendars in use
§ Formats for dates, currencies, and numbers
§ Sorting order for strings

Culture Information

The CultureInfo class provides culture-specific information and operations, such as printing
dates and sorting strings. You create a CultureInfo object by specifying one of the many
predefined culture identifiers as an argument, for example:

' Create a CultureInfo object for the "English-United Kingdom"
culture

Dim ci As New CultureInfo("en-GB")

' Create a CultureInfo object for the ÇItalian-ItalyÈ culture
Dim ci As New CultureInfo("it-IT")

The culture identifiers—of which there are more than 200—are specified either as
hexadecimal values or as strings consisting of the language as a two-letter lowercase
identifier plus an optional country/region as an uppercase two-digit identifier. This format lets
you distinguish, for instance, between UK English (“en-GB”) and US English (“en-US”).

Once you’ve obtained a CultureInfo object, you can use its properties and methods to find
out about the culture. Some commonly used properties of the CultureInfo class are
summarized in Table 12.5.

Table 12.5: Common properties of the CultureInfo class.

Property Description

Calendar Gets the default calendar used by the culture.

CompareInfo Gets a CompareInfo object that defines how to compare
and sort strings.

DateTimeFormat Gets a DateTimeFormat object that defines how to format
dates and times.

DisplayName Gets the culture name in the form “language

Table 12.5: Common properties of the CultureInfo class.

Property Description

(country/region)”; for example, “English (United Kingdom)”.

EnglishName Gets the same result as DisplayName.

NativeName Gets the culture name in the culture’s own language. May

not display correctly on English systems.

NumberFormat Gets a NumberFormatInfo object that defines how to
format numbers, including currencies.

TextInfo Gets a TextInfo object that defines how to format text.

Calendar Information

Calendar information is provided by the abstract Calendar class and its derived classes. The
methods of the Calendar classes are listed in Table 12.6.

Table 12.6: Methods of the Calendar class.

Method Description

AddYears, AddMonths,
AddWeeks, AddDays

Adds time values to the calendar object

AddHours,
AddMinutes,
AddSeconds,
AddMilliseconds

Adds time values to the calendar object

GetDayOfMonth Gets the day of the month as an integer

GetDayOfWeek Gets the day of the week

GetDayOfYear Gets the day of the year as an integer

GetDaysInMonth Gets the number of days in the specified month

GetDaysInYear Gets the number of days in the specified year

GetEra Gets the current era as an integer

GetHour, GetMinute,
GetSecond,
GetMillisecond

Gets time values for the current calendar object

GetMonthsInYear Gets the number of months in the specified year

GetWeekOfYear Gets the number of the week in the year

IsLeapDay,
IsLeapMonth,
IsLeapYear

True if the calendar object represents a leap day, month, or
year

ToDateTime Converts a calendar object to a DateTime

ToFourDigitYear
TwoDigitYearMax

Converts a two-digit year to a four-digit year using the
property

A calendar takes an instant in time—such as a value provided by the DateTime class—and
converts it into measures, such as days and years. A number of different world calendars
are supported:
§ The GregorianCalendar used by most of the western world
§ The HebrewCalendar
§ The Muslim HijriCalendar
§ The JapaneseCalendar, based on the reigns of Japanese emperors
§ The JulianCalendar
§ The KoreanCalendar
§ The TaiwanCalendar
§ The ThaiBuddhistCalendar

Calendar and its subclasses only have two properties: Eras and TwoDigitYearMax. The
Eras property returns an array of integers representing the numbers used to represent eras
in a calendar. A calendar can have one or more eras: for the Gregorian calendar, there are
two: BC and AD. The Japanese calendar has several because year numbering starts again
when a new emperor ascends to the throne. TwoDigitYearMax represents the last year in a
100-year range that can be represented by two digits. For example, if the value of
TwoDigitYearMax is 1977, the 100-year range is 1878 to 1977. This means that for this
calendar object, a two-digit year of “10” is interpreted as 1910, whereas a value of “88”
means 1888.

Format Information

System.Globalization defines several classes that help with locale-specific formatting
tasks, such as:
§ NumberFormatInfo—Defines how numbers are formatted and displayed
§ DateTimeFormatInfo—Defines how dates are formatted and displayed
§ TextInfo—Defines properties and behaviors specific to a writing system, in particular,

methods for converting to uppercase and lowercase

NumberFormatInfo is used to specify culture-dependent number formatting information,
such as currency symbols, decimal and group separators, how negative values are
displayed, and so on. Table 12.7 contains a selection of the 28 properties supported by this
class, so that you can get a feel for how it is used.

Table 12.7: Properties of the NumberFormatInfo class.

Property Description

CurrencyDecimalDigits The number of decimal places to use for currencies.
The default is 2.

CurrencyDecimalSeparator The string to use as the decimal point for currencies.

The default is “.” .

CurrencyGroupSeparator The string to use as the group separator for

currencies. The default is “,”.

CurrencyGroupSizes The number of digits in each group of numerals to the
left of the decimal point. The default is 3.

CurrencySymbol The string to use as the currency symbol. The default

is “$”.

NegativeSign The string to use as the negative symbol. The default

Table 12.7: Properties of the NumberFormatInfo class.

Property Description

is “-”.

NumberDecimalDigits The number of decimal places to use for numbers.
The default is 2.

NumberDecimalSeparator The string to use as the decimal point for numbers.

The default is “.” .

NumberGroupSeparator The string to use as the group separator for numbers.

The default is “,” .

NumberGroupSizes The number of digits in each group of numerals to the
left of the decimal point. The default is 3.

PercentDecimalDigits The number of decimal places to use for percentages.
The default is 2.

PercentDecimalSeparator The string to use as the decimal point for

percentages. The default is “.”.

PercentGroupSeparator The string to use as the group separator for

percentages. The default is “,”.

PercentGroupSizes The number of digits in each group of numerals to the
left of the decimal point. The default is 3.

PercentSymbol The string to use as the percent symbol. The default is

“%”.

PositiveInfinitySymbol The string that represents positive infinity. The default

is “Infinity”.

PositiveSign The string to use as the positive symbol. The default

is “+”.

NumberFormatInfo also has a number of properties that specify patterns, such as
NumberNegativePattern and CurrencyPositivePattern. These properties are writable, so
that you can choose from a number of alternatives provided for each pattern. As an
example, Table 12.8 lists the pattern values for NumberNegativePattern.

Table 12.8: Values of the NumberNegativePattern property.

Value Pattern

0 (n)

1 -n

2 - n

3 n-

4 n -

NumberFormatInfo objects are often used with the ToString() method to let you print
numbers in custom formats, for example:

Dim d As Double = -200

' Create a NumberFormatInfo and set its negative number format
Dim nf As New NumberFormatInfo()

nf.NumberNegativePattern = 0

' Print out the value
Console.WriteLine(d.ToString("N", nf)

The first argument to ToString() is a format specifier: “N” means “number,” so it uses the
NumberXxx properties of the NumberFormatInfo object passed to it to decide how to print
the value. A list of the format characters (which may be specified in upper- or lowercase) is
given in Table 12.9.

Table 12.9: Format characters associated with the NumberFormatInfo class.

Format Character Meaning

C Currency format. Uses the CurrencyXxx properties.

D Decimal format.

E Scientific exponent format.

F Fixed-point format.

G General format.

N Number format. Uses the NumberXxx properties.

R Roundtrip format, which ensures that numbers can be
converted to strings and back, returning the same number.

X Hexadecimal format.

Note

See Chapter 3 for more details on how to produce formatted output.

Windows Services

The special class of applications that were known as NT Services under Windows NT are
now known as Microsoft Windows Services.

A service is a special kind of program that runs in the background and rarely has a user
interface. Services can run regardless of who is logged on—or even if anyone is logged on
at all—and they can run under their own account rather than the account of whoever is
logged in to the machine. They can be started manually or automatically when the computer
boots, and it is possible to start, stop, pause, and resume them either from a program, by
using the Services Control Panel applet, or by using the net command from a console
window.

Services are ideal for system-level background tasks, which simply sit in the background
working away without interfering with what the logged in user is doing. Good examples of

services include print spoolers, logging services, FTP and Web servers, the process that
notices new hardware, and so on.

Interacting with Services

Services are run by the Service Control Manager (SCM). You can interact with the SCM in
several ways, including through the Control Panel, as shown in Figure 12.2, and by using
routines in the Services API from programs. The .NET Framework exposes this API through
classes in the System.ServiceProcess namespace, which allows you to write and control
classes. I’ll discuss this namespace later in this section.

Figure 12.2: The Services Control Panel applet.

The SCM keeps a list of the services it controls in the Registry, together with their properties.
To obtain more details about a service, double-click one of the entries in the right pane, and
a property dialog like the one in Figure 12.3 is displayed.

Figure 12.3: The Service Properties dialog.

The Service Properties dialog lets you customize some properties of services, such as the
name, description, and startup type. Services may have one of three startup types:
§ Automatic—The service is started automatically at boot time.
§ Manual—The service is not started at boot time and can be started later by a user or

an application.
§ Disabled—The service cannot be started by a user or an application.

All services have to interact with the SCM, so it is possible to start, stop, pause, and resume
them from the Control Panel applet or from code.

Service Process Architecture

All Windows Services share the same architecture, which is shown in diagram form in Figure
12.4.

Figure 12.4: The architecture of a Windows Service.

A service process is a normal executable, which is structured in a particular way, and it is
quite possible to write an application that can be run as a normal executable and as a
service. The executable is actually just the container for the service code in the same way
that a dynamic link library (DLL) is used to contain an ActiveX control. It is quite possible for
a service process to contain more than one logical service.

A logical service consists of four parts:
§ A process main function, which is the entry point for the process. There is only one

process main function for the service process.
§ A service main function, which is the entry point for the function. There is one service

main function for each logical service in the process; when this function returns, the
service is considered to have terminated.

§ A service handler function, which the SCM calls in order to control the service. Again,
there is one service handler function for each logical service in the process.

§ The work that the service is going to perform. This is usually implemented by starting a
separate thread to run the service; using a separate thread makes it easy for the SCM
to pause, continue, and stop the service.

Figure 12.4 shows how the SCM interacts with a service. The numbers in the diagram
denote the sequence in which events occur:

1. The SCM loads the service process, either at boot time or on demand.
2. The process main function then has a limited time to register the service main function

of each logical service with the SCM. If the process does not register the services
with the SCM within this time, the SCM aborts the startup.

3. In the same way, the service main function of each logical service has a limited time to
register its handler function; otherwise, the SCM assumes that the service isn’t going
to load.

4. Once the handler functions are registered with the SCM, the service main function can
then start the real work of the service. This is usually done by starting a separate
thread; the service main function blocks until the thread has finished running.

5. The SCM uses the handler function to pass commands to the service, and the handler
function returns status information to the SCM. The service code needs to ensure that
it keeps the SCM up-to-date with status information, or the SCM may decide that the
service has hung and terminate it.

6. The handler function can pause and resume or stop the thread on demand.

The System.ServiceProcess Namespace

All service executables tend to be based on the same skeleton code, and writing a service in
traditional C++ or C using the Windows API involves a lot of copying and pasting of
boilerplate code. The .NET Framework simplifies this greatly by providing the classes in the
System.ServiceProcess namespace, which gives you an object-oriented (OO) skeleton
that you can use to create and manipulate services.

The namespace contains four major classes:
§ ServiceBase—Used for creating custom services
§ ServiceController—Used to connect to a running or stopped service, controls it, and

gets information about it
§ ServiceInstaller and SystemProcessInstaller—Used to install services

The ServiceBase Class

As its name implies, ServiceBase is the class from which all services derive. It provides all
the basic interaction with the SCM. In order to create a service, you derive a class from
ServiceBase and override its standard methods.

Table 12.10 lists the properties of the ServiceBase class. Many of these properties are self-
explanatory. Some services may not let users or other applications control them once they
have been started. The SCM can use the CanPauseAndContinue and CanStop properties
to check the control a service will allow. Some services may want to be notified when the
system is being shut down so that they can tidy up. The CanShutdown property tells the
SCM whether it should notify the service of shutdowns.

Table 12.10: Properties of the ServiceBase class.

Property Description

AutoLog If true, reports Start, Stop, Pause , and Continue events
in the Event log.

Table 12.10: Properties of the ServiceBase class.

Property Description

CanHandlePowerEvent If true, the service can handle power status change
reports.

CanPauseAndContinue If true, the service can handle Pause and Continue
commands.

CanShutdown If true, the service should be notified when the system is
shutting down.

CanStop If true, the service can be stopped once it is started.

EventLog Gets an EventLog object that you can use to write
notifications to the Application Log.

ServiceName Gets or sets the service name.

Services don’t usually interact with the screen at all, and if they have anything to report, they
write entries in the system Event log. The AutoLog property controls whether the four
standard commands (Start, Stop, Pause , and Continue) are going to be logged
automatically, and the EventLog property gets an object you can use to write to the Event
log.

Note

See the Immediate Solution “Using the Event Log” for details on how to use
the system Event log.

Table 12.11 contains details of the methods of the ServiceBase class. Almost all of the
methods of ServiceBase are “On” methods, called in response to one or another of the
commands that the SCM sends to the service. The shared Run() method is used to load a
service into memory and create the process, although the service will not start accepting
commands until the SCM has sent it a Start command.

Table 12.11: Methods of the ServiceBase class.

Method Description

OnContinue Called when a Continue command is passed to the
service. Services are expected to override OnPause
when the CanPauseAndContinue property returns
True.

OnCustomCommand Called when a custom command is passed to the
service.

OnPause Called when a Pause command is passed to the
service. Services are expected to override OnPause
when the CanPauseAndContinue property returns
True.

OnPowerEvent Called when a PowerEvent command is passed to the
service. Services are expected to override
OnPowerEvent when the CanHandlePowerEvent
property returns True.

OnShutdown Called when a Shutdown command is passed to the
service. Services are expected to override
OnShutdown when the CanShutdown property

Table 12.11: Methods of the ServiceBase class.

Method Description

returns True.

OnStart Called when a Start command is sent to the service.

OnStop Called when a Stop command is sent to the service.
Services are expected to override OnStop when the
CanStop property returns True.

Run Provides the main entry point for a service.

The ServiceInstaller Class

ServiceInstaller is a utility class that is used to install and uninstall services that have been
derived from ServiceBase . Its main task is to write or remove the Registry keys that are
needed by the SCM, and the Install() and Uninstall() methods can be used to install and
uninstall services.

Note

See the Immediate Solutions section “Creating Windows Service
Applications” for details on how to install a service.

The ServiceController Class

The ServiceController class is effectively a link to the SCM in that it lets you connect to a
running or stopped service, manipulate it, or get information about it. As well as letting you
send all the standard commands to a service, ServiceController also lets you send custom
commands to services, a feature that isn’t available with the Control Panel applet. Table
12.12 contains details of the properties of the ServiceController class.

Table 12.12: Properties of the ServiceController class.

Property Description

CanPauseAndContinue If true, the service can handle Pause and Continue
commands

CanShutdown If true, the service should be notified when the system
is shutting down

CanStop If true, the service can be stopped once it is started

DependentServices Gets an array of ServiceController objects
representing services that depend on this one

DisplayName Gets or sets the service that this ServiceController
binds to

MachineName Gets or sets the name of the machine on which this
service is running

ServiceName Gets or sets the service that this ServiceController
binds to

ServicesDependedOn Returns an array of ServiceController objects
representing the services that the current service
depends on

Table 12.12: Properties of the ServiceController class.

Property Description

ServiceType Returns the type of service as a member of the
ServiceType enumeration

Status Returns the status of the service as one of the values
in the ServiceControllerStatus enumeration

It is quite common for services to depend on one another, so that one service starts another
and makes use of its features. The DependentServices and ServicesDependedOn
properties provide you with information on these dependency relationships.

The ServiceType may be one or more of the values shown in Table 12.13. If you want to
use more than one, the OR operator is used to combine them.

Table 12.13: The members of the ServiceType enumeration.

Member Description

Adapter A service for a hardware device that requires its own
device driver

FileSystemDriver A file system driver

InteractiveProcess A service that can communicate with the desktop

KernelDriver A kernel device driver, such as a disk driver

RecognizerDriver A type of file system driver

Win32OwnProcess A Win32 program containing one logical servi ce

Win32ShareProcess A Win32 program containing more than one logical
service

Note

Windows device drivers are also considered to be services, and they have
slightly different rules than user-written services. The services I’m
discussing in this section will always be Win32OwnProcess or
Win32ShareProcess types, and I won’t discuss device driver services in
any detail.

The service status is represented by one of the members of the ServiceControllerStatus
enumeration listed in Table 12.14. These status codes are used by services to report their
status to the SCM. The SCM insists that every service keep it regularly informed about its
status, so services send status updates to the SCM every few seconds. If too much time
elapses without getting a status update, the SCM may assume that the service has hung
and terminate it.

Table 12.14: The members of the ServiceControllerStatus enumeration.

Member Description

ContinuePending The service is starting up after a Continue request.

Paused The service is paused.

PausePending The service is preparing to pause after a Pause
request.

Table 12.14: The members of the ServiceControllerStatus enumeration.

Member Description

Running The service is running.

StartPending The service is starting up.

Stopped The service has stopped.

StopPending The service is preparing to stop in response to a Stop
request.

This fact makes it hard to debug a running service because stopping a service in the
debugger means that it won’t be sending updates to the SCM. For this reason, it is common
to run the service as a normal executable until you’re sure that the basic functionality works,
and then switch to running it as a service.

Table 12.15 contains details of the methods of the ServiceController class. The
Continue(), Pause(), Start(), and Stop() commands are used to send the appropriate
commands to the service via the SCM. ExecuteCommand() can be used to send a custom
command to a service, and WaitForStatus() can be used to wait until a service sends back
a specified status value.

Table 12.15: Methods of the ServiceController class.

Method Description

Close Disconnects the ServiceController from the service
and frees resources

Continue Sends a Continue command to a paused service

ExecuteCommand Sends a custom command to a service

GetDevices Gets a list of the device driver services available on the
local machine

GetServices Gets a list of the nondriver services on the local
machine

Pause Sends a Pause command to a running service

Refresh Refreshes all the property values

Start Sends a Start command to a service

Stop Sends a Stop command to a running service

WaitForStatus Waits for a service to reach a specified status

System.Diagnostics

As its name implies, the System.Diagnostics namespace contains classes that help you
debug and monitor applications. As well as specialized tasks such as talking to debuggers,
the namespace contains classes to help you with several particularly useful tasks:
§ Verifying correct program operation
§ Tracing program execution
§ Writing to the Event log

Using Assertions to Verify Correct Operation

Assertions have been used by C and C++ programmers for many years and are now
available in all .NET languages. An assertion takes the form of a logical expression, which is
usually coupled with an error message. The expression is evaluated at runtime: If it is True,
no action is taken, but if it is False , an assertion dialog is displayed, like the one shown in
Figure 12.5, which displays the error message and stack trace information to show you
where the problem occurred.

Figure 12.5: The dialog displayed when an assertion fails.

The idea behind assertions is this: As you’re developing a program, you get to know what
ought to be happening at various points in the code—if we’re here in the code, then this
ought to be true. For example, you may perform a database query at some point, which
always returns at least one record. You could put an assertion in the code to check this:

Trace.Assert(numberOfRecords > 0, "Number of records is not
positive")

If at any point in the future something changes and zero records are returned by the search,
the assertion will fail and you’ll get an error message. You can see that the first parameter to
the Assert() function is an expression that evaluates to a Boolean value; it can be as
complex as you like, but it must eventually evaluate to True or False . The second parameter
is the error message that is displayed if the assertion fails.

The .NET assertion dialog gives you a choice of aborting the program, running the
debugger, or continuing.

Note

You may wonder why the buttons in the assertion dialog in Figure 12.5 are
labeled Abort, Retry, and Ignore rather than Quit, Debug, and Continue. The
reason for this is that message boxes come with a preset selection of button
combinations: You can choose OK, or OK and Cancel, or any of a number
of common combinations; you see one of these combinations in Figure 12.5.
You cannot specify your own text for the buttons.

The Trace and Debug Classes

The Assert() function mentioned in the previous section is actually a member of two classes,
Trace and Debug. Rather unusually, these two classes have exactly the same properties
and methods, which are listed in Tables 12.16 and 12.17.

Table 12.16: Properties of the D ebug and Trace classes.

Property Description

AutoFlush If true, causes output buffers to be flushed after each
write

IndentLevel Represents the current indentation level for output

Table 12.16: Properties of the D ebug and Trace classes.

Property Description

IndentSize Represents the number of spaces in an indent

Listeners Gets the collection of listeners monitoring debug
output

Table 12.17: Methods of the Debug and Trace classes.

Method Description

Assert Checks a condition and displays a message if the
expression evaluates to False

Close Flushes the output buffer and closes the listeners

Fail Displays a failure message box

Flush Flushes output buffers

Indent Increases the current indent level by one

Unindent Decreases the current indent level by one

Write Writes a string to the listeners

WriteIf Writes a string to the listeners if a condition is met

WriteLine Writes a line to the listeners

WriteLineIf Writes a string to the listeners if a condition is met

What is the difference between these two classes? If you use the methods in the Debug
class, they are disabled when you create a release build, but the methods in the Trace class
are always active, so they work in both debug and release builds of your programs.

Tracing Program Operation

The four Write methods listed in Table 12.17 are used to write trace text output, but it isn’t
quite as straightforward to use them as you might think.

The Trace and Debug classes each have a Listeners property, which is a collection of
objects to which trace output is sent. You can create listeners that output to the console, to
files, or to other places, and you can have more than one listener logging trace information
at one time. See the Immediate Solution “Tracing Program Execution” for details on how to
create and use listeners with the Write methods.

In order to make tracing output more readable, the Indent() and Unindent() methods can be
used to increase and decrease the indentation applied when writing output. The number of
spaces used for each indentation is determined by the IndentSize property.

Controlling Tracing

It is useful to be able to control how much trace output is produced by your applications and
be able to change it without having to recompile the code. For this reason, trace output is
under the control of a TraceSwitch object, which is used to set the level of tracing that will
be logged. This can be done within code, but what makes it very useful is that the trace
levels can be set in an external configuration file, so you can reconfigure what will be output

without having to rebuild the application. This has obvious benefits when trying to resolve
problems with release builds.

The Event Log

The Windows Event log mechanism provides a way in which system processes and
applications can write error and status information to a central, systemwide point on
Windows 2000 and NT systems. This information can be read by humans and accessed by
programs, and it is a useful, standard way of storing log information.

The Event log is particularly useful for services, as it provides a central place for them to log
status and error information when they don’t have access to the Windows desktop. It is also
possible to connect to the Event log on a remote machine if you have sufficient access; this
can be very helpful when trying to diagnose problems with remote services.

You can access the Event log using the Event Viewer application, which on Windows 2000
lives in the Administrative Tools folder in the Control Panel. If you start the Event Viewer,
you’ll see a user interface similar to the one in Figure 12.6. Obviously the events you see
logged will be specific to your machine.

Figure 12.6: The Event Viewer application in Windows 2000.

As you can see from the figure, Windows 2000 has three default Event logs:
§ Application Log—Is the default location for logging events generated by applications.
§ Security Log—Logs security and audit information. The Security log is read-only from

applications.
§ System Log—Logs events from system processes.

Other applications and services can add their own specialized logs to the three default logs.

A log contains three types of events, each identified by their own icon:
§ Information events—Log events such as services starting up and shutting down

§ Warning events—Report noncritical problems
§ Error events—Report serious problems

Each line in the right pane of the Event Viewer represents the summary of an event,
detailing when it was logged and who originated it, among other details. If you want more
information, you can double-click one of the lines, and the full properties of the event will be
displayed in a dialog, as shown in Figure 12.7.

Figure 12.7: Event information being displayed in Windows 2000.

As well as the information displayed in the summary, this dialog displays a description
message in the middle pane, which can be as long as you want. It is also possible to log
binary information as well, which if present will be displayed in the bottom pane.

Using the Event Log from .NET

The EventLog class lets you write to or customize Windows 2000 Event logs. You can:
§ Read from existing logs
§ Create new logs
§ Write to new or existing logs
§ Create or delete event sources
§ Delete logs
§ Respond to log entries

See the Immediate Solutions section “Using the Event Log” for examples of using the
EventLog class.

The Text Namespaces

The System.Text and System.Text.RegularExpression namespaces contain a number of
useful classes, including:
§ Classes representing the ASCII, Unicode, UTF-7, and UTF-8 character encodings
§ Classes for converting blocks of characters to and from blocks of bytes
§ A class for building String objects
§ Classes that provide access to the .NET Framework regular expression engine

The Encoding Classes

A character encoding is a way of representing characters as a set of bits in memory. For
instance, there are several ways in which you can represent the character “A”. For years, the
most common was American Standard Code for Information Interchange (ASCII), which
represents each character as a 7-bit number. This meant that there were 127 possible
characters, and “A” was number 65. Obviously, 127 characters isn’t going to go very far if
you want to include the character sets of languages such as Japanese or Greek, so more
recently, Unicode has become popular. This represents each character by 16 bits, which
allows for 65,536 possible characters. In Unicode, “A” is hex 0041. ASCII and Unicode
represent two different character encodings: You can represent the letter “A” in both, but
they use different bit patterns to do so.

The Encoding class is the base class for the four character-encoding classes provided by
System.Text:
§ ASCIIEncoding—Encodes Unicode characters as single 7-bit ASCII characters
§ UnicodeEncoding—Encodes Unicode characters as two consecutive bytes
§ UTF7Encoding—Encodes Unicode characters using the UTF-7 encoding
§ UTF8Encoding—Encodes Unicode characters using the UTF-8 encoding

The StringBuilder Class

If you look at the documentation for the String class, you’ll see that String “represents an
immutable string of characters.” In other words, once a String has been created, its content
cannot be changed. The String class contains several methods that appear to change the
content of a String—such as Insert(), Replace(), and ToLower()—but on closer
observation, you’ll find that they all return a new String on which the appropriate changes
have been made.

Why are Strings immutable? One reason is that some operations can be implemented more
efficiently if you know that the content is not going to change. A more important reason is
that constant strings don’t have to be thread safe: If the content of the string can’t change, it
doesn’t matter how many threads are using the object at once. This means that although you
can make changes to Strings, it is at the expense of continually creating new String objects.
The alternative is to use the StringBuilder class, which operates on a character buffer in
situ and doesn’t keep creating new instances.

The properties and methods supported by StringBuilder are listed in Tables 12.18 and
12.19. See the Immediate Solution “Using StringBuilder” for an example of its use.

Table 12.18: Properties of the StringBuilder class.

Property Description

Capacity Gets or sets the number of characters the
StringBuilder is capable of holding.

Chars Gets or sets the character at a given index.

Length Gets or sets the length of the StringBuilder. If it is
set to less than the current length, the StringBuilder
is truncated.

MaxCapacity Gets the maximum capacity of a StringBuilder,
which defaults to hex 7FFFFFFF.

Table 12.19: Methods of the StringBuilder class.

Method Description

Append Appends characters to the StringBuilder

AppendFormat Appends formatted characters to the StringBuilder

EnsureCapacity Ensures that the capacity of the StringBuilder is at
least a specified value

Insert Inserts characters into the StringBuilder

Remove Removes characters from the StringBuilder

Replace Replaces characters in the StringBuilder

ToString Converts a StringBuilder to a String

Regular Expressions

Regular expressions first became popular in text editors on the Unix operating system and
have become widely used elsewhere as a way of specifying text patterns. They are
supported in many programming editors, such as Vi and Emacs, and .NET provides the
System.Text.RegularExpressions.Regex class to let you use them in code to match
patterns in strings.

Tables 12.20 and 12.21 list the most common elements that you use to make up regular
expressions.

Table 12.20: Regular expression syntax elements for character matching.

Symbol Name Description

. Wildcard single character Matches any character except a
line break.

[] Set of characters Matches any one of the
characters in the square brackets.
To specify a range, separate the
staring and ending characters with
a dash, for example, [0-9].

[^] Exclusive set Matches any character not in the
set.

^ Beginning Anchors the match to the
beginning of a line.

$ End Anchors the match to the end of a
line.

() Group Groups a subexpression.

| Or Used for alternates. Normally
used with groups.

\ Escape Matches the character following
the backslash, so that you can
match special characters such as
$ and |.

Table 12.21: Regular expression syntax elements for controlling repetition.

Symbol Name Description

¥ Zero or more Matches zero or more occurrences of the
preceding expression

+ One or more Matches one or more occurrences of the
preceding expression

? Zero or one Matches zero or one occurrences of the
preceding expression

@ Zero or more Matches zero or one occurrences of the
preceding expression, matching as few
characters as possible

One or more Matches one or more occurrences of the
preceding expression, matching as few
characters as possible

^n Repeat Matches n occurrences of the preceding
expression

Here are some examples showing the elements in Table 12.20 in use:
§ a..c—Matches “abbc”, “aZZc”, “a09c”, and so on
§ $a..c—Matches “abbc”, “aZZc”, “a09c”, and so on, provided it occurs at the end of a

line
§ [Bbw]ill—Matches “Bill”, “bill”, or “will”
§ 0[^23456]a—Matches “01a”, “07a”, and “0ba”, but not “02a” or “05a”
§ (good|bad) day—Matches “good day” and “bad day”
§ a\(b\)—Matches the string “a(b)”, the backslash meaning that the parentheses aren’t

interpreted as group delimiters

Here are some examples showing the elements in Table 12.21 in use:
§ a+b—Matches one or more a’s followed by one b; for example, “ab”, “aab”, “aaab”.
§ [0-9]^4—Matches any four-digit sequence.
§ \([0-9]^3\)-[0-9]^3-[0-9]^4—Matches a phone number of the form “(666)-666-6666”.
§ ^.*$—Matches an entire line because .* matches zero or more of any character, and ^

and $ anchor the match to both the start and end of the line.

.NET contains a regular expression engine that will take a string and a regular expression,
and match the expression against the string. Access to this engine from any .NET language
is via the Regex class. The Immediate Solutions section “Using Regular Expressions to
Match Patterns in Text” shows you an example of how to use Regex to implement regular
expression text searching in your programs.

Writing Multithreaded Code

Using threads in code is not simple to master, and there are many pitfalls for the unwary.
This Immediate Solution is intended to introduce you to the world of multithreaded coding by
showing you how to write a simple application that uses threads, but it isn’t a comprehensive
introduction to writing threaded code.

Note

If you are not familiar with the concept of threading, refer to the In Depth
section “Threading” for details.

Creating the Basic Application

This simple application draws lines on a form on the screen, with the drawing of each line
controlled by a separate thread.

Create a Windows application project, and place a panel and three buttons on the form, as
shown in Figure 12.8. The Add button will be used to create extra drawing threads, whereas
the Pause and Resume buttons will be used to control the threads.

Figure 12.8: The basic form for the multithreaded application.

Add four Imports statements to the top of the project:

Imports System.Threading

Imports System.Windows.Forms
Imports System.Drawing

Imports System.Collections

You need System.Threading for the threading-related classes, Forms and Drawing for the
GUI, and Collections because you’ll use an ArrayList to store the threads as they are
created.

Now add some member variables to the top of the class definition:

' The original drawing thread

Dim thrd As Thread

' A graphics object to use for painting
Dim grp As Graphics

' The form size
Dim sz As Size

' An ArrayList to hold references to the active threads

Dim threadList As New ArrayList()

The application will have one thread drawing lines when it starts up, and you can add more
threads by pressing the Add button. All threads share the same Graphics object when
drawing, so the code contains a reference to this object and another to the form’s size.

Setting Up

Expand the “Windows Form Designer generated code” region so that you can see the
constructor, and add the following highlighted lines:

Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 ' Create the Graphics object for the threads to use
grp = Panel1.CreateGraphics()

 ' Set the panel's background to white
 Panel1.BackColor = Color.White

 ' create the initial thread

 thrd = New Thread(AddressOf ThreadFunc)
 thrd.IsBackground = True

 thrd.Start()
 threadList.Add(thrd)

End Sub

The first two code lines you’ve added create a Graphics object to let you draw on the
panel—because that’s where the lines are going to be displayed—and set the background of
the panel to white, which will make it easier to see the lines.

You can then create the first drawing thread by creating a new Thread object. Because a
thread executes a function in parallel with the rest of the application, you need to pass the
Thread object the address of the function it is going to use, using the AddressOf operator.
As you can guess from the code, the function the thread is going to run is called
ThreadFunc. You’ll see how this is coded in the next section.

The thread’s IsBackground property is set to True; this makes the thread into a background
thread, which means that it will automatically die when the program exits. The thread
function doesn’t start running until the Thread object’s Start() function is called, so it is
necessary to call this in order to start the drawing process. Finally, a reference to the thread
is added to the ArrayList, so that it can be used later on.

The Thread Function

The class that holds the application code contains a single function, ThreadFunc, which
draws a single line on the panel. The line starts at a random point and draws in a random
color at 45 degrees, reflecting when it meets a boundary. Figure 12.9 shows what this looks
like in action, with only one drawing thread running.

Figure 12.9: One thread drawing a line in the threading solution.

Add a new member function to the class, and start by choosing a random color for this
thread to use for drawing:

Protected Sub ThreadFunc()

 ' random number for color choosing
 Dim rnd As New Random()

 ' choose a color

 Dim col As Color = Color.FromArgb(rnd.Next(0, 255), _
 rnd.Next(0, 255), rnd.Next(0, 255))

The System.Random class is used for generating random numbers. You use it by creating
a Random object, and then calling the Next() function to generate a pseudo-random integer
in a given range, which in this case is 0 through 255. Three random numbers are used to
select red, green, and blue values for the Color object that is going to be used for drawing.

Note

See Chapter 3 for more details on the Random class and Chapter 11 for
details on using the Color class.

The next task is to choose a starting point for the line, which involves using Random once
more:

' pick a starting point

sz = Panel1.Size
Dim x As Integer = sz.Width * rnd.NextDouble()

Dim y As Integer = sz.Height * rnd.NextDouble()

The size of the panel is stored in the sz member, and a random starting point is calculated
from the width and height. You then need to set up four variables to be used in the drawing
calculations:

' The increment for each drawing operation
Dim dx As Integer = 1

Dim dy As Integer = 1

' The previous position
Dim oldx As Integer

Dim oldy As Integer

The dx and dy variables hold the increments to be applied each time around the drawing
loop. By making them both one pixel, the lines will be drawn at 45 degrees. The oldx and
oldy variables are used to hold the previous endpoint of the line each time around the loop.

The following code draws the loop:

' The drawing loop

While True
 ' Save the last point

 oldx = x
 oldy = y

 ' Calculate the next one

 x = x + dx
 y = y + dy

 ' Check for hitting the side of the panel.

 ' If it has hit, reverse the drawing direction
 If x >= sz.Width - 5 Or x <= 0 Then

 dx = -dx
 End If

 If y >= sz.Height - 5 Or y <= 0 Then
 dy = -dy

 End If

 ' Create a pen for the line
 Dim pn As New Pen(col, 1)

 ' Draw the line
 grp.DrawLine(pn, oldx, oldy, x, y)

 ' Sleep for a few milliseconds so it doesn't go too fast

 Thread.Sleep(20)
End While

The loop starts by saving the last point and calculating the new one by adding the dx and dy
offsets. You could experiment with varying the values of dx and dy if you want to create
more interesting looking lines. If the line has hit any of the four sides of the panel, the
increments are reversed in sign in order to reflect the line back into the interior of the panel.

Note

The -5 used in the width and height checks is a correction needed because
the width reported for the panel doesn’t seem to match the actual size on
the screen in the Beta 2 release of .NET. Try removing it and see how the
lines reflect from the panel boundaries.

The next step is to draw the line. Create a pen of the appropriate color and use it in a call to
DrawLine(). The thread sleeps for a few milliseconds so that the animation doesn’t go too
fast and to give other threads a chance to execute. Try commenting out the call to and see
what difference it makes to the way the program runs.

Related solution: Found on page:

How Do I Generate
Random Values?

150

Working with Colors 521

Adding More Threads

Add a handler for the Add button. In the handler, add some code to create and start a new
thread in exactly the same way as the original was created and started:

Private Sub AddBtn_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles AddBtn.Click
 ' Create a new thread each time the button is clicked

 Dim t1 As New Thread(AddressOf ThreadFunc)
 t1.IsBackground = True

 ' Start the thread

 t1.Start()
 ' Add it to the list

 threadList.Add(t1)
End Sub

Every time you click the Add button a new thread will be created, which runs another copy of
ThreadFunc, so you’ll see another line being drawn on the screen.

Controlling the Threads

Add two handlers for the Pause and Resume buttons:

Private Sub PauseBtn_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles PauseBtn.Click
 Dim ie As IEnumerator = threadList.GetEnumerator

 While ie.MoveNext
 Dim t As Thread = CType(ie.Current, Thread)

 t.Suspend()
 End While

End Sub

Private Sub ResumeBtn_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ResumeBtn.Click

 Dim ie As IEnumerator = threadList.GetEnumerator

 While ie.MoveNext
 Dim t As Thread = CType(ie.Current, Thread)

 t.Resume()
 End While

End Sub

These handlers are almost identical with the exception that one calls Suspend() to pause
the running threads, whereas the other calls Resume() to start them again. In each handler,
you obtain an enumerator so you can iterate over the elements in the ArrayList, and then
use the While loop to access each element in turn. Because Current property on the
enumerator returns generic Object references, it is necessary to use CType to cast them to
Thread references before they can be used to call Suspend() or Resume() on the thread.
The effect of these handlers is to pause all the running threads when the Pause button is
pressed, so the drawing stops immediately, and to restart them all when the Resume button
is pressed.

Creating Windows Service Applications

A service is a special kind of program that runs in the background and rarely has a user
interface. See the In Depth section “Windows Services” for details on how services work and
how they are implemented in the .NET Framework.

In this solution, I’ll show you how to write a simple service, how to install it, run it, and control
it when it is running.

Creating the Framework Service

The application that I’m going to write implements a service called “Beeper,” whose sole
purpose is to beep every two seconds. This is a good example of a simple service because it
is easy to write, it is very easy to tell whether it is running or not (unless you have the PC
speaker turned off!), and it is easy to demonstrate controlling a service by sending it
requests.

Start Visual Studio .NET, and use Ctrl+Shift+N or select File|New to display the New Project
dialog. Make sure that Visual Basic Projects is selected as the project type, and select
Windows Service as the project type, using Beeper as the project name.

A Windows Service project contains a class that inherits from
System.ServiceProcess.ServiceBase , which overrides two functions, as shown in the
following code:

Imports System.ServiceProcess

Public Class Service1

 Inherits System.ServiceProcess.ServiceBase

' Component Designer generated code

 Protected Overrides Sub OnStart(ByVal args() As String)

 ' Add code here to start your service. This method should set
 ' things in motion so your service can do its work

 End Sub

 Protected Overrides Sub OnStop()
 ' Add code here to perform any tear-down necessary to

 ' stop your service.
 End Sub

End Class

The ServiceBase class implements all the basic structure needed by a service, leaving you
free to concentrate on providing the functionality you need.

Services are controlled by the SCM, either via the Services applet on the Control Panel or by
other applications using the Services API. The SCM sends your service requests in order to
control it. The most common of these requests are:
§ Start—Sent when a service is being started. A service can respond to this request in

order to initialize itself.
§ Stop—Sent to a service when it is going to be stopped. A service can respond to this

request if it needs to tidy up when it is being shut down.
§ Pause—Sent to a service to tell it to pause operation.
§ Continue—Sent to a paused service to tell it to continue operation.

Other commands can be sent by the SCM to tell a service about changes in power status
(such as suspending) and about machine shutdown. The default service created for you by
the wizard overrides the OnStart() and OnStop() functions to respond to Start and Stop
requests, so that you can provide custom startup and termination code.

If you look at the Main method for the service class, you can see how a service is started:

' The main entry point for the process

Shared Sub Main()
 Dim ServicesToRun() As System.ServiceProcess.ServiceBase

 ' More than one NT Service may run within the same process. To add

 ' another service to this process, change the following line to
 ' create a second service object. For example,

 '
 ' ServicesToRun = New System.ServiceProcess.ServiceBase () _

 ' {New Service1, New MySecondUserService}
 '

 ServicesToRun = New System.ServiceProcess.ServiceBase () {New
Service1}

 System.ServiceProcess.ServiceBase.Run(ServicesToRun)
End Sub

As the comment remarks, one process can host more than one service. The
ServicesToRun member is an array of ServiceBase objects that represent the services to
be run, so if you want to have more than one service hosted in your process, add more
entries to the ServicesToRun array.

The services are started by calling the shared Run() method in the ServiceBase class and
passing it the array of service objects. If you write a service process manually—or in another
language—you’ll have to ensure that Run() is called from the program’s main function.

In order to make sure that the service can be paused and stopped, I need to add some
entries to the constructor for the service object. You need to expand the “Component
Designer generated code” section in order to view Sub New(). Add the following highlighted
lines:

Public Sub New()

 MyBase.New()

 ' This call is required by the Component Designer
 InitializeComponent()

 ' Set properties for the service object

 Me.CanPauseAndContinue = True
 Me.CanStop = True

 Me.AutoLog = True
End Sub

Setting the CanPauseAndContinue and CanStop properties to True means that the
service will accept Pause , Continue, and Stop commands. Setting AutoLog to True means
that Start, Stop, Pause , and Continue commands will automatically be logged to the Event
log.

Adding Service Functionality

The work of a service is typically done in a separate thread, using the thread function to do
whatever the service is designed to do.

Note

See the solution “Writing Multithreaded Code” for details on how to use
threads.

When you create a thread, you nominate a function that is going to be run by the thread, and
schedule it so that it runs in parallel with the rest of your application. The thread function that
I’m going to use follows. Add it as a member of the class:

Sub DoBeep()
 ' This is the function that does the work of the service.

 ' It runs in a thread, and simply beeps every two seconds
 While bContinue = True

 Beep()
 Thread.Sleep(2000)

 End While

End Sub

This is a very simple function. When this is run by a thread, the While loop will run, emitting
a beep and then sleeping for two seconds, as long as the Boolean flag bContinue is set to
True.

Creating and Starting the Thread

I first create the thread object and the Boolean flag by adding the highlighted lines to the
project:

Imports System.ServiceProcess

Imports System.Threading

Public Class Service1
 Inherits System.ServiceProcess.ServiceBase

 ' Create a thread

 Dim workThread As New Thread(AddressOf DoBeep)
 ' Create a flag

 Dim bContinue As Boolean

The Imports statement makes it easier to refer to classes in the System.Threading
namespace. The workThread variable is the thread that will do the work of the service;
when I create it, I pass the address of the function that the thread is going to run, which in
this case is DoBeep().

The thread object has been created, but the thread is not running yet. I add a call to the
thread’s Start() function in the service class OnStart() method so that the thread will start
running as soon as the service is started:

Protected Overrides Sub OnStart(ByVal args() As String)
 ' Start the thread going…

 workThread.Start()
 End Sub

Controlling the Thread

This service can be paused and resumed from the Control Panel or by other applications, so
I add overrides of the superclass OnPause() and OnContinue() methods:

Protected Overrides Sub OnPause()
 ' This will pause the work thread, so the beeping ought to stop!

 workThread.Suspend()
End Sub

Protected Overrides Sub OnContinue()

 ' This resumes the work thread, so beeping ought to resume

 workThread.Resume()
End Sub

The Suspend() and Resume() methods do just what they say: Suspend() pauses a thread,
and Resume() sets it running again. Suspending and resuming threads is done by the
operating system and does not require any action on the part of the thread itself. This makes
threads a very useful way to implement services that need to be pausable.

Note

See the In Depth section “The Thread Class” for a discussion of the
possible dangers of using Suspend() and Resume() with threads.

In order to stop the thread function from running, modify the OnStop() function to set the flag
bContinue to False :

Protected Overrides Sub OnStop()

 ' Add code here to perform any tear-down necessary to
 ' stop your service.

 bContinue = False
End Sub

It is also possible to call the Abort() method on the thread object, but it’s not generally
recommended because the thread function has no chance to tidy up. It doesn’t matter in this
case, but the technique of setting a flag and exiting the thread function when it is set to
False gives the function a chance to tidy up before exiting.

You can now build the project to make sure that there are no errors. However, there is
another step that has to be completed before you can run your service.

Creating Installation Components for the Service

Services need to be properly registered with the SCM, so you need to provide installer
components for a service project. I’ll show you how to do this using Visual Studio .NET, but it
isn’t very much harder to do it manually.

Open the Design view for the service project, and look at the Properties tab. At the bottom of
the Properties window you’ll see a link called Add Installer, as shown in Figure 12.10.

Figure 12.10: The Properties window for a service project, showing the Add Installer
link.

Click the link, and a new class called ProjectInstaller is added to your project. This class
contains two installation components:
§ ServiceProcessInstaller1—Deals with the installation of the service process itself.
§ ServiceInstaller1—Deals with the installation of a service within the service process. If

you have more than one service hosted in a process, you’ll need to add an extra
ServiceInstaller component for each service.

Click ServiceInstaller1 in the Design view for ProjectInstaller.vb, and verify that the
ServiceName property specifies the name of the service, which in this case should be
Service1. The StartType property determines how the service will be started and can be
one of three values:
§ If it is Automatic, the service will be started at boot time.
§ If it is Manual, the service will be started on demand, either through the Control Panel

or by another application. This is the default start type.
§ If it is Disabled, the service cannot be started.

Make sure the StartType is Manual. You can enter a word or name as the DisplayName if
you want the service to be called something other than Service1 in the Control Panel applet.

Now look at the properties for the ServiceProcessInstaller1 component. The only property
that you need to modify is Account, which specifies the user account under which the
service will run. The default is User, which will run the service under a specified user ID. If
you choose this default option, you’ll have to provide the ID and password either in the
Properties dialog or when the service is installed.

Most services run under the LocalSystem account, which gives them a high level of access
to system resources. This is a good default account to run under, so change the Account
property to LocalSystem.

Now build the project, and you’re ready to install the service.

Installing the Service

The easiest way to install and uninstall services is to use the installutil.exe utility from the
command line. This utility doesn’t live in the Visual Studio directory tree, but instead lives in
the .NET Framework directories. In Beta 2, you can find it in
\Winnt\Microsoft.NET\Framework\v1.0.2914, although this may well be different in the final
release.

The best way to run this utility is to use (from Start|Programs) Microsoft Visual Studio .NET
7.0|Visual Studio .NET Tools|Visual Studio .NET Command Prompt. This brings up a
command shell with all the environment variables set correctly to run all the .NET
Framework and Visual Studio .NET tools from the command line.

Open a command shell and change to the directory containing the service executable, which
is called beeper.exe. Then, type the following command:

installutil beeper.exe

The utility displays several lines of status information as it is installing. If the installation
completes successfully, you should see a screen similar to the one shown in Figure 12.11.

Figure 12.11: Installutil.exe installing a service process.

Note

You can uninstall a service by running installutil.exe with the /u flag.

You can verify that the service has been installed properly in two ways:
§ Using the Control Panel’s Services applet
§ Using Visual Studio’s Server Explorer

In order to use the Server Explorer, open the Server Explorer window. This is usually a pop-
up window docked to the left of the main Visual Studio pane. If it isn’t displayed, you can
show it by selecting View|Server Explorer or by pressing Ctrl+Alt+S. The Server Explorer
window for my machine is shown in Figure 12.12.

Figure 12.12: The Server Explorer window.

You’ll always have one entry in the Servers list, which represents the local machine. Expand
the Services tab, and browse down for the Service1 entry. If the service name is displayed,
the service has been installed. Clicking the Service1 entry displays the properties of the
service, as shown in Figure 12.13. You can see that the service is running in its own
process, and that it is currently stopped.

Figure 12.13: The properties of a service displayed from the Server Explorer.

You can start the service in two ways: right-click the entry in the Server Explorer window and
choose Start, or use the Control Panel applet. Whichever way you choose to start the
service, you should hear a regular beeping sound as soon as the service starts. Experiment
with the Stop and Pause/Continue functionality to make sure that it works.

Using Assertions

Assertions let you check whether an application is behaving as you expect at a particular
point. The following example shows you how to use an assertion in your code:

' Assertions need the System.Diagnostics namespace
Imports System.Diagnostics

Module Module1

 Sub Main()

 ' Call the function
 Test(-1)

 End Sub

 ' A test function
 Public Sub Test(ByVal n As Integer)

 Trace.Assert(n > 0, "Argument is not positive")
 ' more code…

 End Sub
End Module

The program starts by importing the System.Diagnostics namespace: The assertion facility
is part of this namespace, so you’ll save yourself a lot of typing by importing the namespace
at the beginning of your program.

The function Test() takes an integer as an argument, and it should probably never be called
with an argument that is less than or equal to zero. If I’m sure of this, I put a call to
Trace.Assert() in to check the value of the argument.

Note

Assert() takes two arguments: The first is an expression that evaluates to
True or False , whereas the second is a message that is printed in the event
of failure. Assert() checks the condition: If it is True—in this case, if n is
greater than zero—no action is taken. If it is False , an error dialog is
displayed, which is similar to the one shown in Figure 12.5.

Note

There are two other overloads of Assert(): the first, with one argument,
simply checks a condition and prints a standard message. The second takes
three arguments—the condition, a brief message, and a detailed message.

The idea is that you scatter assertions throughout your code as you write it, and these
assertions mark invariant conditions—that is, conditions that must be True all the time. If at
some point something happens to change the behavior of the program (such as changes in
the code or data) and it causes an assertion to fail, you’ll find out about it.

There are two versions of Assert(), both are shared methods. The version belonging to the
Debug class is only active in debug builds and is disabled in release builds, whereas the
version in the Trace class is active in all builds. Which one you choose depends on whether
you want your assertions to be active all the time or not.

There is also a shared Fail() method, which is similar to Assert() but doesn’t have an
expression to evaluate. Whenever Fail() is executed, it displays the assertion dialog with an
error message, so you use it to mark places in the code that should never be reached.

Tracing Program Execution

Sometimes it is useful to be able to write trace information to a log file in order to see just
what a program is or has been doing. Sometimes, if a program fails or is behaving
incorrectly, the debugger isn’t very useful because all it tells you is where you are, and you
need to know how you got there. In those cases, a log file is very useful, and the Write
methods provided by the Trace and Debug classes will help you construct one.

There are four methods that can be used to generate output: Write(), WriteIf(), WriteLine(),
and WriteLineIf(). If you think these look familiar you’re correct. They parallel the Console
methods you use for writing to the screen. The WriteLine() and Write() methods write output
with and without a new line respectively, and the “if” versions only write if a condition is met.

The following short example shows how to use the tracing features of System.Diagnostics:

' Tracing needs the System.Diagnostics namespace

Imports System.Diagnostics

Module Module1
 Sub Main()

 ' Add a listener
 Trace.Listeners.Add(New TextWriterTraceListener(Console.out))

 ' Call the function

 Trace.WriteLine("Main: calling Test")
 Test(1)

 Trace.WriteLine("Main: back from call")
 End Sub

 ' A test function

 Public Sub Test(ByVal n As Integer)
 Trace.Indent

 Trace.WriteLine("Test: entry")

 // more code…
 Trace.WriteLine("Test: exit")

 Trace.Unindent
 End Sub

End Module

The program starts by importing the System.Diagnostics namespace, so you don’t have to
use fully qualified names for all the tracing functions.

In order to log any output, you need to create one or more listeners and hook them up to the
Trace class. A listener is simply an object that represents a destination for output, and there
are three types of listener objects, which are listed in Table 12.22. You can also derive your
own listener classes from the TraceListener base class if necessary.

Table 12.22: The TraceListener classes.

Class Description

DefaultTraceListener Writes output to the usual debug destination

EventLogTraceListener Writes output to the Event log

TextWriterTraceListener Writes output to the console or a file

TextWriterTraceListener is perhaps the most useful class, because it will let you log output
to the console or to a text file. In this example, I’ve set up a TextWriterTraceListener to log
output to the console and added it to the Trace class’s Listeners collection. You can add as
many listeners as you like at one time and can also remove those you don’t need, so that
you could, for instance, log output to the screen for most of a program, but arrange to have
trace output logged to a file as well in one particular function.

Once a listener is set up, I use the WriteLine() method to output trace information and the
Indent() and Unindent() methods to adjust the indentation of the output. The default
indentation increment is four spaces, but you can change it using the Trace.IndentSize
property.

Note

The indentation only affects the trace output, not any normal output
generated by calls to Console.WriteLine().

Controlling Tracing

You can control how much output is generated by using a switch object, which enables you
to place a lot of detailed tracing code in your program and determine at runtime how much is
going to be logged. There are two standard switch classes provided in System.Diagnostics,
TraceSwitch and BooleanSwitch. You can derive your own from the Switch base class if
necessary.

Switch objects are especially useful in that they can read their settings from an external text
file, so it is easy to tailor the amount of trace output you’re going to get without having to
recompile the code. You can also use switch objects to control which output is sent to
listeners, so you could arrange for a subset of the trace information to be logged to the
screen and have much more information saved to a file.

Using the Event Log

The Windows Event log provides a place where applications—especially services—can log
status and error information. See the In Depth section “The Event Log” for details on what
the Event log is and how you can view it.

Access to the Event log is through the System.Diagnostics.EventLog class. In this
solution, I’ll show you how to write entries to and retrieve entries from the log.

Writing to the Event Log

The following sample program shows you how to write events to the Event log. An
explanation follows the code:

' You need System.Diagnostics for the EventLog class

Imports System.Diagnostics

Module Module1
 Sub Main()

 ' Create an EventLog object
 Dim el As New EventLog()

 ' Create an event source

 If Not EventLog.SourceExists("VBEventLog") Then
 EventLog.CreateEventSource("VBEventLog", "Application")

 Console.WriteLine("Event source created")
 End If

 ' Associate the object with the source.

 el.Source = "VBEventLog"

 ' See what we're writing to…
 Console.WriteLine("Writing to: " + el.Log)

 ' Now write something

 el.WriteEntry("Hello, mum!")

 End Sub
End Module

The first task is to create an EventLog object. I’ve used the default constructor, but there are
several others that will let you connect to logs on other computers, provided you have the
access rights to do so.

Every entry in the Event log needs to have an associated event source. This may represent
a whole application or just a part of a complex application, and you can create as many
event sources as you want. Once an event source has been created and registered, it is
remembered by the Event log, and you’ll get an error if you try to create the same source
again. You can see how in the code I use EventLog.SourceExists() to check whether the
source VBEventLog exists, and if it doesn’t, I create it using
EventLog.CreateEventSource(). If necessary, you can unregister an event source by
calling EventLog.DeleteEventSource().

When you create an event source, you specify the name of the source, the name of the log
to use, and optionally a machine name. In this case, I’m not specifying a machine name, so
the local Event log will be used. The name of the source can be one of the predefined logs,
such as Application, and a custom log will be created if any other name is provided.

Once the event source is created (or I’ve verified that it already exists), I associate the
source with the EventLog object using its Source property. If you don’t associate a source
with the EventLog before trying to write an event, you’ll get an ArgumentException.

At this point, I’m ready to write something to the log using the WriteEntry() method. I’ve
used the simplest overload, which simply takes a message string and writes an information

entry, but there are several others that let you specify other details, such as the entry type,
an event identifier, a category, and binary data.

Compile and run the program, and then open the Event Viewer, which you’ll find in the
Administrative Tools folder in the Control Panel. Once the main window appears, click the
Application log entry in the left pane; you should see an event at the top of the right pane
with VBEventLog as the source, as shown in Figure 12.14. If you double-click the entry, the
Event Properties dialog is displayed, which should look like Figure 12.15.

Figure 12.14: The Application log, showing the event that has been written by the
VBEventLog program.

Figure 12.15: The Event Properties dialog for the event you’ve just added to the
Application log.

This event does not have all the information that many other events have—for instance,
there’s no category or user, and the Event ID is zero—but you can clearly see the source,
the time it was logged, the machine it was logged on, and the message.

Reading from the Event Log

Reading from the Event log is no more difficult than writing to it. The following program
shows how to read events from the Application log:

' You need System.Diagnostics for the EventLog class
Imports System.Diagnostics

Module Module1
 Sub Main()

 ' Create an EventLog object
 Dim el As New EventLog()

 ' Set it to use the Application log

 el.Log = "Application"

 ' See how many entries there are…
 Console.WriteLine("Entries in log: " +
el.Entries.Count.ToString())

 ' Process all the entries

 Dim entry As EventLogEntry
 For Each entry In el.Entries

 If entry.Source = "VBEventLog" Then
 Console.WriteLine("Event: " + entry.Message)

 End If
 Next

 End Sub
End Module

The purpose of this program is to scan the Application log for events that were written to it by
the VBEventLog source, which is the source used in the previous application. If you built and
ran that program, you should have one such event in the log.

As before, I need to create an EventLog object in order to access the event log, and I need
to set its Log property in order to tell it which log to use. Note that when you read from the
Event log, you don’t have to specify a source, as they are only used for writing.

The collection of entries in the log are represented by the Entries property of the EventLog
object. The Count property of Entries tells you how many entries there are in the log you’re
looking at. If you haven’t cleared out the log for some time, there may be a lot.

The Entries property is a collection of EventLogEntry objects, each of which represents
one entry in the log, so by using a For Each loop I can examine each entry in turn.
EventLog has a number of properties, which are listed in Table 12.23, that let you examine
the various pieces of data associated with an Event log entry.

Table 12.23: Properties of the EventLogEntry class.

Property Description

Category Gets the text associated with the event category

CategoryNumber Gets the category number for this event

Data Gets the binary data associated with this event as a byte
array

Table 12.23: Properties of the EventLogEntry class.

Property Description

EntryType Gets the event type as an EventLogEntryType

EventID Gets the application-specific ID associated with this event

Index Gets the index of this entry in the Event log

MachineName Gets the name of the machine on which the event was
logged

Message Gets the message associated with the entry

ReplacementStrings Gets any replacement strings associated with this entry

Source Gets the source that logged the entry

TimeGenerated Gets a DateTime object representing the time the event
was generated, in local time

TimeWritten Gets a DateTime object representing the time the event
was written to the log, in local time

UserName Gets the name of the user responsible for this event

The event type is represented by one of the members of the EventLogEntryType, as listed
in Table 12.24. As you might expect, the SuccessAudit and FailureAudit entries will only
occur in the Security log. Because there are only three types of log entries—Information,
Warning, and Error—it is possible for an application to provide its own “event categories” in
order to further subdivide them. An application can also associate an ID with an event for
later tracking.

Table 12.24: Members of the EventLogEntryType enumeration.

Member Description

Information Represents a significant successful event

Warning Represents a problem that is not immediately significant, but
may cause more problems later

Error Represents a significant problem, usually involving a loss of
functionality or data

SuccessAudit Represents a successful security audit event, such as a
successful logon

FailureAudit Represents a failed security audit event, such as a failed attempt
to access a file

Using StringBuilder

As its name implies, the System.Text.StringBuilder class provides you with a way to
interactively build and modify strings. This happens on a single copy of the data in situ, in
contrast to the methods provided by the System.String class, which always create new
String objects whenever any modification is required.

The following sample program shows you how to create and use StringBuilder objects:

Imports System.Text

Module Module1
 Sub Main()

 ' Create an empty StringBuilder
 Dim sb As New StringBuilder()

 ' Append some data…

 sb.Append("Can it be ") ' Append text
 Dim b As Boolean = True

 sb.Append(b) ' Append boolean
 sb.Append("?"c, 2) ' Append two question marks

 ' Write it out

 Console.WriteLine(sb.ToString())

 ' Remove everything
 sb.Remove(0, sb.Length)

 ' Format up a short and add it

 Dim s As Short = 101
 sb.AppendFormat("{0} dalmatians", s)

 Console.WriteLine(sb.ToString())

 ' Empty it again

 sb.Remove(0, sb.Length)

 ' Format up a double and add it
 Dim pie As Double = 22 / 7

 sb.AppendFormat("Would you like a piece of {0,-6:F3}?", pie)

 Console.WriteLine(sb.ToString())

 End Sub
End Module

If you build and run the program, you’ll get the following output:

Can it be True?

101 dalmatians
Would you like a piece of 3.143 ?

The StringBuilder class contains several constructors that enable you to initialize
StringBuilder objects by specifying a number of parameters:
§ All or part of an existing String. If not specified, the StringBuilder is created empty.
§ An initial capacity. If not specified, the default capacity is 16 characters.
§ A maximum capacity.

You can manipulate the content of the StringBuilder using the Append(),
AppendFormat(), Insert(), Remove(), and Replace() methods. Append() has no fewer
than 19 overloads, allowing you to add a wide variety of basic data types to the content.
Examples of some of these methods are shown in the previous code.

A StringBuilder can be converted to a String using the ToString() method, and a new
String object is only created when you call ToString().

AppendFormat() lets you format character data before appending it, using the same curly-
bracket format specifiers that are used in Console.WriteLine(). The first specifier, {0},
simply inserts the first object in the list in place of the marker, giving it default formatting. If
there were two objects in the list, they would be marked by {0} and {1} in the format string.

The second specifier is slightly more complicated. Let’s assume I want to print out a floating-
point value to three places of decimals, left-justified in a field six characters wide. The format
{0,-6:F3} can be broken down as follows:
§ 0 denotes the first object in the list.
§ -6 denotes the field width, with the - signifying left justification.
§ The F3 after the colon denotes the formatting I want. F is fixed-point format, and 3 is

the number of decimal places.

You can see from the output that the field is indeed six characters wide because there is a
space after the number and before the question mark.

Note

Using format specifiers is discussed in more detail in Chapter 3.

The other methods provided by StringBuilder are quite simple to use. For example, the
Replace() method can be used to replace all occurrences of a substring by another
substring:

sb.Replace("a piece", "two pieces")

Related solution: Found on page:

How Do I Produce
Formatted Output?

147

Using Regular Expressions to Match Patterns in Text

Regular expressions provide a concise way to describe patterns in text, and the Regex class
in the System.Text.RegularExpressions namespace provides a way to match patterns
against text strings.

A few samples of simple regular expressions are provided in the following list. More of the
syntax is described in the In Depth section “Regular Expressions”.
§ ^Dav(e|id)—Matches “Dave” or “David” where it occurs at the start of a line. The ^

anchors the pattern to the start of the line, the () delimits a group, and the | provides
alternatives.

§ ab+—Matches an “a” followed by one or more “b” characters, so it matches “ab”, “abb”,
“abbb”, and so on.

§ (ab)+—Matches one or more occurrences of “ab”, so it matches “ab”, “abab”,
“ababab”, and so on.

The following sample program shows the basic steps involved in using regular expressions:

Imports System.Text.RegularExpressions

Module Module1

 Sub Main()
 ' Create a Regex object

 Dim rx As New Regex("[Bbw]ill")

 Dim s As String = "My friend Bill will pay the bill"

 ' Look for the first match
 Dim m As Match = rx.Match(s)

 If m.Success = True Then

 Console.WriteLine("Match was successful")
 Else

 Console.WriteLine("Match failed")
 End If

 ' Look for all matches

 Dim mc As MatchCollection = rx.Matches(s)
 Console.WriteLine("There were {0} matches in all", mc.Count)

 End Sub

End Module

Importing the System.Text.RegularExpressions namespace makes it much easier to use
Regex later in the program, as the fully qualified names get rather long!

The first step in using the .NET regular expression engine is to create a Regex object. There
are several constructors for Regex, but in the preceding code I’m using the constructor that
creates a Regex to work with a particular expression. Specifying the expression in the
constructor means that it can be precompiled by the Regex object, which makes pattern
matching quicker later on.

Note

Regex objects are immutable, so the expression they use cannot be
changed. The same Regex object can, however, be used for as many
searches as you like.

The expression I’m using is [Bbw]ill. The square brackets enclose a set of characters, any
one of which can be used in a match. This means that the pattern will match the strings

“Bill”, “bill”, and “will”. You can see that the test string I’m going to use contains all of those
strings, so I ought to get three matches.

The basic Regex operation is Match(), which examines an input string for the first match.
The overload I’m using starts matching at the beginning of the string, but other versions let
you start from an arbitrary character position. Match() returns a Match object that represents
the results of the match process, so you can examine its properties to see where the match
was and exactly what was matched. Table 12.25 lists some useful properties of the Match
class.

Table 12.25: Useful properties of the Match class.

Property Description

Index The position in the string where the match was found

Length The length of the matched string

Success True if the match was successful

Value The actual string that was matched

If you simply want to check for the occurrence of a match but don’t want any information
about it, the IsMatch() function simply returns a Boolean value indicating whether any
matches are found in the string.

Given the properties of the Match class, it would be easy to modify the code to list every
match in the test string, like this:

' Look for all the matches
Dim m As Match = rx.Match(s)

While m.Success = True

 Console.WriteLine("Match '{0}' found at {1}", m.Value, m.Index)
 m = rx.Match(s, m.Index + m.Length)

End While

The While loop keeps asking for matches until Success is set to False , in which case there
aren’t any more matches. In order that I don’t search from the beginning of the string every
time—which would result in an infinite loop, of course—I use an overload of Match(), which
specifies the start position of the next Match() to be just past the end of the previous
matched string. If you run the preceding code, you’ll see the following output:

Match 'Bill' found at 10
Match 'will' found at 15

Match 'bill' found at 28

You don’t have to loop through the matches manually, though, because Regex’s Matches()
function automatically finds all the matches for the expression and returns them to you as a
MatchCollection. You can see how this function is used in the program to verify that there
are, indeed, three matches for the expression in the string.

A More Advanced Example

The Regex class can provide far more advanced pattern matching than the previous simple
example. The following is a more complex example that touches on more advanced
features. The idea behind this example is that you want to process a hospital telephone list,
extracting names and extensions, and print them out. So every entry looks like this:

Dr. David Jones, Ophthalmology, x2441

You want to extract the surname and the extension, and print them out so that they look like
this:

2441, Jones

In the real world, you would be getting your data from a file or a database query, but in this
example I’ll provide a few sample entries as an array of strings. Here’s the code that will
reformat the entries:

Dim sa(4) As String

sa(0) = "Dr. David Jones, Ophthalmology, x2441"

sa(1) = "Ms. Cindy Harriman, Registry, x6231"
sa(2) = "Mr. Chester Addams, Mortuary, x1667"

sa(3) = "Dr. Hawkeye Pierce, Surgery, x0986"

Dim rx1 As New Regex(_
 "^[\.a-zA-z]+ (?<name>\w+), [a-zA-z]+, x(?<ext>\d+)$")

Dim i As Integer

For i = 0 To 3
 Dim mm As Match = rx1.Match(sa(i))

 Console.WriteLine(mm.Result("${ext}, ${name}"))
Next

The idea is the same as before: Create a Regex object, initialize it with an expression, and
then get it to match on each string in the array by calling Match(). In this case, the
expression is much more complex than you’ve seen before:

^[\.a-zA-z]+ (?<name>\w+), [a-zA-z]+, x(?<ext>\d+)$

Let’s break it down to see how it works:
§ ^ matches the start of the string.
§ [\.a-zA-Z] will match any one of space, dot (escaped by a backslash because dot is

special character in expressions), uppercase, or lowercase letters.
§ The + after the set means “match one or more”. This pattern will match the title and

first name up to the space between the first and surnames.
§ The space after the + matches the space between the first and surnames.
§ (?<name>\w+) defines a special kind of group. The ?<name> tags the matched string

with the tag name, and you can use this later to refer to the matched text. \w means the
same as [a-zA-Z_0-9] and is a useful abbreviation. So this part of the pattern matches
the next word, which consists of one or more letters, numbers, or underscores and
saves it with the tag name.

§ The next section, [a-zA-z]+, matches the punctuation and the word defining the
department. This isn’t tagged because you’re not going to use it again.

§ The extension number occurs after an “x”, and the pattern that matches the extension
is (?<ext>\d+), which captures a sequence of digits and saves it with the tag ext.

§ The final $ means that the extension pattern has to occur at the end of the line.

When the Match() is run, the resulting Match object has two tagged items, name and ext,
representing the name and extension. The Result() method lets you take a Match() and
generate a string as output, substituting in the matched strings. In the example, I’ve referred
to the name and ext tags by enclosing them in ${}.605

Chapter 13: .NET Remoting
By David Vitter

In Depth

Remoting is a new name for an old familiar concept, and it is the .NET world’s successor to
Microsoft’s Distributed COM (DCOM) technology. This chapter examines how Remoting
works from both a client and a server’s perspective. You will gain an understanding of how
Remoting compares to DCOM as well as another new .NET technology, XML Web services.
If you already have some experience developing distributed applications with DCOM, you
will find many exciting new improvements made in Remoting, although it is still a
complicated technology that takes some patience and time to understand and use.

Remoting Basics

Distributed applications separate themselves into individual components that can be housed
or hosted on individual machines. Dividing an application into distributed components is
known as scaling out, which means you are spreading your application out among many
different machines to better handle an increase in workload. If all of your components were
located on one single-processor machine, your application would slow down in response to
an increased number of users because that one processor would be overwhelmed with
operations to perform. If you move one or more components to a separate server, you can
offload some of the processing to that new server, thereby improving your application’s
response time.

I will begin by discussing the different technologies used throughout the years to enable
object-to-object calls, and then discuss some of the major Remoting concepts that you
should be familiar with.

Remoting Technologies

Application scaling is an easy concept to understand, but the task of actually making a
component on one machine talk to another component on a completely different machine is
quite complicated. Microsoft’s COM was initially designed to make object-to-object calls
simple, provided they were both on the same machine. This made object calls easier to
code, but COM by itself did not make distributed applications possible. To enable developers
to distribute their COM objects, Microsoft next released DCOM. This allowed one COM
object to call another COM object on a different machine using a proprietary Microsoft
communications protocol to send that request across the network.

DCOM opened the door for Microsoft developers to create truly distributed applications.
Unfortunately, to utilize DCOM you had to accomplish a long list of administrative tasks to
configure both the client and the server objects to work properly. DCOM even had its own
administration tool, Dcomcnfg, which developers had to master in order to use DCOM in
their applications. In addition, because objects using DCOM to communicate used a
proprietary protocol, you could not use DCOM to talk to objects written in other development
environments, such as Java. Java has its own distributed communications protocol to work
with, and development teams could not connect Java to COM and DCOM without the use of
a third-party communications bridge. Figure 13.1 shows a COM, DCOM, Java, and .NET
object all in the same environment and also shows the communication limitations that these
individual objects face.

Figure 13.1: Distributed object technologies in the application environment.

.NET improves upon its DCOM predecessor through a new technology called Remoting.
Within the .NET Framework, you will find Remoting and its subclasses under the
System.Runtime.Remoting namespace. Remoting is the technology of choice for .NET
developers wanting to make remote object calls from their .NET assemblies. What exactly is
a remote object call? A Remoting call is a request sent to an out-of-process object’s
interface. This remote object could be on the same machine or on a separate machine.
When the object you are calling is not hosted in the same process as the object that is
calling it, the data that is exchanged between these two objects must go through a special
marshaling or packaging process to transfer back and forth across processes. Your interface
calls will not use Remoting when the object being called is within the same process or
application domain as the caller. Think of Remoting calls as having to go through a long-
distance phone carrier and making in-process calls as using a local phone carrier. It’s those
long distance calls that can really run up the phone bill!

Developers with DCOM experience should find Remoting a bit easier to work with, although
those developers that are new to distributed object communications might still find Remoting
to be complicated and intimidating. Probably the best news of all when talking about
Remoting is that it embraces open source technologies such as Simple Object Access
Protocol (SOAP) and HTTP to make object-to-object calls. This change of protocol not only
tears down the wall that previously separated Visual Studio application components from
non-Microsoft components, but also extends the reach of your object calls far beyond its
previous boundaries. You’ll read more about these improvements in the “Remoting
Communications” section later in this chapter. In the next section, I’ll discuss some high-level
concepts that Remoting is based on.

Remoting Clients and Servers

When one object calls out to another object, the object that makes the initial call is known as
a client object. The object that responds to that call and provides some function or data in
return is known as a server object. The connection that is formed between these two objects
is called a channel; I will further examine these object communication pipes in the
“Channels” section. Before I dive into the details of how these objects communicate, it is
important to establish the roles an object can take on, which is either client or server.

During a single call, only one object can be the client and the other object can only be a
server. This is a simple, yet critical, concept to understand when you are developing your
objects for use with Remoting. It is possible to create an object that will act as both a server
to other objects and as a client that calls out to another server object. To keep the examples

found in this chapter simple and understandable, I focus in on objects that are designed to
perform only one of the two roles, client or server.

An object hosted within an application domain’s process can be either remotable or
nonremotable. A nonremotable object cannot be called by an object outside of its application
domain. Depending on the design goals of the object you are creating, you can choose to
make it nonremotable, thereby making it only available to a single application. Base classes
in the .NET Framework will typically be nonremotable by default, but you can derive classes
from these base classes that are remotable.

Activation and Lifetime

When a client application object calls out to a server object, the server object must be
activated in order to respond to the requests. Starting a server-side object is known as
activation, and the length of time that object stays active is called the object’s lifetime. In
Remoting, there are three activation methods, each with their own lifetimes. In this section
you will learn about the three activation types:
§ Single call
§ Singleton
§ Client activated objects (CAO)

Single Call

An object is said to have single call activation when one copy of that object is activated for
each client request. If four client objects simultaneously make the same request for the same
server-side object, four instances of that object will be created to handle those four calls.
One single call from a client results in a new, matching server-side object being created. The
single call object’s lifetime is only long enough to satisfy the client object’s single call.

If the client makes a second call to the server object, an entirely new instance of the server-
side object will be created to handle the call. With the garbage collector deciding when to
remove object instances from memory in .NET, it is possible for a single call object to still be
in the server’s memory when the second call from the same client object comes through.
Despite the fact that the previous server object instance is still alive in memory, a single call
object will create a brand new instance to respond to the new client request.

Singleton

When a server object uses singleton activation, only one instance of that object will be active
on the server. If those same four client objects I used as an example in the “Single Call”
section make a call to a singleton server-side object, one and only one object will be created
to service all four requesting client objects. On the first client call, the server will create a
single instance of the singleton server object. As long as the one singleton object is loaded
into memory, all additional object calls will be connected to this active object.

A singleton object has a limited lifetime, and when it expires, the current instance of the
object is destroyed, requiring that the server create a new instance for the next client call.
For this reason, your client object might make multiple server object calls that use the same
instance of the singleton object, and then make yet another call and suddenly encounter a
brand new instance of the object.

If the life of a singleton object seems random and impersonal, brace yourself because it gets
sadder. Each singleton object gets a lifetime lease that dictates what that object’s life span
will be. Some singletons can live longer, whereas others may have very short life spans, but
when their lifetime lease is up, they’re gone. In fact, this lease on life is so strict that even if a

client object is using that poor singleton object at the moment its lease runs out, it is still
destroyed (and replaced with a younger version of itself). Despite the cruel fate of a
singleton object, using it is a very efficient way of making your server object available
because it avoids draining server resources with multiple object instances. You will find more
information on setting up singleton object lifetime leases in the Immediate Solutions section.

Client Activated Objects

The activation, lifetime, and deactivation of both the single call and singleton objects are
controlled by the server that hosts these objects. Working with single call and singleton
objects requires a little more thought than dealing with local objects that your application
directly activates and deactivates. With client activated objects (CAO), your client objects
can have the same direct influence on your Remoting objects as you have on your local
objects. Like single call objects, the server creates a brand new instance of the server object
for each client calling it through CAO. Each instance of the server object created holds a
direct reference to the calling client, and its lifetime is controlled by that client object.

When you look at a CAO’s lifetime, you will find a lifetime lease similar to the singleton
object’s. The big difference with the CAO’s lifetime lease is that the client defines and
controls this lease, not the server object. In the “Creating a Client Activated Object and
Determining Its Lifetime” Immediate Solution, you will find an example of how a client can
use CAO to create an instance of a server object and control that object’s life span.

Stateless versus Stateful Objects

A stateless object does not maintain state from one call to the next. Every time you call out
to a stateless object, it is like talking to a stranger who does not remember you or anything
about your last call. Because the single call activation method connects the client object to a
brand new instance of the server object every time, this is a stateless form of Remoting. The
singleton activation method continues to connect client calls to the same instance of a server
object until that object’s lifetime expires. This means that the singleton object can remember
pieces of information from one call to the next. The CAO is also a stateful communications
method because the same instance of the server object stays active until the client object
decides to release it.

Comparing Remoting to DCOM

As your development teams begin to develop their distributed application projects using
Visual Studio .NET, they will have to decide whether to continue to use DCOM or step up to
the new Remoting model. Remoting offers numerous improvements over DCOM that should
be considered when making this decision:
§ Remoting can communicate using the open source technologies of SOAP and HTTP

instead of DCOM’s proprietary protocol.
§ .NET objects using Remoting can call and be called by objects created in non-Visual

Studio development tools.
§ Remoting calls made via HTTP can pass through most corporate firewalls that would

normally block DCOM calls.
§ Remoting, although still somewhat complicated, is arguably easier to configure and

use when compared to DCOM.

For developing managed objects that communicate with each other remotely, using .NET’s
Remoting technology is the clear choice. But what can you do to remotely communicate with
unmanaged COM objects from your .NET assemblies? You still have the option of using
DCOM within the .NET environment, which you will read more about in the “Using DCOM in
.NET” section.

Tip

Because .NET supports COM objects, you can still use DCOM from your
.NET assemblies to remotely access COM objects. If you are making remote
calls from one .NET assembly to another, you should use .NET’s Remoting
and not DCOM to do so.

Comparing Remoting to XML Web Services

As you read about how Remoting uses open source protocols and allows you to call out to
objects distributed beyond the traditional reach of the corporate intranet, you might think that
Remoting sounds a lot like the new .NET XML Web services project type. Both can use
HTTP and SOAP to communicate globally using the Internet as their communications
medium of choice. But there are a couple key differences between these two technologies
that will influence whether you develop an object as a Remoting object or as an XML Web
service.

An XML Web service must be hosted by a Web server, whereas a Remoting object does not
require a special server to host it, only that the common language runtime (CLR) is installed
on the hosting server. XML Web services operate in the connectionless and stateless world
of the Internet. Each request made to an XML Web service creates a new instance of that
service on the Web server. Data cannot be shared among multiple visitors to a single XML
Web service without the use of a back-end database or some form of data persistence to
pass the data around. A Remoting object, on the other hand, can be made to service
multiple clients and can share data between callers without any additional back-end
infrastructure. To learn more about creating and using XML Web services, see Chapter 8.

Remoting and Tiered Application Designs

The ability to remotely call server objects allows you to really spread out your application’s
components. You can place a datacentric server object directly on the machine hosting your
database and call it from a separate Web or application server. The data services tier is an
excellent candidate for Remoting server objects. Any time your application accesses a
remote resource, such as a file system or a nontraditional data store, consider using a
Remoting server object to make this available. Moving your resource access codes to their
own servers helps offload some of the processing from an application server or from the
client’s machine.

There is a price to be paid when using any form of Remoting. Whenever the network
becomes involved in an application’s communication functions, the remote object’s response
time will not be as quick as if that object were on the same machine as the calling object. For
this reason, distributing application objects should only enter into the plan if the performance
gains realized by the additional machine’s processing power outweigh the network slow
downs experienced by your objects. Objects that perform the bulk of your application’s work
should be co-located on one server to minimize Remoting calls across the network.

Channels

When a client and a server object connect, they create a communications channel between
them. DCOM also creates a channel between objects and uses a proprietary protocol to
exchange messages between the two objects. .NET Remoting has the ability to create and
use two different channel types for your client and server objects: the Tcp channel and the
Http channel. The Tcp channel is very similar to Remoting’s proprietary DCOM predecessor.
The Http channel fits in with .NET’s open source recurring theme. Which channel you use

depends on what your communication goal is. Let’s review the two most common .NET
Remoting channel types and discuss when you should use a particular type of channel.

The Tcp Channel

Similar to DCOM’s proprietary transmission method, Remoting’s Tcp channel sends the data
back and forth between the client and server objects using a proprietary binary format. The
objects on both ends of a Tcp channel must be able to understand this binary formatted
message, which means you should only plan to use the Tcp channel to communicate from
one .NET object to another.

The Tcp channel is a two-way street, which means your objects can send and receive data
through this channel. Unfortunately, aside from the fact that the messages being exchanged
through a Tcp channel are binary encoded, you cannot encrypt your Tcp channel
communications. Despite this limitation, when compared to the Http channel, the Tcp
channel is the quickest and most efficient Remoting channel you can use.

The Http Channel

SOAP is a tool that allows applications to send their object-to-object calls across the Internet
using the HTTP transmission protocol. HTTP calls traditionally go through the computer’s
port 80, which is the same port used for standard Web browser requests and responses.
Because SOAP allows you to send your object requests through this universally acceptable
port, your calls are able to pass through most firewalls unhindered. This ability to pass
through firewalls gives the Http channel a longer reach than the more restrictive Tcp channel
and the older DCOM method. Like the Tcp channel, the Http channel allows message traffic
to move in both directions.

SOAP is based on the XML technology, which means the message and its enclosing
envelope are self-describing and can be read and created by any application. Because of
this openness, client and server objects involved in a Remoting scenario using the Http
channel do not both have to be created in .NET. As you read in the Tcp channel description,
you do not have this kind of freedom when connecting objects through the Tcp channel
because an object using this channel must be able to understand its proprietary binary
message format. Because of the Http channel’s XML text formatting and the fact that it uses
the popular and sometimes busy port 80, the Http channel is a little less efficient than its Tcp
channel cousin.

Sinks

A communications sink chain is the entry and exit point that messages use when entering
and leaving a particular application domain. Within the sink chain are multiple sinks, each
with their own function. One sink handles the formatting of the message to prepare it for
transmission, whereas another sink handles the task of transmitting that formatted message
across the network. On the receiving end, another sink receives the message from the
network and passes that message to yet another sink that decodes the message’s format
and hands the original message to the receiving application domain. This process might
sound very familiar to anyone with an understanding of the seven network layers and how
they work to format and transmit application data across a network.

Figure 13.2 shows a client and a server object, each enclosed in their own application
domain. The client object in this example sends a request to a function encased in the server
object. You can see by looking at this figure how the original message is passed from one
sink to another in the client’s application domain until the message reaches the network. On

the server’s end of the network, the message goes through a similar process in reverse until
the original message is presented to the server object.

Figure 13.2: Remoting and communication sinks.

Ports

Communications passing into and out of a computer go through a port. When your Web
browser requests a Web page from a remote Web server, this call normally goes through
port 80, and the Web server listens for your request on its port 80. Other Internet utilities
such as Telnet and FTP use their own ports to send data out to the world. DCOM uses many
different ports to communicate, and which port it uses is out of your control. You have to rely
on DCOM to decide which port to choose. The downside of this is that most firewalls block
the ports that DCOM uses to communicate.

In .NET Remoting, you have the ability to define which port your channel will use to
communicate. By default, the Http channel uses port 80 to send out your requests mixed in
with the Web traffic, which almost ensures that your calls will not be blocked by any firewalls
lying between your client and server objects. You can opt to use another port to send your
calls through, although you will need to examine the network layout between your client and
server objects to ensure that this port is not blocked along the way, which will cause your
object calls to fail. You can even change ports with the Http channel, which enables you to
send messages using the HTTP protocol and SOAP message across any port in the same
way you would use port 80.

When choosing a port to use, be careful not to use a port that is already in use. You should
not use a customized port number under 1000 because most of these numbers are reserved
for server-specific uses. One example of defining a new port is a machine that houses more
than one instance of a Web server. The first Web server will use the standard port 80,
whereas other instances of the Web server will define other ports to listen to. Port 8088 is a
popular port on which to set up a new Web server instance.

If you are using a Windows NT/2000/XP system, you can view your machine’s port
configuration by using the Notepad program to look at the Services file located in
C:\Windows\System32\Drivers\Etc. This file lists the ports your computer has defined as
being in use and which communication protocol is using them. You should find the HTTP
protocol pointing to port 80 in this configuration file.

Registering a Channel

Before a client and server object can communicate across a channel, that channel must first
be configured and registered with the server. The client object will register a channel on the
calling machine, and the server object will have a channel registered to listen for client
requests on. Because a server object can have multiple listening channels configured, the

developer of the client object must know what type of channel is being used in order to
configure and register the client’s channel appropriately.

Channels can either be created on the fly within your application’s code, or you can use a
predefined channel using a channel template or configuration files. Channel templates are
external configuration files that can be loaded into an application at startup and save you a
great deal of coding effort. You will see examples of both of these methods in the Immediate
Solutions section. You’ll learn how to create client and server objects that register their own
channels directly from their source code. You’ll also see an example of how you can create a
channel registration template and use it from your application’s code.

Remoting Communications

Now that you have an understanding of how Remoting uses channels to send messages
back and forth between the client and the server objects, it is time to take an in-depth look at
the messages themselves. I’ll examine how your client’s call is formatted and how the
parameters that are passed over to the server object are marshaled. You will learn about the
role that the formatter sink plays in the Remoting process and how your client-side objects
work with proxy versions of the server-side object.

Remoting Messages

Data is sent back and forth across the communications channel inside of a Remoting
message. During its trip, this message can be transformed and modified in many ways. The
initial message is generated by a routine that calls out to the remote server object. This
remote procedure call can include parameters to pass along information needed by the
server object to perform its duties. The message passes through both the client’s and the
server’s sink chain, and the format of the message is altered to prepare it for transmission on
the client’s end, which extracts the original message on the server’s end. Additional
information can be added to the message during transmission through the message’s
CallContext.

Messages created in .NET Remoting implement the IMessage interface, which in essence is
a dictionary object containing the data and properties of that message. You will find the
IMessage interface in the .NET Framework under the
System.Runtime.Remoting.Messaging namespace. Remember that the message is the
client’s request and its associated parameters. This message is sent from one object to
another across a channel, and the message’s format is modified by one or more sinks. Next,
let’s take a look at how parameters are marshaled in a Remoting call.

Marshaling Data in Remoting

When making method calls to local objects, you have the choice of passing your data ByRef
(by reference) or ByVal (by value). The ByRef option keeps a copy of the data at the source
location and only passes a reference pointer to the receiving procedure to tell it where the
data it needs is located. The ByVal option makes a copy of the data and passes that copy
over to the receiving object. ByVal gives the receiving object its own copy of data, so if any
changes are made to it, the original data is not affected. Although ByVal does provide
protection for your original data values, there is a performance cost to be paid for passing
actual data values back and forth between objects as opposed to the slim and efficient
pointers passed in the ByRef method.

In Remoting, the server object resides in a separate application domain, often on a separate
machine. Any ByRef pointers passed would not be understood because the data would

remain back in its native application domain, out of reach from the server object. A class’s
default method is to serialize itself, which means an exact copy of your data is sent to the
server object for processing. For Remoting purposes, objects that serialize themselves
cannot be used in Remoting and are said to be nonremotable. In order to properly exchange
data between Remoting objects, you need a ByRef marshaling method that can travel
between two different application domains.

You can bypass the class’s natural tendency to serialize itself through the use of inheritance.
The System.MarshalByRefObject base class does not serialize itself, but instead maintains
the copy of the object within that object’s own application domain. The following example
shows a class that inherits from the System.MarshalByRefObject base class to use this
functionality:

Public Class Utilities

 Inherits System.MarshalByRefObject
 'Class source code goes here

End Class

Like the ByRef data marshaling method, the object that is inherited from the
MarshalByRefObject base class will maintain a copy of the data within the object’s
application domain and pass a simple reference to that copy to the remote object. The .NET
Framework and the CLR will recognize a MarshalByRefObject situation and use that
reference pointer to make calls back to the client’s application domain to examine and
access the marshaled object.

You may see marshaling by reference abbreviated as MBR, as in “I am using an MBR object
in my Remoting application.” Using a MarshalByRefObject can greatly decrease the
network traffic that occurs between your client and server objects. Because only a simple
pointer to the original object instance is passed in lieu of the entire object itself,
MarshalByRefObject is without a doubt the most efficient way to marshal data in Remoting.

Tip

When designing your application’s base classes for use in inheritance, if the
base class you design inherits from the System.MarshalByRefObject base
class, any classes derived from your base class will also use
MarshalByRefObject.

Formatters

The formatter sink is responsible for serializing your client object’s message and applying
any channel-specific formatting to that message. If you are using the Tcp channel, the
formatting sink turns your message into a binary file. The formatter sink for the Http channel
places your message into a SOAP envelope to prepare it for transmission. The formatter is
only responsible for transforming your message to a format suitable for transmission.

Thanks to formatter sinks, your code does not have to deal with the complexity of serializing
and formatting messages to comply with specific channel formats. The formatter sink uses
one of two classes to do its work. If your objects are using a Tcp channel to communicate
with, the formatter uses the Binary.BinaryFormatter class of the
System.Runtime.Serialization.Formatters namespace. If you are using the Http channel
with your objects, the formatter is derived from the Soap.SoapFormatter class.

Note

You will need to add a reference to the
System.Runtime.Serialization.Formatters.Soap base class to reference
the Soap.SoapFormatter in your source code.

Proxies in Remoting

When your .NET routines call out to a remote function, they do so through the use of a local
version of that function, which is known as a proxy. A proxy is a hollow ghost image of the
object located on the remote server, which appears locally to the calling function. It is the
proxy’s job to reroute that function call to the remote object, and then receive that object’s
response and present the results to the caller. Chapter 8 covers proxies within the
discussion of XML Web services.

In Remoting, there are two levels of proxies. The top-level proxy that the calling client object
deals with is known as a TransparentProxy. As the name implies, this is a very thin, see-
through proxy class that acts as the intermediary to RealProxy class. It should come as no
surprise that all of the real proxy work is done in the RealProxy class. The
TransparentProxy handles all of the client object interaction and basic data packaging,
whereas the RealProxy class handles the bulk of the work, including communications with
the server object. You can see where the TransparentProxy and RealProxy fit in the
communications between the client and server objects by looking at Figure 13.3. Developers
wanting to enhance the role of the Remoting proxy object can extend and customize the
TransparentProxy class.

Figure 13.3: Proxy classes in a Remoting client-server session.

Call Context

The call context is a package of information that is sent along with your object’s message.
Your application can make configuration settings that are stored in the call context and read
by communication sinks along the way. Those sinks can also make entries into the call
context to pass informational data along with the message. Remoting creates an object
named CallContext to give your code access to this data. This object’s two main methods
are SetData and GetData, which provide write-to and read-from access to the data stored
within the CallContext. You will see a couple of examples of the CallContext object’s use
scattered throughout the Immediate Solutions section of this chapter. Here is an example of
some code that writes an informational message to the CallContext object, and then
immediately reads it back out again:

Dim MyObject As New Object()

CallContext.SetData("UserObject", MyObject)

The CallContext object can be found in the System.Runtime.Remoting.Messaging
namespace. You can use its SetData method to attach an object to the message traveling
across the channel between the client and the server. This message can be added at any
level of the communications chain and can be added to both the incoming and outgoing
messages. The first parameter of the SetData method is the name you reference your
stored object by. The second parameter must be an object. To read data added to a
message using the SetData method, you use the GetData method like this:

Dim ReadObject As New Object()
ReadObject = CallContext.GetData ("UserObject")

The GetData method takes only the reference name as its single parameter and provides as
its output the object stored under that reference tag. Use the CallContext object to attach
special notes and handling instructions to your Remoting messages. These attachments can
include additional parameters or client information. Obviously, attaching a CallContext that
either the client or the server object is not aware of is futile, so you might only elect to use
the CallContext when your development team is working on both objects involved in the
Remoting session.

SOAP in Remoting

With SOAP, you can wrap a message or object call in an XML-based envelope that enables
you to send this message using the HTTP protocol. You will learn a great deal more about
SOAP in Chapter 14. SOAP is the technology that makes XML Web services possible, and it
also plays a crucial role in .NET Remoting as well. A primary advantage of using SOAP
messaging across the Internet using the HTTP protocol is that you use a widely
understandable and universally accepted network protocol and message format. SOAP,
XML, and HTTP are not Microsoft controlled technologies, and any developer, no matter
which tool they prefer working with, is free to use these technologies in their applications.

Another advantage of using SOAP messaging in Remoting is that SOAP makes it possible
for anyone to read your messages, which is not true of the DCOM and Tcp channel methods
of Remoting. SOAP is self-describing, so the receiver of your message does not have to
have preexisting knowledge of that message’s format, nor do they have to perform any
secret handshakes or use a proprietary communications protocol to receive those
messages. SOAP opens up a whole new world of possibilities in the subject of remote
procedural calls. In the next few years, SOAP over HTTP will probably become the universal
standard for all development languages to follow.

Remoting Servers

When discussing client and server Remoting objects, it makes sense to start by describing
the server object because without a server object, the client object cannot participate in any
Remoting activities. Server objects are also a little bit harder to create than their partner
client objects, so once you get the gist of how the server object is created, the rest of
Remoting comes easy.

A server object is not part of the client object’s application, even though the client object calls
out to the server object for help. The server object lives in its own application domain,
typically on a different machine than the client object. Your development team might have a
hand in developing the server object, or your application might be calling on a server object
from an outside source (also known as “black boxes” because you have no idea what’s
going on inside of these objects). In many circumstances, the server object will not be
running when the client object makes its call to it, so the object will need to be initialized and
connected to the Remoting channel. Because server objects can be very complicated, a
great deal of planning needs to go into their development and configuration. This section
discusses how you should design and configure the server objects you create.

Developing Remoting Servers

Developing a Remoting server requires that you address many different issues in addition to
your normal object development planning issues. You have to consider your server object’s

use of resources and estimate the number of concurrent client objects that will use your
server object. A server object can present a significant drain on a machine’s resources, so
careful planning of that object’s activation and lifetime settings is critical. The following
questions should be answered when you are planning a Remoting server object:
§ Should my server object be available to the outside world or is it a nonremotable

object?
§ What type of activation should I use with my server object?
§ Will my server object be stateless or stateful?
§ What is the life span of my object?
§ Should I use the Http or Tcp channel?
§ What type of formatter should I use?
§ Is my object’s configuration reusable, and if so, should I place it in an external

configuration file?
§ How should I manage the versioning of my server object?

Next, you will learn about configuring your server objects and implement the answers to the
preceding questions in the actual design and development of your server objects. Following
the configuration section, you will learn about how server objects are versioned.

Host Applications

A server object must actively listen for requests from client objects. Server objects will
typically be created within class Library projects, which by themselves are not capable of
staying active and listening to a port on the host machine. In Microsoft Transaction Server
(MTS) and COM+, you had the ability to register your class Libraries inside an MTS package
that would handle the listening chores for you. For a .NET server object, you need to create
an application that acts as the listener and agent for your server object. This application will
be loaded on the host server and will remain active to monitor the registered channels. If the
server object’s hosting application closes, the server object will not be accessible to its
clients.

You could host a server object from many different types of applications, including Windows
Services or a Console project. You could even host a service from a Windows Application
project as long as that hosting application stays loaded to do its job. In most cases, making
your hosting application a Windows Service that loads when the server boots up is the best
solution. Windows Services are closely tied to the operating system; they can automatically
start at server boot, and they can operate behind the scenes without any forms or windows
being opened on the desktop.

When the host application starts, it registers the channel and the server object with the .NET
Framework. Once the server object is initialized, the host application listens for client
requests on the registered channel. When a request is received, the host application loads
the server object into its application domain and passes the client’s call to the service. In
Figure 13.4, you see a host application and a class Library project containing a server
object. Both applications run in the same application process.

Figure 13.4: The host and the server object applications.

Remember, it is the host application that registers the channel and configures the Remoting
environment, either programmatically or through the use of an external configuration file. The
class Library containing the actual server object can remain dormant and quiet until called
upon by a client. If the class containing the server object is not contained within the host
application, that application will need a reference to the class so it can load it when needed.
When the server object is called upon, it will be loaded into the host application’s application
domain and processed.

Remoting Server Configuration

As you might have guessed from reading about all the details involved in setting up a
Remoting object (types of channels, registering channels, sinks, etc.), configuring your
Remoting objects will take a little bit of time and knowledge. Luckily, once you have one
object configured correctly, future object configuration tasks will seem pretty simple. In fact,
one proven Remoting configuration file can be reused again and again, either through the
reuse of a single configuration file or through the tried and trusted method of copying and
pasting. In this section, I discuss how you can load a server object configuration file and how
to create that configuration file.

Loading a Configuration

You can store your server object’s configuration settings in a text-based file and read those
settings into the server when the object is initialized. Within the System.Runtime.Remoting
namespace is a class named RemotingConfiguration. You can use this class’s Configure
method to read in the text configuration file and initialize your class. Here is an example of a
Sub New() that does this:

Public Sub New()

 RemotingConfiguration.Configure("remoteserver.cfg")
End Sub

Because reading a file from the file system is inherently error prone, I highly suggest you
surround this Configure method in a Try, Catch, Finally structure. This will allow your
server object to continue to load, even if someone has mistakenly deleted or renamed your
configuration file. Server objects can be created without the aid of a configuration file by
programmatically making all the necessary settings. Next, you’ll see the type of information
that can go into a configuration file and why using them is such a good idea.

The Configuration File

If you choose to configure your Remoting object through the use of an external configuration
file, you will use a set XML schema to create this file and make your settings. The advantage
of using an external configuration file is that this one file can be reused by more than one
channel-creating function and even by multiple projects. The little bit of time spent

configuring a channel through an external file will save you a lot of time later on—time you
would otherwise spend typing out code to configure your channels programmatically.

Visual Studio .NET Remoting understands a specific schema of XML tags to configure your
objects. Table 13.1 lists these tags and provides a description of their usage. The following
example shows what a configuration file might look like for a Remoting server object:

<configuration>

 <system.runtime.remoting>
 <application>

 <service>
 <wellknown mode="SingleCall" objectUri="MyServer"_

 type="Class1, Class1"/>
 </service>

 <channels>
 <channel ref="http"/>

 </channels>
 </application>

 </system.runtime.remoting>
</configuration>

Table 13.1: Remoting configuration file schema tags.

Tag Name Description

<configuration> The open tag for the configuration file.

<system.runtime.remoting> The namespace under which Remoting falls.

<application> Entries contained within this tag all belong to a
single application.

<service> Contains the server object configuration tags.

<channels> The parent tag of the channel configuration section.

<channel> Specific information to configure the channel, such
as an Http or Tcp channel type.

<clientProviders> Parent tag for the client object’s channel sink
configuration information; client only.

<serverProviders> Configures the server object’s channel sink; server
only.

<client> Encloses the client channel configuration tags.

<formatter> Configures the formatter the channel uses to format
its messages.

<wellknown> Declares the server object instance that this client
object will use.

<lifetime> Can be used to configure the object’s activation
lifetime.

Table 13.1: Remoting configuration file schema tags.

Tag Name Description

<activated> Used to configure client activated objects (CAO);
client only.

In this configuration file, you see that the server object is configured to be a “wellknown”
object using single call activation. The server object’s name is MyServer, which is the name
that the client objects will use to reference it. The MyServer object creates an Http channel
that uses binary formatting to prepare its messages.

Programmatic Configuration

Using the RemotingConfiguration class in the System.Runtime.Remoting namespace,
you can configure your client or server object and register it directly from your source code
without calling out to an external configuration file. The first step in configuring an object for
Remoting is to establish a channel, either Tcp or Http. You create a new instance of the
TcpChannel or HttpChannel class and assign a port number to it. The next step is to
register this channel instance with the .NET Framework. Once the channel is established,
you can register your object to use this channel. In the following example, I establish a
channel and register a server object named MyServer to respond to Tcp calls coming in on
port 8881:

'Configure the channel
Dim MyChannel As New TcpChannel(8881)

'Register the channel

ChannelServices.RegisterChannel(MyChannel)

'Register your service as a WellKnownServiceType
RemotingConfiguration.RegisterWellKnownServiceType(Type.GetType(_

 "MyClass"), "MyServer", WellKnownObjectMode.SingleCall)

The process of registering your server object occurs during the application’s startup phase.
The application is started on the host machine, and the configuration code sets up the
communication channel and registers the server object with the host, making it available to
the outside world. In my example, the object I am making available is a class called
MyClass. The URI that the outside world will use to reference this object is MyServer.
During registration, you declare what type of activation you will be using. In my configuration
example, the MyServer object is registered to use single call activation.

Registering a Server Object

When you register a server object with the .NET Framework, you are making that object
available to client objects through Remoting and you are declaring that object’s URI and
activation type. You use the RegisterWellKnownServiceType method of the
RemotingConfiguration class to register a server object for use. This method accepts the
following parameters:
§ The type of object you are registering
§ The URI that clients will use to identify that object
§ The activation mode the server will use to activate the object

In my programmatic configuration example, the object I am making available is a class called
MyClass, which is available inside the same application domain as my registering code. The
URI that the outside world will use to reference this object is MyServer. During registration,
you declare what type of activation you will be using. In my configuration example, the
MyServer object is registered to use single call activation.

Versioning

Yet another advantage that Remoting holds over DCOM and other methods of making
remote object calls is that Remoting takes advantage of .NET’s assembly- versioning
feature. Before, with DCOM, your client objects would be built to call upon a single instance
of a server object on a remote server. If that server object’s creator developed an upgraded
version of that component that changed something about that object’s interface, there was a
good possibility that your client object would encounter an exception when calling the
upgraded server object. This problem is one of many symptoms of a common problem
known as “DLL Hell.” COM developers could also cause problems for client objects by
recompiling DLLs and generating a new Globally Unique Identifier (GUID), which is the
unique identifying ID number that a COM object uses to call out to another COM object.

With non-Remoting objects in .NET, every time you recompile an assembly, a brand new
instance of that assembly is created. Your machine can have many instances of the same
assembly, each with its own unique address. When a client object is compiled with a
reference to another object, it references that object’s exact version ID, so even though a
developer changes and recompiles that object, the version that the client object references
remains unchanged, and the client object continues to work.

In Remoting, clients can reference server objects by their unique ID, which is also known as
a strong name. If the client controls the activation of the server object, as in a CAO
activation, the client’s configuration settings will decide which version of the server object is
used. If the server object is activated by the server, as in single call and singleton objects,
the server object’s configuration setting decides the version that will be used. Specifying a
version number for a server object is not required, and if no version number is given, the
server object uses the latest version of the assembly to create its object. The configuration
settings used in a client and server configuration setting file was covered in the previous
section “The Configuration File.”

Remoting Clients

The client object is the customer in a client-server transaction. A client does not have any
control over how a server object works or how it does its job. It only has the ability to ask for
something and hopefully get the results it expects. In order to use a server object, the client
object must have an understanding of the server object’s interfaces and how the server
object communicates with the outside world. Obtaining either the server object’s source code
or a detailed description of its interfaces and channel configuration is a crucial first step to
using that object. Of course, if your development team created the server object, this
information is easy to obtain. But if you are working with a third-party object, a little more
work may be involved.

When a client object needs to work with a server object, that client object needs to configure
a communication channel for use in its call. If the server object is using singleton or single
call activation, the client object does not have to control that server object’s lifespan. If the
server object allows for CAO, the client will have some additional configuration to make in
order to control the lifetime of the server object. In this section, I cover client object
configuration issues and discuss how to make calls to server objects.

Calling a Remoting Server

From the client object’s perspective, there are two ways of calling a server object: using
remote server-side activation and using client-side activation. There is no difference between
singleton and single call server objects from the client object’s point of view. In the next two
sections, I discuss the two ways that client objects can call on remote server objects and
explain how this can work using both external client object configuration files and
programmatic configuration commands.

Remote Server Object Activation

If the server object only allows server-side activation, as in singleton and single call objects,
the client object’s job is quite easy. The server object is referred to as a “wellknown” object
because on the server object’s host machine, that service has been registered and therefore
is known publicly. In a client object using an external configuration file, you will see a
<wellknown> tag that sets up the reference to the server object. Here is an example of a
<wellknown> tag pointing to a server named RemoteServer listening on port 8881. The
server object’s URI name is MyServer. The MyServer object is said to be of type Class1 in
this example:

<wellknown url="tcp://remoteserver:8881/MyServer" type="Class1,_

 Class1" />

After this configuration file has been loaded using the RemotingConfiguration.Configure
method, the client object’s code will be able to create a local proxy class instance of the
MyServer object through its type, Class1. To programmatically register a server object that
uses server-side activation, use the RegisterWellKnownClientType like this:

RemotingConfiguration.RegisterWellKnownClientType(GetType(RemotingSe
rver._

 Class1), "tcp://remoteserver:8881/MyServer")

This line of source code registers the Class1 object hosted on the remote server machine.
The server object uses a Tcp channel listening at port 8881. The server object was
registered with its host server using the URI name of MyServer.

Client Activated Objects

If the client object needs to control the server object’s activation and lifetime, it can do so
through CAO if the server object allows it. When the server object configures itself, it can
specify that CAO is allowed. Take a look at the following configuration file:

<configuration>
 <system.runtime.remoting>

 <application>
 <lifetime

 leaseTime="5S" sponsorshipTimeout="5S" renewOnCallTime="25S"_
 leaseManagerPollTime="30S" />

 <service>
 <wellknown type="MyServerType, RemoteType" objectUri=_

 "MyServer" mode="Singleton" />
 <activated type="MyClientType, RemoteType" />

 </service>
 <channels>

 <channel port="8881" ref="http" />
 </channels>

 </application>
 </system.runtime.remoting>

</configuration>

The server object configured by this file listens to the Http channel defined at port 8881 using
the <wellknown> tag. The server object also allows client objects to activate and control it
through CAO. The <activated> tag lets the hosting machine know that this server object
allows client-side activation.

If a client opts to use client-side activation instead of the provided server-side activation
channel, the client object will modify its configuration settings. If your client object uses an
external configuration file, use the <activated> tag to configure this. Here is an example of a
CAO client object configuration file:

<configuration>
 <system.runtime.remoting>

 <application>
 <client url="http://remoteserver:8883">

 <activated type="MyClientType, RemoteType" />
 </client>

 <channels>
 <channel ref="http" port="0" />

 </channels>
 </application>

 </system.runtime.remoting>
</configuration>

In the <client> tag, you see a URL pointing to port 8883 on the remote server. The
<activated> tag names the URI defined for CAO activation by the server object,
MyClientType (seen previously in the <activated> tag in the server object’s configuration
file). To programmatically configure a client object to activate and control a server object,
you use the Activator object.

The Activator

The Activator is a class found directly under the System namespace that you could use to
create instances of both local and remote objects. Table 13.2 lists the four methods found
within the Activator class. Because this chapter is only concerned with Remoting, I will
focus on the GetObject method.

Table 13.2: Methods of the Activator class.

Method Description

CreateComInstanceFrom Allows you to create a COM object instance from an
assembly instance

Table 13.2: Methods of the Activator class.

Method Description

CreateInstance Creates an instance of an assembly

CreateInstanceFrom Creates a new assembly instance from an already
running instance of that assembly

GetObject Used to create proxy classes that represent remote
objects and XML Web services

Client objects use the Activator.GetObject method to create a local proxy instance of the
remotely located server object. Here is an example of using the GetObject method to set up
a local instance of the object named MyObject:

'Declare a new Http channel for the client

Dim MyChannel As Http.HttpChannel
MyChannel = New Http.HttpChannel(8881)

'Register the Http channel

ChannelServices.RegisterChannel(MyChannel)

'Dim a variable for the remote server object
Dim MyObject As MyClientType

'Use Activator to get a local proxy instance of this object

MyObject = CType(Activator.GetObject(Type.GetType("MyClientType,
object"),_
 "http://remoteserver:8883/MyServer"), MyClientType)

The server object’s URI is MyServer; it is hosted on a machine named remoteserver
listening to port 8883. The server object’s type is MyClientType. I start out by declaring an
Http channel for the client object and registering this with the machine. Next, I Dim an object
to be of type MyClientType. In addition, I use the Activator.GetObject to get a local proxy
instance of the remote server object specified.

Client Configuration Files

Like server objects, a client object can be configured programmatically through its source
code or through the use of an external configuration file. You will again use the
RemotingConfiguration.Configure method to load the XML configuration file into your
client object. The Configure method reads in the file settings and use those settings to
configure your client object’s channels and formatters for use with the remote server object.
Here is an example of a client object’s external configuration file:

<configuration>

 <system.runtime.remoting>
 <application>

 <channels>

 <channel ref="http">
 <clientProviders>

 <formatter ref="binary" />
 </clientProviders>

 </channel>
 </channels>

 <client>
 <wellknown url="http://remoteserver:8881/MyServer"_

 type=" Class1, Class1" />
 </client>

 </application>
 </system.runtime.remoting>

</configuration>

This configuration file sets up an Http channel using a binary formatter. The client calls out to
a <wellknown> server object located on remoteserver, which is accessible through port
8881. The client in this example relies on the server to activate the object, using either single
call or singleton activation.

Remoting Security

Making an object available to other objects outside of its parent application domain can raise
a lot of security issues during the server object’s design phase. You might not want everyone
to have access to your server object, or you might be concerned about exchanging
messages that can be intercepted and read by a third-party not involved in the client-to-
server object transaction. The two main areas of security you need to be concerned about
with Remoting are object-level security and communications security.

Communications Security

As messages travel back and forth between the client and the server object, there is a
possibility that these messages can be intercepted and read, even without your application
being aware of it. If your client and server objects are inside a corporate firewall, the threat of
exposure to unauthorized personnel is pretty slim, but if your object communicates over a
great distance or uses the Internet to exchange messages, that threat is very real. The Tcp
channel, although more efficient than Http, does not have any built-in methods of encrypting
and protecting its messages. For this reason, you should only opt to use Tcp when your
application resides within a secure corporate networking environment.

If your client and server objects use the Internet to communicate, you should strongly
consider using an Http channel to connect them. If you host your server objects on an
Internet Information Server (IIS) and use Http as its channel, you can take advantage of IIS’s
encryption and authentication technologies to protect your messages. Secure Socket Layers
(SSL) allows a server and a client to authenticate each other through the use of certificates,
and then creates a secure pipeline between them that uses encryption to protect the
exchanged data from being read. The IIS Web server is also capable of authenticating
requests from a client against NT login accounts using NT LAN Manager (NTLM). If the
requester does not provide a username and password that the Web server recognizes, the
request is denied.

Object Security

The objects you create in .NET can use code access security to control who can use your
objects and what actions those objects can perform on behalf of that user. You can perform
code access checks within any .NET object, including your Remoting server objects. Using
the new security features in the .NET Framework, you can permit or deny certain actions
within your code. This explicit control on an object’s powers helps prevent malicious use by
unauthorized client objects. You can read more about .NET’s security features in Chapter 7.

Creating a Remoting Server

It is the Remoting server object’s job to wait for calls from client objects, and then service
those calls as needed. Creating a server object involves creating the object itself and
creating a host to administer and execute your object on the client’s behalf. You must
configure the host application with all of the necessary Remoting information, such as
channel type and port number, and the host application will then use this setup whenever it
is run. When the host application closes down, so too does the listening channel; therefore, it
is important to create a host application that remains running. Console applications and
Windows Servi ces are good choices for server object host applications.

To create a host application and a server object, follow these steps:
1. Add a reference to the System.Runtime.Remoting namespace.
2. Add Imports System.Runtime.Remoting to the top of your host application’s class

file.
3. In the host application’s startup function (the Main() or New() subroutine), configure

your Remoting server object programmatically or by using an external configuration
file.

4. Inherit your server object’s class from the MarshalByReferenceObject base class.

In the following example, I create a Console application project to act as the host for my
server object. Next, I create a class Library project named Utilities, inherit this class from the
MarshalByRefObject base class, and give it one method named CalcSalesTax. This
portion of my server object is self-explanatory, and creating classes and methods can be
understood by any object-oriented developer. The hosting application will be started on the
server to register and configure the Remoting channel the server object will respond to.

1. Create a new Visual Basic .NET Console Application project, and call it
RemotingServerHost.

2. In the Solution Explorer window, right-click the RemotingServerHost project title, and
select Add Reference. On the .NET tab of the Add Reference window, double-click
System.Runtime.Remoting to add it to the list at the bottom of this window. Click
OK at the bottom of the window to finalize the addition of this reference.

3. Select File|Add Project|New Project.
4. Select the Visual Basic .NET Class Library project, name it RemotingServer, and click

Open to add it to your solution.
5. Within the Class1 class in the file Class1.vb, enter the following source code:

6. Public Class Class1

7. Inherits System.MarshalByRefObject
8.

9. Public Function CalcSalesTax(ByVal SalesPrice As
Double) As Double

10. Dim TaxRate As Double = 0.05

11. CalcSalesTax = SalesPrice * TaxRate

12. End Function
13. End Class

14. In the Solution Explorer window, right-click the host application project,
RemotingServerHost, and select Add Reference. Click the Projects tab of the Add
Reference window. You should see the RemotingServer project available in the top
listbox. Double-click this item, and then click OK to add a reference to this project.

15. In the Solution Explorer window, double-click the Module1.vb item found underneath
the RemotingServerHost project. Edit this module to add the following source code:

16. Imports System.Runtime.Remoting
17. 629

18. Imports System.Runtime.Remoting.Channels
19. Imports RemotingServer

20.
21. Module Module1

22.
23. Sub Main()

24. 'Register and configure the server object and its
channel

25. RemotingConfiguration.Configure
("C:\RemotingCfg\Server.cfg")

26.
27. 'Add a delay here to keep the Console Application

running
28. Console.WriteLine("Press any key to close the

RemotingServerHost")

29. Console.ReadLine()
30. End Sub

31.
32. End Module

33.
34. Save your Solution by selecting File|Save All.
35. Open a text-editing tool such as Microsoft Window’s Notepad. Enter the following

server configuration information into the text file:

36. <configuration>

37. <system.runtime.remoting>
38. <application>

39. <service>
40. <wellknown mode="SingleCall"

objectUri="TaxServer"_
41. type="Class1, Class1"/>
42. </service>

43. <channels>
44. <channel ref="tcp"/>

45. </channels>

46. </application>
47. </system.runtime.remoting>

48. </configuration>
49.

50. Select File|Save As. Save this file to c:\RemotingCfg\Server.cfg (you can use the
Create New Folder icon on the Save As window to create the RemotingCfg folder). If
you choose to save this configuration file elsewhere, be sure to update the
RemotingConfiguration.Configure ’s path to this file in the Module1 Main
subroutine.

51. In Visual Studio .NET, start your application by pressing F5. A console window
opens, and after a brief pause, displays the message: “Press any key to close the
RemotingServerHost.” As long as this window is open, your server object is available
to service client requests.

52. Press Enter to end your Console application and terminate your server object.
53. Click the RemotingServer project in the Solution Explorer window, and then select

Build|Build Solution. A DLL is created named RemotingServer.dll.
54. Click the RemotingServerHost project in the Solution Explorer, and then build it by

selecting Build|Build Solution. An executable file named RemotingServerHost.exe is
created in your project’s Bin directory.

The host application uses a configuration file loaded during the Console application’s Main()
subroutine to configure the server object’s communication channel and register the server
object with the .NET Framework. Notice that it is the Console application that loads this
configuration file and establishes the Tcp channel to listen on. During your test run, the
RemotingServer project is never called and loaded into the application domain. You then
need to create a client object to call upon this server object. You will create this client object
in the “Creating a Remoting Client Using the Tcp Channel” Immediate Solution.

Let’s look at the class Library project that contains the CalcSalesTax function that the server
object exposes. This class looks like any other class you might create, with no signs of the
Remoting namespace. It is the host application that acts as the Remoting agent for the class
Library project that performs all of the difficult work. The host application holds a reference to
the RemotingServer project as well as the System.Runtime.Remoting namespace,
whereas the RemotingServer project does not have any such references added to it.

Save this project because you will use this sample project in numerous other Immediate
Solutions, such as “Creating a Remoting Client Using the Tcp Channel.” Remember that
your host application must be running in order to allow your server objects to respond to
client object requests.

Programmatically Configuring a Remoting Server

In the “Creating a Remoting Server” Immediate Solution, you created a host application that
configures the Remoting server through the use of a text file containing the configuration
settings. You can also configure your server programmatically inside your source code. This
is useful for specialized, highly customized server configurations; the configuration you
create in your Remoting server host will not be reusable.

Instead of loading a configuration file in the host application’s Main() or New() subroutine,
you can configure your channel and register your server object like this:

Sub Main()
 'Register channel

 Dim MyChannel As New Tcp.TcpChannel(8881)

 'Register MyChannel with server

 ChannelServices.RegisterChannel(MyChannel)

 'Register server object
 RemotingConfiguration.RegisterWellKnownServiceType(GetType_

 (RemotingServer.Class1), "TaxServer", _
 WellKnownObjectMode.SingleCall)

End Sub

In this Sub Main() routine, a new instance of a TcpChannel is created and assigned to port
881. This channel instance is then registered with the server. Then, the routine uses the
RegisterWellKnownServiceType method to register the server object. The host application
project holds a reference to the RemotingServer project, which contains a class named
Class1. The class is the first parameter in the RegisterWellKnownServiceType method.
The second parameter is the URI for that service that clients will use to reference it. In my
example, I call my server object TaxServer. The last parameter tells the server object what
type of activation the server will use, which is SingleCall in my example. This could also be
Singleton if the situation calls for this activation method.

Creating a Remoting Client Application

The way a client object uses a remote server object is very similar to how any class instance
uses any other class. The big difference in Remoting is that the client object must first
configure a Remoting channel to talk to the remote object, and then register that object for
the client code to use.

In a non-Remoting scenario, when one class talks to another, the two classes talk directly to
each other without any special assistance. In Remoting, the client class talks to a proxy
class that forms a local representation of the remotely located server object. This gives the
client object the sense that it is talking to a locally located class, even though the proxy class
and the Remoting framework are repackaging and communicating the client object’s calls to
a far off location. Unless you want to extend the proxy class’s functionality, its existence and
role will virtually go unnoticed when creating a Remoting client application.

Use the following steps when connecting a client object to a server object:
1. Add a reference to the System.Runtime.Remoting namespace within your client

application.
2. Add a reference to the server object’s assembly.
3. Add Imports System.Runtime.Remoting to the top of your client object’s class.
4. In your client object’s startup function (the Main() or New() subroutine), configure your

client object by either loading an external configuration file or through source code
configuration.

To show how a client object works, I will create a Windows application that accepts a dollar
value as its input and calls out to a remote server object to get the sales tax for that dollar
value. The output of the Windows application will be a message telling the user what the
total price of the item is, including the sales tax provided by my remote server object.

Note

This example requires the RemotingServer example created in the “Creating

a Remoting Server” Immediate Solution. If you have not completed the
server object, please return to that section and do so; then return to this
example.

1. Create a Windows Application project in Visual Basic .NET and call it RemotingClient.
2. Add a TextBox control to the upper-left of the surface of Form1. Add a Button control

directly beneath the TextBox and a Label control below the Button control.
3. Set the Button’s Text property to read “Calculate Sales Price”. Set the TextBox’s and

Label’s Text properties to be blank. Figure 13.5 illustrates what your Windows Form
should look like.

Figure 13.5: The Sales Price application Windows Form.

4. Double-click the Button control to access the code behind.
5. In the Solution Explorer window, right-click the project name, RemotingClient, and

select Add Reference. Click the Projects tab at the top of the Add Reference window.
Click Browse and locate the project directory for the RemotingServerHost application
created earlier. Once located, double-click the Bin subdirectory. Double-click the
RemotingServer.dll file to add it to the lower listbox, and then click OK to finish adding
this reference.

6. Add the following code to the top of the Form1’s source code:

7. Imports System.Runtime.Remoting
8. Imports System.Runtime.Remoting.Channels

9. Imports System.Runtime.Remoting.Channels.Tcp
10. In the Form1’s New event, add the following source code below the

InitializeComponent() line:

11. 'Configure the Remoting environment
12. RemotingConfiguration.Configure("c:\RemotingCfg\Client

.cfg")
13. Locate the Button1_Click event, which was exposed when you double-clicked the

Button in step 4, and add the following code to this event:

14. Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As_

15. System.EventArgs) Handles Button1.Click

16. Dim FinalPrice As String
17. Dim TotalPrice, SalesTax As Double

18.
19. 'Make sure there is a number in the textbox and if

not, error out
20. If Not (IsNumeric(TextBox1.Text)) Then
21. MsgBox("Please enter a number in the TextBox!",_

22. MsgBoxStyle.Exclamation)
23. Exit Sub

24. End If

25.
26. 'Create an instance of the server object

27. Dim MyUtil As New RemotingServer.Class1()
28.

29. 'Place the code using the remote server in a
Try/Catch/Finally

30. 'structure to catch any access errors that might
occur when you

31. 'use that object
32. Try

33. SalesTax =
MyUtil.CalcSalesTax(CDbl(TextBox1.Text))

34. Catch MyErr As Exception

35. 'If remoting session had trouble, report it here
36. MsgBox(MyErr.Message)

37. Exit Sub
38. End Try

39.
40. 'Figure final price (returned SalesTax plus the

entered value)
41. TotalPrice = SalesTax + CDbl(TextBox1.Text)

42. FinalPrice = Format(TotalPrice, "###,##0.00")
43. Label1.Text = "Final Price = $" & FinalPrice

44. End Sub

45. Save your RemotingClient project by selecting File|Save All.
46. Open a text editing tool such as Window’s Notepad. Enter the following configuration

file:

47. <configuration>
48. <system.runtime.remoting>

49. <application>
50. <channels>

51. <channel ref="tcp">
52. <clientProviders>

53. <formatter ref="binary" />
54. </clientProviders>

55. </channel>
56. </channels>

57. <client>
58. <wellknown url="http://localhost:8881/TaxServer"

type="Class1,_
59. Class1" />

60. </client>
61. </application>

62. </system.runtime.remoting>
63. </configuration>

64. Select File|Save As and save this file as c:\RemotingCfg\Client.cfg. Close the text
editing tool.

65. Using the Window’s Explorer tool, locate the RemotingServerHost application created
in the “Creating a Remoting Server” Immediate Solution. This should be located in
your Visual Studio Projects folder under RemotingServerHost/Bin. Execute and run
the file named RemotingServerHost.exe to start the Console application. When the
console window starts, you should see the message “Press any key to close the
RemotingServerHost.” Do not press any keys; simply leave this host window active
for the next step.

66. Return to your RemotingClient project in Visual Studio .NET and run it by pressing
F5.

67. Type a dollar amount (example: 44.68) into the TextBox, and click the Button. The
Label control displays the price of the item with the sales tax figured in.

In the RemotingClient application, I placed the client configuration code in the Form1 New
event. This ensures that the configuration is executed as soon as the form is created, but
never re-executed during the form’s lifetime. If you placed the configuration inside the
Button1 Click event, the function would work the first time, but on the second time around, it
would error out because that channel and remote server object has already been configured.
Even though the Click event ends, the configuration stays active within the application.

Because dealing with remote objects can be dangerous, it is a good idea to surround your
remote procedure calls in exception-handling structures, such as a Try, Catch, Finally. Your
code should be able to recover from a situation where the remote server object becomes
unavailable.

Programmatically Configuring a Remoting Client

In the Sales Price application, I used an external configuration file to set up my client object
for Remoting. I could also configure my channel and connect to the server object through my
source code without accessing the file system. Using programmatic configuration can make
your object more customized, but for most cases, I would recommend using an external
configuration file that you can reuse in multiple projects. Having to type in your configuration
calls for each and every server and client object involved in a Remoting transaction can be
time-consuming and error prone, and I am a big fan of saving time and avoiding errors.

Now that I have preached the virtues of code reuse and external configuration files, I’ll show
you how to configure your objects programmatically (also known as the hard way). Take a
look at the following example:

Dim cliChannel As TcpChannel

cliChannel = New TcpChannel(8882)
ChannelServices.RegisterChannel(cliChannel)

Dim MyUtil As RemotingServer.Class1
MyUtil = CType(Activator.GetObject(GetType(RemotingServer.Class1),_

 "tcp://remoteserver:8881/TaxServer"), RemotingServer.Class1)

As with the server object, my first step with the client object is to configure a communications
channel. I create a new instance of a TcpChannel, assign it to port 8882, and then register

this channel with the machine. Next, I create a new instance of the RemotingServer.Class1
class. Your project must be holding a reference to this class before you can create an
instance of it. Then, I use the Activator object’s GetObject method to call out to the
RemotingServer object. Notice that the first parameter figures out the data type of the
RemotingServer.Class1 object. The second parameter looks like an Internet URL except
the protocol used is “tcp” instead of the familiar “http” before the ://. Because the TaxServer
server object is listening to port 8881, I append this port to the end of the server name. The
final parameter is the RemotingServer.Class1 object itself.

Using the programmatic configuration method is a bit more complicated because you need
to remember which items need to be configured and the exact syntax to perform this task.
With the external configuration file, you only need to know the tagging schema and which
data elements and their matching values you need to pass in. The
RemotingConfiguration’s Configure method handles the rest of the job, matching up your
elements and values with the proper configuration commands.

Using the Http Channel to Call Remote Objects

So far in my examples I have used the Tcp channel to create a client and a server object.
You can opt to use the Http channel in place of the Tcp channel. Although not as efficient as
Tcp, the Http channel uses SOAP to wrap its Remoting messages, which makes your
messages universally understandable. Http can also pass through common Internet ports,
such as port 80, which allows this protocol to pass through most firewalls unabated.

As mentioned earlier, there are two ways to configure your object: programmatically or by
loading an external configuration file. Here is an example of a configuration file setting up a
client object to use an Http channel:

<configuration>
 <system.runtime.remoting>

 <application>
 <client>

 <wellknown type="RemoteType, RemoteAssembly"_
 url="http://remoteserver:8883/MyHttpServer" />

 </client>
 <channels>

 <channel type="System.Runtime.Remoting.Channels.Http._
 HttpChannel,System.Runtime.Remoting" port="8884" />

 </channels>
 </application>

 </system.runtime.remoting>
</configuration>

The Remoting server called in this configuration is named MyHttpServer, and it listens to
port 8883. The remote server object is registered for the client object in the <wellknown>
tag. The client object sets up its own communication channel within the <channels> tags,
declaring port 8884 to be its own.

You can perform the exact same configuration within your object’s startup code like this:

'Declare a new instance of the HttpChannel
Dim MyHttp As Http.HttpChannel

MyHttp = New Http.HttpChannel(8884)

'Register the HttpChannel with the machine
ChannelServices.RegisterChannel(MyHttp)

'Declare the remote server object

Dim MyService As RemotingServer.Class1
MyService =
CType(Activator.GetObject(GetType(RemotingServer.Class1),_
 "http://remoteserver:8884/MyHttpServer"), RemotingServer.Class1)

The programmatic version creates the exact same client object configuration as the external
file schema example.

Setting Up a Lifetime Lease

Both server controlled singleton and client controlled CAO objects can have lifetime leases
defined for them. These leases decide how long the object will live before its instance is
destroyed, requiring the creation of new instances to handle additional object calls. Lifetime
leases do not apply to the server-controlled single call object because the object’s instance
is destroyed at the end of every call, never to be reused again.

In contrast to the single call object, a single instance of the singleton object can live beyond
the call that created it, and this one object will be used to service all client calls received
before its lifetime lease runs out. The CAO method lets the client object control the server
object’s lifetime. The client can keep the server object active for multiple calls or deactivate
that object at will. You will see an example of using lifetime leases with CAO objects in the
next solution.

The lifetime lease for a server controlled singleton object can be defined either in its
configuration file or through the source code that configures your server object. Here is an
example of a configuration file that defines a lifetime lease for a singleton object:

<configuration>

 <system.runtime.remoting>
 <application>

 <lifetime leaseTime="1M" sponsorshipTimeout="0S"_
 renewOnCallTime="1M" leaseManagerPollTime="30S" />

 <service>
 <wellknown type="ServerActivatedType, RemoteType"_

 objectUri="MyServer" mode="Singleton" />
 </service>

 <channels>
 <channel port="8881" ref="http" />

 </channels>

 </application>
 </system.runtime.remoting>

</configuration>

Look at the contents of the <lease> tag because this is where the lifetime lease of the object
is defined. This tag has four attributes, each with a time value assigned to it. Values that end
in M are in minutes, S in seconds, H for hours, and MS for milliseconds. If an attribute has a
time value of zero, that attribute’s lifetime is set to be indefinite.

The first attribute, leaseTime, declares the standard lifetime an object will have. When the
lease expires, the server sends a notice to the object that has sponsored or created that
object. The sponsorshipTimeout setting declares how long the object waits to hear back
from its sponsor before completely destroying itself. Every time a client object calls this
server object, the server object’s lifetime is extended by the amount of time declared in the
renewOnCallTime parameter. This helps keep the server object busy and alive for the next
call. The leaseManagerPollTime parameter decides the time interval that the lease
manager uses to recheck this object. In my example, I set the lease manager to 30 seconds,
which means every 30 seconds the lease manager examines this object to see if it has
expired.

An object can monitor its own lifetime lease through the ILease interface. The object can use
the CurrentLeaseTime property to find out exactly how much time it has left to live (don’t we
all wish we could find this out!). Even better, the object calls the ILease’s Renew method to
reset its lifetime lease to a new duration. The four attributes in the <lease> tag can also be
read and set programmatically through the ILease interface.

Creating a Client Activated Object and Determining Its Lifetime

CAO objects give the power of activation and lifetime lease control to the client. The server
object must explicitly declare that it is allowing CAO activation before a client can use this
power. This is a defensive measure on the server object’s part because if client objects are
allowed to control the server object’s lifetime, it is possible that server object lifetimes can be
set to some fairly high numbers, thereby keeping those server objects in memory for far
longer than they might be needed. As more and more clients activate your server object
through CAO, the more server resources will be drained. It’s probably best to only use CAO
within a single application and avoid allowing outside developers to decide the lifetime your
server objects will use.

To use CAO, you need to make special configuration settings for both your server and your
client objects. The server object’s configuration file must specify that it will allow CAO calls.
You can support more than one type of activation type, just as an object can support more
than one channel or port. In the following configuration file, the server object, which uses an
Http channel listening on port 8881, defines a lifetime lease, and in the <wellknown> tag,
states that it uses singleton activation. In the <activated> tag, the server object declares that
it will allow CAO:

<configuration>
 <system.runtime.remoting>

 <application>
 <lifetime

 leaseTime="30S" sponsorshipTimeout="10S"
renewOnCallTime="15S"_
 leaseManagerPollTime="25S" />

 <service>
 <wellknown type="ServerTypeName, RemoteType"_

 objectUri="MyServer" mode="Singleton" />
 <activated type="ClientTypeName, RemoteType" />

 </service>
 <channels>

 <channel port="8881" ref="http" />
 </channels>

 </application>
 </system.runtime.remoting>

</configuration>

A client object can call this server object without using a CAO configuration, and the server
object will work using its singleton configuration settings. But, if the client object wants to
control the server object’s activation and lifetime, the client object will change its Remoting
configuration to use CAO. Here is the configuration file a client would use to take advantage
of CAO in its server object calls:

<configuration>

 <system.runtime.remoting>
 <application>

 <client url="http://remoteserver:8881">
 <activated type="ClientTypeName, RemoteType" />

 </client>
 <channels>

 <channel ref="http" port="0" />
 </channels>

 </application>
 </system.runtime.remoting>

</configuration>

Instead of using the <wellknown> tag to register the server object, the CAO client object
configuration file uses the <activated> tag. The URL and port number in the <client> tag
matches the remote server object’s listening port (shown inside the <channels> tag of the
previous configuration file). The <activated> tag calls the server object’s <activated type>,
which was named ClientTypeName in this example.

Encrypting Your Remoting Object’s Messages

The Tcp channel uses a binary message format, which can provide your Remoting
messages with some degree of security, but it is not capable of encrypting your messages
with strong encryption algorithms. If your application design calls for remote object
communications across an unsecured environment (i.e., the Internet), you should forgo the
Tcp channel and select the Http channel. Because the Http channel can work in concert with
the Microsoft’s IIS Web server, you can encrypt your Remoting messages the same way you
can your Web page request and response calls.

The IIS Web server uses SSL to encrypt the communication between the server and the
remote Web browsers. The Web server administrator must first install the SSL package into
IIS before you can use it to secure your Remoting messages. Once installed, using SSL is
simply a matter of adding a single letter to your object reference URLs. Without SSL, you
would reference your Http objects like this:

http://remoteserver:8881/MyServerObject

To enable SSL in your Remoting calls, simply add an “s” after the “http”. This tells the server
to use the secure channel, which is on a different port than the normal unsecure Http
channel. If a Web server normally uses port 80 to listen for unencrypted Web page requests,
it might use port 8080 to listen to the “https” version of those requests. Here is the same
URL using SSL:

https://remoteserver:8080/MyServerObject

You need to make this change wherever the “http://” appears in your configuration files or in
your programmatic configuration section. You will also want to change the port you are using
to match up with the Web server’s SSL port number. To find out which port your Web server
is using for SSL, use the Internet Services Manager application found under the
Start|Program Files|Administrative Applications menu.

Chapter 14: SOAP and XML
By David Vitter

In Depth

In this chapter, I revisit XML and discuss some of its associated features, such as XML
schemas, transformations, and how ADO.NET uses XML. Next I will cover Simple Object
Access Protocol (SOAP), which plays a vital role in Microsoft’s XML Web services and
Remoting technologies. Visual Studio .NET was built on top of an XML framework, which is
really amazing considering the fact that XML is an open source technology not under
Microsoft’s control. You will see how XML and SOAP can be used to level the playing field in
the development world and make cross-platform applications a reality. Imagine a world
where Java-based applications and Windows applications can interact and exchange data.
This is the brave new world that open source messaging formats are making possible today.

Advanced XML

It is pretty hard to create a Visual Studio .NET project and not work with XML. It’s in your
XML Web services, it helps you make remote calls to objects located on another machine,
and XML forms the backbone of the ADO.NET data access technology. In this section I will
talk about XML’s role in ADO.NET, how XML can be used to persist your application data,
and how XPath can help you search through large files of XML data. You will also be
introduced to the XmlConvert class, which will help you convert data types from .NET to
native XML and back again.

XML and ADO.NET

As you will read about in Chapter 15, ADO.NET is a complete reworking of Microsoft’s Active
Data Objects (ADO) data access component. This latest version was designed to natively
use XML to describe and communicate data where past versions were only able to translate
their contents to XML or vice versa. The ADO.NET DataSet, which is the main object you will
work with when manipulating your data, is capable of reading and writing not only XML, but
XML schemas as well. Table 14.1 lists the DataSet methods you can use to work with XML
using ADO.NET. In Chapter 5, you learned about the many tools found within the
System.Xml namespace to work with XML messages, but you should be aware that
ADO.NET DataSets provide another powerful way to work with your data.

Table 14.1: ADO.NET DataSet methods for working with XML.

Method Function

ReadXml Fills a DataSet with the contents of an XML message

WriteXml Dumps the contents of a DataSet to an XML file

ReadXmlSchema Reads a schema file into the DataSet and uses that schema to

define that DataSet ’s structure

WriteXmlSchema Creates a schema file that describes the DataSet ’s structure

ADO.NET also uses XML to serialize the contents of a DataSet and transmit that data from
one point to another. Past versions of ADO used COM interfaces to serialize data, which
worked well until that data ran into a firewall that did not permit COM to pass through. XML is

text-based and can be passed through a firewall using SOAP messaging via the same port
that HTML Web pages are allowed to pass through. This gives ADO.NET developers the
ability to move their DataSets beyond the firewall and the corporate network.

Data Persistence with XML

XML can be used for more than simply exchanging data between applications or moving
DataSets from one point to another. XML is capable of describing and storing data in such a
sophisticated fashion that a file of data in XML format is almost like a miniature database.
This feature of XML allows you to create temporary storage files to remember bits of
information. Web applications often use XML to persist data on a Web server, so pieces of
information about a user’s visit to a particular Web site can be remembered from one page
request to the next.

Picture a Web surfer visiting an online widget store. When he spots a widget he cannot live
without, he can add it to his shopping cart with the click of a button and then continue
shopping for more items. Back on the Web server, the store’s application creates a
temporary XML file on the server with some unique data to identify that shopper (such as a
SessionID) and appends the requested widget to that file. Web servers are inherently
connectionless and stateless, which means that without a little help, the Web server cannot
remember information about a visitor once a requested page has been delivered. As the
user selects more and more items, the temporary file grows, allowing the Web server to
remember these shopping selections. When the visitor finally purchases the items and
leaves the Web site, the server can erase this temporary mini-database, making room on the
hard drive for more files. You can also use XML to persist data such as user settings,
preferences, personal information such as age or interests, and much more.

XPath

When dealing with very large XML messages, it can often be difficult to find the exact item
you are looking for. XPath was created as a supporting technology for XML that allows users
to search through an XML message and locate particular items. You will find XPath in the
.NET Framework located prominently within the System.Xml.XPath namespace.

XPath parses your XML message into tag elements and their values, which allows you to
perform searches such as “FirstName is equal to Dave” or “EmpID is greater than 50”.
Because XPath knows which parts of the message are the data element names and which
parts are their corresponding elements, it can step through your message and locate the
items that match your search criteria.

XmlConvert

Because schemas were designed to be universally understood, the data types you will find
inside an XML schema file do not directly match up with your .NET data types. Where .NET
uses an Integer data type, the XML schema uses an int data type. A String in .NET is also
a string in XML, but that is about as close as these two get to agreeing on a data name. In
order to deal with their differences, .NET provides a class named XmlConvert to help you
convert between the common language runtime (CLR) compliant data types and those that
the XML schema uses.

The XmlConvert class does all of its work through exposed methods, which act as
conversion tools. When writing String values from your .NET code to an XML document,
you can use methods such as ToBoolean, ToInt32, and ToDouble to convert your Strings
to an XML schema format. Schemas have to be more restrictive because the receivers of

your message might not know they need to convert a String value to an Integer to use it in
an equation, so you must be careful to use the most restrictive data type when writing your
XML schemas and messages. The following code example reads in a node from an XML
message and converts that value to an Integer for storage in a .NET data type:

Dim Converter As New Xml.XmlConvert()

Dim MyReader As New Xml.XmlTextReader("c:\XmlDocs\Employees.xml")
Dim MyInt As Integer

MyInt = Converter.ToInt32(MyReader.Read)

An XML message’s structure closely resembles that of the ADO.NET DataSet, which comes
as no surprise when you consider that the new DataSet was built with XML in mind. In
Chapter 15, you’ll learn all about the DataSet and its relationship to XML. The XmlConvert
class provides two methods that allow you to translate XML message structures into DataSet
structures and vice versa. The DecodeName method converts an XML object name into a
DataSet object name, and the EncodeLocalName converts your DataSet objects back into
XML object names. These DataSet object names include the DataTable and DataColumn,
which are not XML-compliant object types.

XML Schemas

A schema provides an outline for your document to follow and provides critical data rules to
control the values entered into your document. In the movies, when the bad guys come up
with a scheme, they plan out their evil deeds in great detail. Of course, it’s that one little
detail that they fail to plan for that thwarts their evil doings. When you create a schema for
your XML messages, you plan the exact format and data types that your message will be
required to use. If you apply a schema to a message that violates any of the rules you
defined, bad things can happen!

Your schemas will be written using the XML Schema Definition (XSD) language, which
defines the tagging formats that you use to define your messaging formats. If you worked
with or read about XML prior to Visual Studio .NET’s release, you may have heard of
Document Type Definitions (DTDs). XSD schemas have evolved from DTDs and offer many
improvements over their predecessor, such as reusable and inheritable data types. All of the
pieces and functions associated with an XML schema are found within the
System.Xml.Schema namespace.

Examining an XML Schema

Pull out your scalpels, because it’s time to dissect another message. This time you are going
to look at an XSD schema file, which closely resembles the XML files you have already
looked at. Despite the resemblance, you will not see any actual data surrounded by tags
within the schema document. Take a look at the following example:

<xsd:schema id="NewDataSet" targetNamespace="" xmlns="" xmlns:xsd=_

 "http://www.w3.org/2001/XMLSchema" xmlns:msdata=_
 "urn:schemas-microsoft-com:xml-msdata">

 <xsd:element name="NewDataSet" msdata:IsDataSet="true">
 <xsd:complexType>

 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="Employees">

 <xsd:complexType>

 <xsd:sequence>
 <xsd:element name="EmpID" type="xsd:int" minOccurs="0" />

 <xsd:element name="EmpName" type="xsd:string" _
 minOccurs="0" />

 <xsd:element name="HireDate" type="xsd:string"_
 minOccurs="0" />

 <xsd:element name="OfficeID" type="xsd:int" _
 minOccurs="0" />

 </xsd:sequence>
 </xsd:complexType>

 </xsd:element>
 </xsd:choice>

 </xsd:complexType>
 </xsd:element>

</xsd:schema>

Once again, this example is presented in a neat and organized fashion that uses spaces and
carriage returns to neatly separate data elements. Indentations mean nothing to the
procedure that is reading in this schema, but the order in which these tags appear means
everything. Notice that many of the tags in this schema are self-terminating, meaning that
there is a / at the end of the tag’s description, and you do not see a closing version of the tag
such as you did with the <Employee> and </Employee> tags in the XML example.

The tags that do have a matching closing tag do not enclose data, only other elements of the
schema. In fact, nowhere in this schema will you find any actual data, only tags that describe
what format a message using this schema will adhere too. The following sections list the
individual schema pieces, some of which are shown in the preceding example, whereas
others are not. Understanding what these items are and how they fit in to the scheme of
things will help you create your own schemas.

Simple Types

In an XML schema, a simple type is like a single property or attribute that you can define
and customize. For instance, every XML message you author may have a single standalone
data element named CompanyURL to let the receiving party know the URL to your
company’s Web site. If you defined this data element using a simple type, it would look like
this:

<xsd:simpleType name="CompanyURL">
 <xsd:restriction base="xsd:string" />

</xsd:simpleType>

The only tag that is included with your simple type is a <xsd:restriction> that defines the
acceptable data type for this field, which is the XML string type. Simple types do not have a
subelement, nor do they allow you to define attributes. You can add more restrictions and
rules for your simple data type by including facets within your simple type’s tag set, which I
will cover in the “Facets” section.

Complex Types

A schema complex type is an element that contains separate attributes and other elements
below it. In the object-oriented world, your objects are complex types because they have
properties and methods that describe them. Here is an example of a Car complex type in
XML schema format:

<xsd:element name="Car">

 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="CarMake" type="xsd:string" />
 <xsd:element name="CarModel" type="xsd:string" />

 </xsd:sequence>
 <xsd:attribute name="NumDoors" type="xsd:string" />

 </xsd:complexType>
</xsd:element>

The Car is an element that has two string type elements below it, CarMake and CarModel,
and one string attribute named NumDoors. Notice that the subelements below Car are
placed within a <xsd:sequence> set of tags to separate these elements from their parent
element, the Car. A complex type can closely resemble a database table, and you can even
assign a key to one of the elements or attributes of your complex type, just as you would
define a primary key in a database table. You will use a key element to do this, which I will
discuss in the “Key” section.

Elements

The element is the basic unit in a schema. Elements were all over the schema example I
provided earlier. EmpName, EmpID, and HireDate are all elements of the schema. An
element tag can contain other element tags, as the Employees element tag does in the
sample schema file. At a minimum, the element tag defines both the name of this element
and the data type this element must use. Here is an element tag from the previous example:

<xsd:element name="EmpID" type="xsd:int" minOccurs="0" />

This element’s name is EmpID, which in the actual XML message will be enclosed by
<EmpID> and </EmpID> tags. The data type for EmpID is an Integer, which in XSD
translates to xsd:int. The minOccurs parameter is an optional attribute of the EmpID tag.
Setting the minOccurs or minimum occurrences to zero means that this parameter is not
mandatory. If the minOccurs attribute is not a part of an element tag, then this element is
mandatory and must be represented in the message.

Attributes

An attribute can be added to a complex type to help describe that type in some way, just
like you would add attributes to your objects when creating a class in your source code.
Examples of attributes include FirstName, LastName, Age, and OfficeID. An attribute
cannot have attributes or elements below it in the schema hierarchy. Attributes can only use
predefined data types, such as the XML string or int data types. Because the simple type is
a way to create your own customized data type in XML, you can assign your attribute to use
a simple type that has already been defined within the schema.

In the following example, a complex type named MyStore uses one attribute that uses the
basic XML string data type to define MyStore ’s address and a second attribute called
Name that uses a customized simple type named StoreName to define this new data type:

<xsd:element name="MyStore">
 <xsd:complexType>

 <xsd:attribute name="Address" type="xsd:string" />
 <xsd:attribute name="Name" type="xsd:StoreName" />

 </xsd:complexType>
</xsd:element>

Groups

Using a group in your XML schema allows you to define the exact order that a set of
elements or attributes must appear in. Picture a schema that defines attributes named
CarMake , CarModel, and CarPrice. Without a group, these tags could appear in any order
within the XML message. Here is what these tags would look like within a group tag:

<xsd:attributeGroup name="CarInfo">

 <xsd:attribute name="CarMake" type="xsd:string" />
 <xsd:attribute name="CarModel" type="xsd:string" />

 <xsd:attribute name="CarPrice" type="xsd:string" />
</xsd:attributeGroup>

In an XML message adhering to a schema that includes this group, all three attribute tags
would have to appear in order for that message to be considered valid. If the CarPrice tag
comes before the CarMake tag, the message will not be valid.

Element groups come in three different forms: all, sequence, and choice. The all version of
the element group requires that all elements listed inside of that group appear within your
XML message, but they can appear in any order. The sequence group also requires that all
of the elements be present, and they must be listed in the exact same order defined within
the XML schema. The choice version allows the message’s author to choose one, and only
one, of the elements listed within the group. For example, you could have a choice group
named FuelType , and the elements could be Leaded, Unleaded, and Diesel. In an XML
message that uses the FuelType group, the author would choose only one FuelType
element and use that in his message, ignoring the other element choices.

Keys

Complex types in your XML schema can have keys, just like a database table. A primary
key is the main identifying item for that complex type, and it must always be present and
always be a unique (no duplicates) value. If you created a complex type to define your
Employees, every employee in that table would be assigned a unique EmpID to identify
them. Within your XML schema, you would add a key directly below your complex type that
defines which element within the Employees complex type is a key. This is what the
schema tags would look like to define the EmpID element as a unique primary key for the
Employees complex type:

<xsd:key name="EmpPriKey" msdata:PrimaryKey="true">

 <xsd:selector xpath=".//Employees"/>
 <xsd:field xpath="EmpID"/>

</xsd:unique>

A primary key is the identifying field for a complex type and therefore can never be blank or
null. You can define keys for complex types that are not the primary key and are allowed to

be null. These are known as unique keys, and the schema tags to define such a key would
look like this:

<xsd:unique name="UserIDKey">
 <xsd:selector xpath=".//Employees"/>

 <xsd:field xpath="UserID"/>
</xsd:unique>

In the unique example, an element of the Employees complex type named UserID is
defined to be a unique key, but not the primary key for this complex type. This means that
each record can have a blank UserID field, but it cannot have a value in the UserID field that
duplicates a value entered in another record.

Facets

A facet is a way to place a constraint or a data rule on a simple type. The facet tags appear
nested within a simple type’s tag set, and the settings defined within the facet place a limit
on the data type defined for that simple type. The facet tags do not explicitly say “facet” in
them, but instead are named after the type of data limit that is being defined. Here is an
example:

<xsd:simpleType name="StoreName">

 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="20" />

 <xsd:minLength value="4" />
 </xsd:restriction>

</xsd:simpleType>

The simple type, StoreName, accepts a string data type. There are two facets applied to
this simple type, which declare that any value entered in the StoreName tag must be
greater than or equal to four characters and less than or equal to 20 characters. There are
six facets that you can define for a simple type: enumeration, length, maxLength,
minLength, whiteSpace , and pattern.

Relations

A schema relationship item defines a relationship between two elements within that schema.
Just as two tables in a database can have a parent-child relationship, so can two elements in
an XML schema. Going back to the Employees and Offices tables example; these two
tables have a relationship through a shared OfficeID, which is the primary key of the Offices
table and a foreign key in the Employees table. The following XML schema defines the
structure of both of these tables:

<xsd:element name="Employees">
 <xsd:complexType>

 <xsd:sequence>
 <xsd:element name="EmpID" type="xsd:string" />

 <xsd:element name="EmpName" type="xsd:string" />
 <xsd:element name="HireDate" type="xsd:string" />

 <xsd:element name="OfficeID" type="xsd:string" />
 </xsd:sequence>

 </xsd:complexType>
 <xsd:key name="EmployeesKey1" msdata:PrimaryKey="true">

 <xsd:selector xpath="." />
 <xsd:field xpath="EmpID" />

 </xsd:key>
 <xsd:keyref name="OfficesEmployees" refer="OfficesKey1">

 <xsd:selector xpath="." />
 <xsd:field xpath="OfficeID" />

 </xsd:keyref>
</xsd:element>

<xsd:element name="Offices">
 <xsd:complexType>

 <xsd:sequence>
 <xsd:element name="OfficeID" type="xsd:string" />

 <xsd:element name="OfficeName" type="xsd:string" />
 <xsd:element name="OfficeSym" type="xsd:string" />

 </xsd:sequence>
 </xsd:complexType>

 <xsd:key name="OfficesKey1" msdata:PrimaryKey="true">
 <xsd:selector xpath="." />

 <xsd:field xpath="OfficeID" />
 </xsd:key>

</xsd:element>

After the Employees complex type is defined, you see a <xsd:key> and a <xsd:keyref>
section highlighted. The key tag defines the primary key within the Employees complex
type as being the EmpID element. The keyref tags define the foreign key relationship
pointing the OfficeID element to the matching element in the Offices table. Below the Office
complex type definition tags, you see another set of highlighted tags that define the
OfficeID key for this table. Because the relationship points from the Employees table to the
Offices table, there is only one keyref set of tags in this message. If you were viewing this
XML schema in Visual Studio .NET’s schema designer window, it would look like Figure
14.1.

Figure 14.1: Two related elements in the XML schema designer window.

Internal Schemas

Some XML messages come complete with their own built-in schemas. When provided, you
will always find an internal schema at the top of the XML message because it is critical to
first communicate the rules and structure that your data will follow before you actually

communicate the data values. The plus side to using internal schemas is that you only have
to transmit one file to exchange the XML and schema with another party. The downside to
using internal schemas is that they are not reusable like external schemas.

To use an internal schema in a message, you first write your schema to your output file, and
then add the XML message below the schema. The schema tags will indicate to the
processor that schema elements are being read in until the processing application
encounters the </xsd:schema> tag, which indicates the end of the schema portion.

External Schemas

An external schema is a separate file from the XML message that is referenced at the top of
that message. To use external schemas, both the schema and the XML message that
references it need to be sent to the receiver unless of course that receiver already has a
copy of the schema that can be used. If you create an external schema for your messages,
you only have to write the schema once, and then make a simple reference to that file from
each message. If you opt to use an internal schema, the schema must be written every time
you send a message, which can slow down your messaging time. To reference an external
schema file, you can add a parameter to your top-level tag inside your XML message, which
will look like this:

<Company xmlns="http://www.myserver.com/MySchema.xsd">

In this sample reference to an external schema file, the schema is stored in a file named
MySchema.xsd on a Web server named www.myserver.com. This schema defines the
structure and data rules for a Company message, so all tags in between this <Company>
tag and its ending </Company> tag must adhere to the schema rules.

One way to simplify the storage and availability of your external schemas is to make them
available on the Internet or your company’s intranet. You would simply make your reference
tag point to a URL that tells where the schema is located and let the network take care of the
rest. If you are using industry-wide schemas or multicompany messaging systems, placing
your schemas in a common location allows everyone to access and use those schemas,
ensuring that all parties involved will be using the exact same schema every time.

XML Transformations

If you are developing an application that must exchange XML messages with an application
that was developed by someone else, odds are that your messaging schemas and the other
person’s messaging schemas are not an exact match. Even within the same industry,
different companies have different terms for their data elements and often focus on different
pieces of data, which can cause one person’s version of an XML message to look nothing at
all like another person’s version of the same message. In cases like these, you need a tool
that will translate one message schema into a schema that your application can understand
and work with. That tool is eXtensible Stylesheet Language Transformations (XSLT), which
is sometimes simply called transformations.

An XSLT transformation document is a standalone file that is based on the XML technology.
Using tags and logic statements, the XSLT file can act as a conversion tool that can read in
a file of XML, translate its contents to a different schema, and write out this newly formatted
file. The output file will always be text-based, but it may not always be an XML message.
You can create XSLT transformation files that convert XML messages into other formats,
such as an HTML Web page. If you are developing a Web application, you might use XML to
move data around on the application servers, but when it comes time to send the results to
the user’s Web browsers, XML alone will not work. However, you can perform a

transformation of your XML data into HTML and provide the browser with a neatly formatted
page for display.

XslTransform

The XslTransform class in the System.Xml.Xsl namespace provides you with the means to
take an XML message and an XSLT transformation file and create a new version of the
original XML message. There are two main methods in the XslTransform class that you will
deal with: Load and Transform. The Load method pulls in the XSLT file that you want to
use to perform your transformations. This file could be a part of your application or an
available XSLT file located somewhere on the Internet.

The Transform method takes in an XML file, applies the loaded XSLT file to it, and creates
an output file that is the result of your transformation. To use the XslTransform class, you
would create a new instance of this class, Load the XSLT file, and then Transform your
source XML document like this:

Dim MyXslt As Xml.Xsl.XslTransform = New Xml.Xsl.XslTransform()

MyXslt.Load(CType("http://myserver/MyXslt.xsl", String))
MyXslt.Transform(InputFile, OutputFile)

In this example, the MyXslt object is loaded with an XSLT file located on the myserver Web
server. You can add XSLT files to your Visual Studio .NET solution, or you can create these
files manually using any text editor, such as Windows Notepad. You will learn how to create
your own customized transformation file in the Immediate Solutions section of this chapter.

Introduction to SOAP

SOAP was designed to be a simple, lightweight (in other words, efficient) way to move XML
and other message types back and forth across the Internet. Before XML became the
preferred way to format data messages, Web browsers and servers used methods called
GET and POST to transport data to each other in a request/response pattern. If you want to
read more about how GET and POST work, you can find their descriptions in Chapter 8. The
GET and POST methods were well suited for the simple form data you often encounter
inside a Web page, but these two methods were not robust enough to handle a complex
data structure such as an XML message. As a result, a new Internet-ready protocol was
needed to support the growing XML developer’s movement.

SOAP is a messaging protocol that serializes a message for transport by wrapping an XML
message in what is known as an envelope and sending this package across the Internet
using HTTP, which is the primary transport protocol of the Web. It is possible to send SOAP
encapsulated messages using other protocols such as the file transfer protocol (FTP), but in
the majority of cases you will see the HTTP protocol employed. Figure 14.2 shows a step-
by-step example of how an XML message is packaged using SOAP, transported across the
Internet to the receiver, and then unpackaged for processing.

Figure 14.2: Sending XML messages across the Internet using SOAP and HTTP.

The SOAP Envelope

If you printed out all of the data in your database and wanted to send it to another company
for its review, you couldn’t just place that printout into the mailbox and expect it to reach its
destination. The mail service prefers that you place items inside an envelope that includes a
to and from address along with proper postage. XML messages by themselves are not
capable of journeying into the world without first being placed within an envelope. The SOAP
protocol provides this encapsulating envelope, which contains all of the necessary
information to get your data from point A to point B. Because SOAP is based on the XML
technology, the tags within a SOAP envelope look a lot like any other XML message. Take a
look at this example of a SOAP envelope:

POST /Customers HTTP/1.1

User-Agent: Windows2000
Host: 255.255.255.255

Content-Type: text/xml; charset=utf-8
Content-length: 999

SOAPAction: "/Company"

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas._

 xmlsoap.org/soap/envelope/" SOAP-
ENV:encodingStyle="http://schemas._
 xmlsoap.org/soap/encoding/"/>

 <SOAP:Header>
 <v:From SOAP:mustUnderstand='1'>dotnet@exploringvb.net</v:From>

 </SOAP:Header>
 <SOAP:Body>

 <Company>

 <Employees>
 <EmpID>11</EmpID>

 <EmpName>James Moffet</EmpName>
 <OfficeID>1</OfficeID>

 <HireDate>09/10/01</HireDate>
 </Employees>

 </Company>

 </SOAP:Body>
</SOAP-ENV:Envelope>

You can see the XML message contained within the SOAP envelope beginning with the
<Company> tag and ending at the </Company> tag. The actual XML data of a SOAP
message is called the Body of that message and is surrounded by a <SOAP:Body> set of
tags. The rest of this message was added by SOAP to prepare this DataSet for
transmission. The top six lines are a POST header added to the SOAP message that
describes the transmission file’s format (text using utf-8 characters), the total size of the
message, and the IP address of the machine that sent the message. The first tag of the
SOAP portion of the message lets the receiver know which version of XML this message is
based on. Next, the <SOAP-ENV> tag defines the location of the formatting and encoding
schemas used to build the SOAP tags.

The <SOAP:Header> section is where developers can create customized tags to send
information concerning this SOAP transmission to the receiver. It’s important that the
application that receives your SOAP message can understand those customized tags;
otherwise, that data will be ignored. In my example, I have a tag named <v:From>, which
communicates the developer’s Web address within the SOAP header. There is a
mustUnderstand attribute within this tag that is currently set to 1, which equates to the
Boolean value of True. This means that the receiving application must be able to understand
this SOAP header tag, and if it cannot, it will return an error to the sender. If you do not
include a mustUnderstand attribute in your customized tag, you allow the receiver to
process your message even if it is unable to understand your header tag.

SOAP and XML Web Services

XML Web services promise to be the next big thing in enterprise development, and it is XML
and SOAP that give XML Web services their power and flexibility. An XML Web service is
really just a component hosted on a Web site that other components can send requests to
and receive back information from. You format your requests to an XML Web service using
XML, and that service’s response will be returned in XML format as well. This makes it
possible for any application or development tool that can use XML and the Internet to take
advantage of XML Web services.

SOAP’s role in XML Web services is the packaging and transporting of XML messages back
and forth between the XML Web service and the caller. XML by itself is not capable of
traveling across the Internet, but if you wrap XML messages inside a SOAP envelope, you
have the ability to make a remote procedure call to any XML Web service located anywhere
in the world. SOAP can even carry those requests and responses through corporate
firewalls, which in the past were barriers that prevented application-to-application
communications. To allow for maximum flexibility, .NET XML Web services can also support
the GET and POST messaging protocols to send and receive data, although SOAP is
certainly the preferred protocol for XML Web services.

SOAP in Visual Studio .NET

You can find SOAP in the .NET Framework under the System.Xml.Serialization
namespace. If you want to work with SOAP programmatically, you should explore this
namespace, particularly the XmlSerializer class, which is directly responsible for serializing

messages for transmission and deserializing received messages for processing. For the
majority of .NET developers, this is deeper into the framework than you will want to venture
because Visual Studio .NET does a terrific job of handling your XML serialization chores for
you.

In Chapter 8, I discussed how applications can make calls to XML Web services, and you
learned how Visual Studio .NET creates a proxy class that is a local version of the remote
XML Web service sans any actual code (in other words, interfaces only). When a function in
your application makes a call to this remote service, the proxy class handles the chores of
translating your .NET data types and requests to an XML message, wrapping this message
in a SOAP envelope, and then sending it to the waiting service. When the response is
received from that XML Web service, the proxy class works in reverse, extracting the XML
message from the SOAP envelope, and then translating the XML data elements back into
.NET data types that your function will understand. Visual Studio .NET uses XML and SOAP
behind the scenes, hiding all of the complexity of Internet messaging and making your life so
much easier.

Messaging Using DCOM versus Using XML

Distributed COM (DCOM) is an enhanced version of COM that allows components to call
other components located on remote machines. Prior to DCOM, you could create a COM
component that made a procedural call to another COM component, but only if both
components resided on the same machine. With the introduction of DCOM, your
components could communicate across the enterprise’s network to make remote procedural
calls. This ability greatly improved your application’s scalability because you could locate a
single application’s components on multiple machines. If a particular component on a server-
based application was being heavily used, it could be moved to another server to balance
some of that application’s workload.

The communications that go between one COM object and another are in a Microsoft
proprietary format. Any components that do not understand COM are not able to make calls
to these COM components. For the same reasons, COM developers are not able to make
procedural calls to CORBA objects created in Java. This places a large wall between Java
and Microsoft developers, making cross-development tool projects almost impossible. In
addition to these DCOM limitations, most firewalls do not allow DCOM calls to pass through
them, limiting the reach of your procedural calls to the enterprise’s network and locking out
the rest of the known world.

XML and SOAP can be used to package your remote procedure calls and the response from
those remote components in a way that all development languages and tools can
comprehend. It does not take any special proprietary knowledge or technology to read and
write messages in XML, so your Visual Studio applications can make calls to XML and
SOAP-enabled Java components, and those objects can make calls to your .NET code.
Because SOAP transports XML messages using the same communications medium that
Web servers and Web browsers use to communicate, those corporate firewalls will normally
allow these remote procedural calls to pass, making around-the-globe procedure calls a
distinct possibility.

Creating an XML Message in Visual Studio .NET

There are a couple of different ways to create an XML message. Most developers use a
simple text editing tool, such as Windows Notepad, to create their first XML message. This is
fine if your message is short and sweet and you do not mind typing out your tags, but the
longer your message is, the more painful it is to create it using a text editor. Adding to the
pain in your fingers is the additional pain of ensuring that all of your tags are valid and that

no mistakes were made during input. A second method to create XML messages is to
dynamically write these messages from your source code.

Obviously, an automated tool that handles tag creation and validation for you would really
come in handy, and there are already some third-party tools available that can do just that
for you. In Visual Studio .NET, you have access to an XML editing tool directly inside of your
native development environment. This XML designer allows you to add a new item called an
XML File to your .NET solutions, and then edit this file in either a textual mode or a designer
mode, which provides you with tables in which to enter your data elements. The following
steps show you how to add an XML File to your solution, and then create a simple XML
message using both the text and data views:

1. Create a new Windows Application project using any .NET language you desire.
2. In the Solution Explorer window, right-click the project name, and select Add|Add New

Item.
3. From the Add New Item window, look under the folder named Data, and select the

XML File item. In the Name textbox, call this file SimpleMessage.xml, and then click
the Open button to add this item to your solution.

4. The XML File opens in text-editing mode. At the bottom of the main viewing area, you
will see two buttons: XML and Data. The XML view of your XML File shows the raw
text included in your message, whereas the Data view allows you to enter your data
elements using a table control. Click the Data button, and you will see a message
telling you that your XML document is not well formed. This is because the document
has not had a schema defined, so the Data view does not know which data elements
your document requires.

5. Click the XML button to return to the text editing view of your document. Notice the
targetSchema property in the Properties window. If you are creating an XML
message based on a predefined XML schema, you should bind your message to that
schema using this Properties window box. Adding a schema to a message will avoid
having to create your message’s structure. This will also enable the Data view
because the schema will provide all of the necessary information to outline the
document’s data elements. For this example, I will not use a predefined schema for
my XML message.

6. In the XML view of your message, notice that there is one tag already added for you:

7. <?xml version="1.0" encoding="utf-8" ?>

This first tag tells the receiver which version of the XML specification you will be using
(version 1.0) and which character set the text is based on (utf-8).

8. On the line below this tag, type this tag: <Employees>
9. When you type the final > of the <Employees> tag, you will notice that the editor

automatically adds a matching closing tag. Press Enter twice to move the
</Employees> tag down two lines.

10. In between the two <Employee> tags, type the following lines:

11. <EmpID></EmpID>

12. <EmpName></EmpName>
13. <HireDate></HireDate>

14. <OfficeID></OfficeID>
15. Again, all of the ending tags will be added for you automatically. You now have a

simple document schema planned but no data elements filled in. You could enter
some data between these tags, and then retype each set of tags for every employee
you want to place in this message, or you could do it the easy way. I prefer the easy
way, so click the Data button at the bottom of your XML message.

16. You will see two panes in your Data view. The left pane lists all tables defined within
the messages schema, which for this short message is just the Employees table. In
the right pane, there is a table much like a DataGrid control that lists the columns

within this table. You will see four columns corresponding to the four tags you entered
inside the Employees table.

17. In the DataGrid, enter data in all four columns for three separate employees. Use the
Tab key to move from field to field. When you tab out of the fourth column, a new row
will be added to your table.

18. Click the XML button at the bottom of this window.
19. Notice that there are now a lot more tags in your XML message. Your multiple

employee records are surrounded by a new pair of tags named <NewDataSet> . This
groups all of your employee records into a single DataSet, just like the one you would
find in ADO.NET.

The Visual Studio .NET XML designer tool is really helpful when you want to create static
and unchanging XML messages. But how often do you need to send a static message with
the same old data elements to someone? To create dynamic messages at runtime, use
either the XmlTextWriter class to write out your message in code or the ADO.NET
DataSet’s WriteXml method to extract your DataSet in XML format for transmission.

Related solutions: Found on page:

Writing an XML Document Using
XmlTextWriter

223

Parsing an XML Document Using
XmlTextReader

214

Using XPath 238

Using DataSets to Generate XML
Messages

718

Filling a DataSet from an XML
Message

720

Using the Document Outline Tool to View XML Message
Structures

XML messages can contain a great deal of hierarchical data, so much that it can be hard to
locate specific items in a message. If the message is not formatted using indentations and
carriage returns to separate data elements, it can also be difficult to visually comprehend a
message hierarchy. Fortunately, Visual Studio .NET provides a tool to simplify your message
layout into a familiar and easy to navigate outline view. When you are looking at an XML
message in Visual Studio .NET, you can open this window by selecting View|Other
Windows|Document Outline.

The Document Outline window provides a tree view look at your XML message’s elements.
Child elements are located beneath their parent elements in expandable and collapsible
trees, just like Windows Explorer uses to show directories and files. When you click an item
in the Document Outline window, the matching element’s definition tag is highlighted in the
XML design window. The link between these two windows only works when the XML
message is being shown in XML mode not in graphical Data mode. Figure 14.3 shows a
screenshot of the Document Outline window and the corresponding XML message. In the
Document Outline window, one of the HireDate elements is highlighted, and the matching
HireDate tag is highlighted in the text of the XML message. You can use the Document
Outline window with other text-based files, such as HTML Web pages.

Figure 14.3: The Document Outline window and an XML message.

Creating an XSD Schema in Visual Studio .NET

A schema is a file that defines the structure and a set of data rules that an XML document
will adhere to. You can create your schemas the hard way using a text editing tool such as
Windows Notepad, or you could opt to use the Visual Studio .NET schema designer tool,
which allows you to visually create your schema using familiar drag-and-drop techniques.

Defining a schema for your messages to follow avoids a lot of unnecessary trouble and
confusion between the sending and receiving applications. Because schemas do not contain
the actual data elements, they are highly reusable. You can add a single schema to your
.NET solution and reuse that file to send XML messages and also validate those you receive
from outside sources. Here is an example of how to add an XML schema to your project and
then define its structure and rules using the GUI designer tool:

1. Create a Windows Application project using any development language.
2. Right-click the project’s name in the Solution Explorer window, and select Add|Add

New Item.
3. Under the Data folder in the Add New Item window, select the XML Schema item, and

then click Open. An item named XMLSchema1.xsd is added to your project. This item
should now be open in your coding area in designer mode.

4. The schema designer tool has two modes: Schema and XML. The Schema mode
allows you to drag-and-drop items from the ToolBox window over to your design view,
whereas the XML mode shows you the raw text-based tags that make up your
defined schema. Click the XML button at the bottom of the designer window to see
the basic schema definition tags that are added to the top of every schema. These
tags define the XML specification version being used, the character set, and the
target namespace that owns this schema. A URL link is provided to the W3C’s
definition of the XSD specification for further information.

5. Click the Schema button at the bottom of the design window. If you look at the ToolBox
window, you will see a pane called XML Schema full of components. Click and hold
the element component and drag it over to the surface of your schema.

6. This element component appears as a miniature DataGrid that you can enter data into.
The top line contains the name of the element, so enter the word Employees in the
top-left box, and then press the Tab key three times. Your cursor should now be in
the box directly below the Employees name you typed in. The schema you will be
creating will match the one shown in Figure 14.1, so you can reference this figure at
any time to see if your schema values are correct.

7. In the current box, enter the word EmpID, and then press Tab three times. Repeat this
step to enter the words EmpName, HireDate, and OfficeID on the next three lines.

8. Click the XML button at the bottom of the schema designer window. Note that your
Employees element is a complex type, and the four values you entered below it are
elements of the Employees complex type.

9. Click the Schema button to return to the designer view. From the ToolBox window,
drag a key component over to your Employees box and drop it. A window pops up
asking you to define this key. Because the EmpID element is the first in the list, it
appears at the top of the Fields list window. This will be the complex type’s primary
key, so leave EmpID selected in the Fields list window and click the checkbox next to
the DataSet primary key item. Click OK, and you will see a small key to the left of the
EmpID element.

10. From the Toolbox, drag another element component and drop it to the right of the
Employees element. Name this element Offices, and then add the following three
elements to it: OfficeID, OfficeName, OfficeSym.

11. Drag a key from the ToolBox to the Offices box. The OfficeID element should be
selected in the Fields list window, and the DataSet primary key item should be
selected. Click OK to add this primary key to the Offices element.

12. Next, you want to add a relationship between your two elements. Drag a relation
component from the ToolBox over to the Employees element and drop it. Set the
parent element drop-down list to Offices. The child element box should already
display Employees. In the Fields list window, the key fields value on the left should
already display OfficeID. Set the Foreign key field value on the right side to OfficeID
as well. This means that the OfficeID value in the Employees table will be a foreign
key pointing to the Offices table’s OfficeID value.

13. Click OK, and you will see a line added to the schema design view connecting the
two tables. At the Offices end of this line, you will see a single dot connecting the line
to the element. On the Employees end, this line fans out into three lines touching the
Employees element. This represents a one-to-many relationship between the
Offices and Employees elements (as in, one office can have many employees
assigned to it). Your final schema should look like the one shown in Figure 14.1.

14. Click the XML button at the bottom of the design view and look at the schema tags
you created. You will see <xsd:key> tags that define the primary and foreign keys as
well as the relationship defined between your two elements.

You can add multiple XML schemas to your .NET solutions, and you can use these to write
new XML messages and validate existing messages for proper format. Creating standalone
schema files allows for maximum code reusability. Within your project directory, your
schema files will end in a .xsd extension, which is a standard naming convention for XML
schemas in XSD format.

Creating an XSD Schema from an Existing XML Message

You may be presented with an XML message that was supplied without the benefit of an
XML schema. Because schemas are the preferred way to define a message’s format, it
would be beneficial to your application to possess a schema for this message so it can be
used to validate future messages. One word of caution: before you create a schema from a
raw XML message, be sure that all parties agree on that message’s format before you begin
coding to its schema. If the message’s format changes after you code your application or if
the message you generated your schema from was missing some elements, your application
code will have problems when presented with other XML messages.

If you are certain that the sample XML message you possess does follow an agreed upon
standard, you can use Visual Studio .NET to generate a schema based on that message. To
illustrate how to do this, I will use the simple XML message created in the “Creating an XML
Message in Visual Studio .NET” solution. If you have already tried this exercise and have
saved your steps, you can open that project now and skip to step 2.

1. Create a new Windows Application project, and add an XML File item named
SimpleMessage.xml to that project. Enter the following tags into the XML File’s XML
view:

2. <?xml version="1.0" encoding="utf-8" ?>

3. <Company>
4. <Employees>

5. <EmpID>11</EmpID>
6. <EmpName>Bill Odin</EmpName>

7. <HireDate>12 Feb 2001</HireDate>
8. <OfficeID>TYZ</OfficeID>

9. </Employees>
10. <Employees>

11. <EmpID>22</EmpID>
12. <EmpName>Ted Willis</EmpName>

13. <HireDate>5 Jul 1999</HireDate>
14. <OfficeID>TYA</OfficeID>

15. </Employees>
16. <Employees>

17. <EmpID>33</EmpID>
18. <EmpName>Gerald Long</EmpName>

19. <HireDate>14 Mar 1987</HireDate>
20. <OfficeID>TYH</OfficeID>

21. </Employees>
22. </Company>

23.
24. Right-click the surface of your XML message, and click Create Schema.
25. A new item named SimpleMessage1.xsd is added to your project. Double-click this

item to open it. You will see the Employees complex type defined in the graphical
Schema view.

26. Click the Data button at the bottom of your schema’s design view to see the raw
schema tags. Notice that the data types for your data elements have been set to
xsd:string.

27. At the top of the code view window, click the SimpleMessage.xml tab to go back to
the XML message. You will then see a link to your schema in the <Company> tag
near the top of this message.

You can also add existing XML messages to your .NET solutions if you need to generate a
schema from a message not created in Visual Studio .NET. Any future messages your
application receives can be validated using the schema you just created to verify that the
latest XML message follows the same rules that the original message did. The more
restrictive a schema is, the better, so you might want to edit a generated schema to add data
rules (called facets) to further restrict the message’s data elements.

Validating an XML Message Using an XSD Schema

If you are working with a stored bank of message schemas and an outside application sends
you a message to work with, you may want to first validate that message against one of your

schemas. This will ensure that your code does not encounter an incorrect or ill-formed node
in the message when it comes time to process its contents. To validate an XML message,
you can use the XmlValidatingReader object, which uses an XmlTextReader object to pull
in the XML message combined with a schema that provides a reference with which to
compare the source document.

The following source code uses a function named ValidateXml. I developed this function to
be reusable by accepting an XML file name, an XML schema file, and the unified resource
name (urn) for that schema. The urn is the schema’s name, which is contained within the
opening schema tag inside the schema file. When adding a schema, you must use the
correct urn name for the file name that you specify. Take a look at this example:

Private Function ValidateXml(ByVal CheckFile As String, ByVal _
 CheckSchema As String, ByVal CheckUrn As String) As Boolean

 'Create a XmlTextReader and point it to the XML message
 Dim txtReader As Xml.XmlTextReader = New
Xml.XmlTextReader(CheckFile)
 'Create a XmlValidationReader and point it to the XmlTextReader
 Dim valReader As Xml.XmlValidatingReader = New_

 Xml.XmlValidatingReader(txtReader)

 'Add the XML Schemas to the XmlValidationReader
 valReader.Schemas.Add(CheckUrn, CheckSchema) 'XSD schema

 'Define an event handler to respond to Validation errors

 AddHandler valReader.ValidationEventHandler, AddressOf _
 ValidationHandler

 'Loop through XML message to compare to schema

 Do While (valReader.Read())
 Loop

 'Close valReader and show the results of ValidateXml

 valReader.Close()
 Console.WriteLine("ValidateXml found " & ErrorsFound & " errors")

 If ErrorsFound > 0 Then ValidateXml = False Else ValidateXml =
True

End Function

Public Sub ValidationHandler(ByVal sender As Object, ByVal args As_
 xml.Schema.ValidationEventArgs)

 Dim ErrMsg As String = "Validation Error = " & args.Message
 Console.WriteLine(ErrMsg)

 ErrorsFound = ErrorsFound + 1

End Sub

To use the ValidateXml function, you would set up your parameters and call out to this
function like this:

Dim CheckFile As String = "c:\XmlDocs\Employees.xml"

Dim CheckSchema As String = "c:\XmlDocs\Company.xsd"
Dim CheckUrn As String = "urn:employee-schema"

Dim Results As Boolean
Results = ValidateXml(CheckFile, CheckSchema, CheckUrn)

The ValidateXml function first creates an XmlTextReader that handles the duties of reading
in the XML message. Next, an XmlValidatingReader is created and pointed to the
XmlTextReader. A schema is added to the XmlValidateReader’s Schema collection and is
used during the Read method to compare the XML message. You do not have to do
anything with the data that the Read method scans, but you do have to run your
XmlValidatingReader through the document once to run a full comparison. This is why you
see an empty Do While loop in this function.

The XmlValidatingReader raises an event whenever it encounters a validation problem. To
catch this event, you need to add an EventHandler to your function, and then a subroutine
to deal with the event. The ValidationHandler subroutine is executed whenever the
XmlValidatingReader raises an event, which in my example increments the ErrorsFound
variable by one and writes the validation error message (provided by args.message) to the
console window. The code that calls the ValidateXml function can check the Boolean output
for True if the validation succeeded or False if it has failed.

Designing an XSLT Transformation File

Just like its XML and XSD relatives, you can create XSLT transformation files by using either
a simple text editor or by using the Visual Studio .NET editor. Unlike XML and XSD files, you
will not be able to graphically create your transformation file. This is due to the fact that
XSLT files are more like source code than they are schemas or datasets. Still, using the
Visual Studio .NET environment has many distinct advantages over the dull and dreary text
editors. These advantages include color coded tags and parameters, and automatic creation
of ending tags for every tag you type in.

Here is an example of an XSLT file that you can add to one of your .NET solutions:
1. Start a new Windows Application project using any development language.
2. Right-click the project name in the Solution Explorer window, and select Add|Add New

Item.
3. In the Add New Item window, select the XSLT file under the Data folder, and click

Open.
4. The XSLT file opens in the code view area and shows you a few default tags that have

been created for you. Enter the following lines above the </stylesheet> tag and
below the opening <stylesheet> tag:

5. <xsl:template match="/">

6. <HTML>
7. <HEAD>

8. <TITLE>Employee Records List</TITLE>
9. </HEAD>

10. <BODY>

11. <CENTER>
12. <H2>Employee Records</H2>

13. <TABLE BORDER="2">
14. <TR>

15. <TD BGCOLOR="#00FFFF">EmpID</TD>
16. <TD BGCOLOR="#00FFFF">EmpName</TD>

17. <TD BGCOLOR="#00FFFF">HireDate</TD>
18. <TD BGCOLOR="#00FFFF">OfficeID</TD>

19. </TR>
20. <xsl:for-each select="/Company/Employees">

21. <TR>
22. <TD><xsl:value-of select="EmpID" /></TD>

23. <TD><xsl:value-of select="EmpName" /></TD>
24. <TD><xsl:value-of select="HireDate" /></TD>

25. <TD><xsl:value-of select="OfficeID" /></TD>
26. </TR>

27. </xsl:for-each>
28. </TABLE>

29. </CENTER>
30. </BODY>

31. </HTML>
32. </xsl:template>

33.
34. To view your XSLT file’s outline, select View|Other Windows|Document Outline. The

Document Outline window opens and displays the elements in your transformation
file along with their relationships.

35. Save your Solution by selecting File|Save All. You will use this XSLT file in the next
Immediate Solution when you learn how to apply transformation files to XML
messages.

The XSLT file in this example uses HTML tags with embedded <xsl> tags that insert values
from the XML message being processed into the resulting HTML page. If you have ever
created Active Server Pages (ASP) Web pages with VBScript embedded in them, this will
feel like familiar territory to you. The <xsl:for-each select=“/Company/Employees”> tag
acts as a For loop to iterate through all of the Employees records in the source message.
The <xsl:value> tags print out the value of the corresponding elements that belong to the
Employees record currently being processed. If there are four employees in the XML
message, this <xsl:for-each> loop is processed four times, resulting in four rows being
added to the HTML table. For a complete list of <xsl> tags you can use in your XSLT
transformation documents, consult the Visual Studio .NET MSDN Library.

Transforming an XML Message to a New Schema

Once you have created an XSLT transformation file, it is reasonably easy to put this file to
work in your source code. A transformation requires two items: the XSLT transformation file
and the incoming XML message. The output of the transformation process will be a new file,
which could be another XML message or maybe a different format such as HTML.

The following source code example was written in Visual Basic .NET and uses the XSLT file
created in the previous Immediate Solution to convert an XML message named
SimpleMessage.xml, which I created in the “Creating an XSD Schema from an Existing XML
Message” solution. The output of this transformation is an HTML file on the hard drive
named NewDoc.htm, which displays a table of all employee records found in the XML
message using HTML tags that any browser can understand.

Note

Copy the XSLTFile1.xslt and the SimpleMessage.xml files from previous
Immediate Solutions to a directory named c:\XmlDocs. This is where this
code example will be looking for these files.

Private Sub TransformXml()

 'Load XML
 Dim SourceDoc As New Xml.XPath.XPathDocument("C:\XmlDocs_

 SimpleMessage.xml")
 Dim NewDoc As New Xml.XmlTextWriter("c:\XmlDocs\NewDoc.htm",
System._
 Text.Encoding.UTF8)

 'Transform XML file here
 Dim Transformer As New Xml.Xsl.XslTransform()

 'Load the XSLT file into the Transformer
 Transformer.Load("C:\XmlDocs\XSLTFile1.xslt")

 'Pass the SourceDoc into the Transformer and set the output to
NewDoc
 Transformer.Transform(SourceDoc, Nothing, NewDoc)

End Sub

To see a picture of the resulting Web page, take a look at Figure 14.4. In the preceding code
example, I stored my XSLT and XML files in a directory named XmlDocs to keep things
simple and the file paths short. When you are working with XML and XSLT files that you
have added directly to your .NET solution, you need to reference these in your code by the
path to the file’s actual location on the hard drive. One quick and easy way to do this is to
drag the XML or XSLT item from the Solution Explorer window to your code view and drop it
where you want the file’s path to appear. This can save a lot of typing, but be sure to enclose
the path in quotation marks!

Figure 14.4: The HTML version of the transformed Employees XML message.

The XmlTransform’s Transform method takes in three parameters: the name of the
incoming source document, an XSLT argument parameter, and an output document in which
to write the newly created message. To keep my example simple, I am not using any XSLT
arguments for this transformation. My source XML document is first loaded into an
XpathDocument object, which is later passed into the Transform method. For the
transformed document, I created an XmlTextWriter object to handle the transformation’s
output. You could also pass this output to an XmlTextReader to facilitate working with the
transformation’s results.

Chapter 15: ADO.NET
By David Vitter

In Depth

Information is the lifeblood of the business world, and business application developers have
been reading and writing these bits of information for decades. Data can be found in many
different forms, from the traditional tables in a relational database to a file system full of
textual documents. Some bits of data are easier to access than others, and often the
methods used to access different data sources are as diverse as the sources themselves. In
the last few years, ActiveX Data Objects (ADO) has become a popular way for Visual Studio
developers to access these numerous data stores from their applications. In this chapter, I
introduce you to the latest version of ADO, appropriately named ADO.NET. As you will learn,
ADO.NET is not so much an upgraded version of ADO as it is a redesigned tool that takes a
whole new approach to accessing data from .NET applications.

Introduction to ADO.NET

Throughout the years, there have been many database access methods made available to
the developer community. Most of these technologies have been more closely related to the
database they access than to the development tools they can be used in. Open DataBase
Connectivity (ODBC), for example, was developed by database vendors to provide access to
multiple database types. The major drawbacks of using ODBC are that the API is complex
and difficult to work with, and its interfaces are not COM-based.

Microsoft worked hard to make data access easier by developing numerous technologies
built on top of ODBC. Data Access Object (DAO) was one of the first such efforts developed
specifically for use in Microsoft’s Access product. Remote Data Object (RDO) was
developed next to bring data access to the Visual Basic community. Like its predecessor
DAO, RDO was designed to use ODBC database connections but make it easier for the
developer to work with. RDO quickly evolved into ADO, which was aimed at the entire
community of Microsoft developers. Although ADO could still use ODBC to connect to
databases, Microsoft built ADO to use a new database provider named Object Linking and
Embedding DataBase (OLE DB), which was designed to be a COM-based follow-up to the
ODBC provider. In the next section, you will see how ADO and OLE DB work together to
provide access to your database.

When Microsoft created ADO, it wanted to provide developers with an interface to its data
sources that fit naturally within its COM-based development projects. The API exposed by
ADO felt very comfortable to COM developers, and they could work with their ADO
connections in an object-oriented fashion. ADO also used COM to marshal its Recordsets of
data from one point to another. For new developers, ADO was by far the easiest data access
method to learn, and it even offered access to nontraditional data stores such as email
servers. ADO went through a couple of different revisions, each one adding new additional
features while leaving the basic structure and format of ADO unchanged. The last few
versions of ADO added support for reading in and writing out XML data from your
Recordsets, even though the ADO Recordset itself was not based on XML.

Comparing ADO to ADO.NET

ADO.NET is far more than an upgraded version of its predecessor, but before you can use
this new version, you need to fully comprehend the differences. Some of the most important
changes are:
§ The ADO Recordset is now called the ADO.NET DataSet.
§ DataSets can contain multiple tables.
§ Tables within a DataSet can have relationships.
§ ADO.NET uses XML to communicate DataSets from point to point.
§ DataSets are a disconnected form of data access.
§ Developers do not need to concern themselves with database cursors and locks when

using DataSets.

At the top of the list of changes is the old ADO Recordset. Formerly, the Recordset was the
main data-containing object you worked with in ADO. The information held within a
Recordset equated to a single table of data. When one of your code-based objects
transferred a Recordset to another object, it used COM as the communication medium to do
so.

In ADO.NET, the Recordset is gone and the DataSet is at the center of this new universe.
Not only has the name changed, but its structure has as well. A DataSet is capable of
holding many tables of data, and it can remember relationships between these multiple
tables. For example, you could create a DataSet that contains an Employees and an
Offices table and identify within that DataSet that the Employees table is related to the
Offices table through its OfficeID attribute. This makes a DataSet far more powerful than a
Recordset and gives you the ability to create a mini-database.

Because ADO.NET was built on top of an XML framework, ADO.NET uses XML to move its
DataSets around. This means that your DataSets can now pass through firewalls that would
normally block Recordsets that use COM to move about. You can pass DataSets between
application components that are separated by a firewall. Let’s examine a few more
differences between ADO and ADO.NET.

Disconnected versus Connected Database Access

Prior to ADO.NET, database access was typically handled in a connected fashion. Say, for
example, that you want to edit an employee’s record in the database. To program this, you
would establish a connection to the database, locate the record by moving the database
cursor, make your changes to that record, and then disconnect from the database. The data
you were working with stayed on the database server, and your code manipulated this data
using the established open connection. Databases do not have an infinite number of
available connections, so only a few clients can connect to a database at any single
moment. From the point where your code establishes its connection until the moment when
that connection is released, one of those valuable database connections is being used,
possibly delaying or preventing other accesses. Freeing up these connections is the
database developer’s number-one concern.

ADO.NET works with data in a disconnected mode. Communication with the database
server is short and to the point, allowing .NET to quickly release the connection for someone
else. If you wanted to modify an employee’s record using ADO.NET, the process would work
like this: ADO.NET would establish a connection to the database, and then the data you
want to work with would be extracted from the database to the local machine. Having this
copy of the data allows ADO.NET to release its connection to the database. Your code could
then modify, manipulate, and mangle that data for as long as you wanted without tying up a
database connection. When you are ready to save your changed data, ADO.NET would
again connect to the database and update the record. Because ADO.NET only stays
connected to the database for short periods of time, this data access method offers the least
drain on your database’s resources.

Database Cursors

If you have worked with past versions of ADO, you are familiar with database cursors.
Before you could establish your ADO connection to your database, you had to decide on
whether to use a client-side or server-side cursor. If you selected the server-side cursor
route, you had a few more cursor types to choose from, such as the Forward-only and the
Static cursors, each with its own advantages and drawbacks. Connecting to a database took
a great deal of thought and planning, and still some functions would neglect to release their
connections when finished, thereby hogging those resources needlessly. Because ADO.NET
disconnects from the database when performing changes to your data, cursors are no longer
needed. The one exception to this rule is the ADO.NET DataReader object, which uses a
server-side cursor similar to the ADO Forward-only cursor. You will read more about the
DataReader later in the In Depth section.

Data Locking

Yet another decision you had to make when using ADO was your choice of locking
mechanism. A lock is used by the database server to protect the row of data you are
manipulating from being changed by another client. Common lock types included ReadOnly,
Optimistic, and Pessimistic. Because ADO.NET disconnects from the database when you
are manipulating the retrieved data, it would be impractical for the database server to hold a
lock on the withdrawn data elements. If the ADO.NET DataSet never calls back to the
database server with an update, any instances of locked data would remain locked and
prevent future calls from changing their values. Instead of placing locks on rows of data on
the server, ADO.NET can detect changed data rows during its update phase and decide
which version of the data should be saved. You will learn more about how ADO.NET does
this in the “Working with ADO.NET DataSets” section.

Using Past Versions of ADO in .NET Projects

For the vast majority of your new Visual Studio .NET projects, you will want to use ADO.NET
to connect to your databases and work with your data while disconnected. Because
ADO.NET does not support connected database transactions, if you need to work with your
data in a connected fashion, you will have to use an older version of ADO to do so. Simply
add a COM reference to a past version of ADO, such as version 2.6, and you will be able to
code your data access routines in the older ADO style. You can even use ADO.NET and
ADO in the same project if need be, but because these two data access methods are
extremely different, they will not be able to interact or exchange sets of data. The following
list contains situations that may warrant the use of a prior version of ADO:
§ You need to migrate an existing project to .NET that already uses ADO.
§ You need to work with a large set of data that is too large to pull back to the client and

load into a DataSet, so you will need to use a server-side cursor.
§ Your code relies on server-side data cursors or data locking mechanisms.

Migrating older ADO code to ADO.NET will take a great deal of work, but the benefits far
outweigh the amount of work required. If you must use an older version of ADO, I highly
recommend you choose ADO version 2.5 or later due to the added XML support features
introduced by these versions. This functionality will come in handy if you need to exchange
some data between an ADO Recordset and an ADO.NET DataSet because you can do so
through the use of an XML dump file.

Data Access Layers in ADO.NET

When you are developing an application that uses ADO.NET to access a database, your
code will be using multiple technologies to get at the data. In Figure 15.1, the top of the

figure shows your code, and the bottom of the figure shows your database. In between these
two end-points you will see multiple layers, which include data access providers and drivers
or interfaces. ADO.NET is the layer closest to your code that provides the API that your code
will use to control the database transaction. ADO.NET does not have the ability to deal
directly with databases. Because there are many different types of data stores in existence,
ADO.NET relies on specialized providers to act as interpreters for the ADO.NET calls.
ADO.NET can use one of two different providers: the OLE DB .NET data provider and SQL
Server .NET data provider. Microsoft will be releasing a .NET version of the ODBC .NET
data provider shortly after the release of Visual Studio .NET.

Figure 15.1: The data access layers.

The OLE DB Provider

ADO.NET’s OLE DB provider is built on top of Microsoft’s OLE DB interfaces, which are a
COM-based replacement for the ODBC data access interfaces. Having an OLE DB layer on
top of another OLE DB layer is pretty confusing, but remember that the OLE DB interfaces
were developed back in the days of COM to replace ODBC, and the OLE DB provider is new
with ADO.NET and sits on top of the OLE DB interfaces (see Figure 15.1 for further
clarification). The OLE DB interfaces are at the database system level, and although you can
use OLE DB to access data stores without the added provider layer, most developers will
find that the time they save using the OLE DB provider outweighs the slight performance
gained by going directly through OLE DB to your data.

The OLE DB provider is known as a managed provider because it communi-cates with OLE
DB, which is COM-based, by using a wrapper to disguise this COM object as a .NET
assembly. You will find the OLE DB provider in the System.Data.OleDbClient namespace.
The OLE DB provider can access any database for which an OLE DB connection exists,
such as the Oracle and Jet OLE DB connections. You can also access a SQL Server
database using OLE DB, but if you are using version 7 or later of this database, it is highly
recommended that you use the SQL Server provider that I discuss in the next section.

The SQL Server Provider

Because Microsoft developed the SQL Server database, it was also able to create a
specialized .NET data provider that offers a significant performance boost over the more
generalized OLE DB provider. This provider does not use ODBC or OLE DB to connect with
the database, which removes an entire layer between your code and the data, resulting in
faster data connections. The SQL Server provider is located in the System.Data.SqlClient
namespace. If you look in the Data panel of the Toolbox window, you will see a separate
selection of SQL Server-specific data components.

Choosing between the OLE DB and SQL Server Providers

In most cases, the choice between using the OLE DB provider and using the SQL Server
provider will be pretty obvious. If you are developing an application that works exclusively
with a SQL Server 7 or later database, choosing to use the SQL Server-specific provider is a
wise choice. If you are using any other database type, or you are using a version of SQL
Server prior to 7, you have no choice but to use the OLE DB provider. The ADO.NET layer
lies between your code and the provider, so you work with both providers in exactly same
way. If you develop a function that uses the SQL Server provider, you can simply modify the
provider declaration lines to quickly switch this function over to the OLE DB provider without
having to change any other lines of code.

The DataSet

A relational database is made up of one or more tables, each containing one or more rows of
data. Tables in a relational database can either stand alone or they can have a relationship
with another table in that database. Structurally, an ADO.NET DataSet closely resembles a
database structure. Data is contained within tables and displayed in rows and columns.
These tables can stand alone or be related to other tables within the DataSet. Figure 15.2
illustrates the parts of a DataSet. You will find the DataSet, DataTable, DataRow,
DataColumn, and DataRelation classes directly under the System.Data namespace. Let’s
examine each piece of a DataSet separately.

Figure 15.2: The DataSet structure.

The DataTable

A DataSet contains a collection of DataTables, which allows you to add more than one table
to a DataSet. Like a table in a database, the DataTable is made up of rows and columns,
which represent elements and attributes respectively. The names of the individual tables
within the DataTable’s collection are case sensitive, so you can have both a Customers and
a customers table in the same DataSet. Be sure that you use the correct case-sensitive
table name when typing in your source code.

In order to work with a DataTable, you should be familiar with its many properties, methods,
and events. In your code you can react to events that occur within a DataTable, such as the
changing of a value within a row or the deletion of a row. You can also accept or reject all
changes made to a DataTable. Use Table 15.1 to quickly become familiar with the most
useful parts of the DataTable.

Table 15.1: DataTable properties, methods, and events.

Property Purpose

CaseSensitive String value comparisons within the table can either be
case sensitive (True) or not (False)

HasErrors Indicates that one or more data elements within this table
has an error

PrimaryKey Sets the primary key for the table

TableName The identifying name of the table

DefaultView Identifies a customized view of the table, if desired

DataSet The name of the DataSet this table belongs to

Method Purpose

AcceptChanges Accepts and commits all changes made within the table

NewRow Adds a new DataRow to the DataTable

Table 15.1: DataTable properties, methods, and events.

Property Purpose

RejectChanges Rejects and rolls back all changes made within the table

GetChanges Produces a version of the DataTable containing items that
have been changed since the last commit or data load

Clone Creates a copy of the DataTable’s format, including the
loaded schema and constraints

Copy Creates a copy of both the DataTable’s format and the
data currently contained in the DataTable

Clear Removes all data from the DataTable

ImportDataRow Loads a DataRow from an external source into your
DataTable

GetErrors Creates an array of rows that currently contain errors

Select Allows you to create an array of rows that match a certain
criteria, similar to executing a SQL SELECT statement
against your DataTable

Event Purpose

RowChanged Raised when data within a row is changed

ColumnChanged Triggered by changes being applied to a column

RowDeleted Fires when a row of data has been deleted

The DataRow

Every DataTable has a collection of DataRows. You add, delete, and modify data within a
table by using DataRows. Each row is the equivalent of a single record, such as a single
customer in a Customers table. You add a brand new row to a table by using the
DataTable’s NewRow method. Once the row exists within the table, you can use the
DataRow’s interfaces to modify it. The majority of your editing and data modifications are
done using the DataRow object to manipulate your tables on a record-by-record basis.
Table 15.2 lists the most commonly used properties and methods for the DataRow object.

Table 15.2: DataRow properties and methods.

Property Purpose

HasErrors Boolean value that indicates this row has an error

Item Provides access to column values based on the column
name you provide it

RowError Allows you to check or modify the error message for this
row

RowState Provides you with the row’s current state

Table Returns the name of the table containing this DataRow

Table 15.2: DataRow properties and methods.

Property Purpose

Method Purpose

AcceptChanges Commits any changes made to this row

ClearErrors Clears all errors raised for the DataRow

Delete Removes this row from the table

ToString Converts the value of the indicated column to a String
data type

RejectChanges Rejects and rolls back any uncommitted changes to the
row

GetType Returns the data type of the indicated column

GetColumnError Provides a description for the chosen column

The DataColumn

A single DataTable also contains a collection of DataColumns. Whereas rows represent
records in a table, the columns represent the attributes of the table. If a Customers table
has a FirstName attribute, a FirstName column within the table will represent this attribute.
Every column has a data type associated with it. The FirstName attribute uses a String data
type to store the customer’s name. A DataTable’s column names and their data types can be
summarized to form a schema, which is a record describing the format and rules of a table.

Column values can also have constraints placed on them. Table 15.3 lists some of the
properties and methods for the DataColumn object.

Table 15.3: DataColumn properties and methods.

Property Purpose

AllowDBNull Indicates if null values are allowed in this column.

AutoIncrement The value of this column is automatically set when a new
row is added to the table. Often used for attributes that
provide unique numbers, such as a CustomerID.

Caption Sets the column name displayed at the top of a data
displaying control.

ColumnName Sets the official name of the column used in queries.

DataType Indicates the data type allowed in this column.

DefaultValue Provides a default value for this column if needed.

MaxLength Sets the maximum length a column value can be.

ReadOnly Indicates that a column value cannot be changed.

Table The name of the table containing this column.

Unique Indicates that every value in this column must be a unique
value within the column, no duplicates.

Table 15.3: DataColumn properties and methods.

Property Purpose

Method Purpose

Equals Allows you to compare the column’s value to another

column’s value.

GetType Returns the data type of the column.

ToString Converts the column’s value to a String data type.

DataSet Relationships

An example of a table-to-table relationship is a database that contains a Products and a
Suppliers table. To find out where a particular product in the Products table can be
purchased, you would locate that product’s SuppliersID attribute, which would correspond
to one of the companies listed in the Suppliers table. Each supplier has a unique
SuppliersID attribute assigned to it, which is known as a primary key. When the Products
table uses the SuppliersID key to point to some information in another table, this is known
as a foreign key relationship. A DataSet keeps track of the relationships between its tables
using the DataSet’s Relations collection.

Typed and Untyped DataSets

DataSets are said to be in either a typed or an untyped format. The difference between
these two formats is the presence of a preexisting data schema. If you first define a data
schema for your DataSet prior to loading it with data, your DataSet is said to be typed. If you
load a DataSet that has not been given a data schema, the DataSet is untyped. Creating a
typed DataSet takes a little extra planning as you need to create a schema that lays out all of
the rules and formats that your DataSet will adhere to. Choosing to create an untyped
DataSet is quicker and easier, but you will be giving up many additional features and tools
that are only available with typed DataSets.

One of the big differences between using typed and untyped DataSets is how you reference
the data elements within those two different sets. Because a typed DataSet has a predefined
structure, Visual Studio .NET automatically knows the table and column names within that
DataSet, even before it has been populated. This enables you to reference these elements
by name like so:

dsCompany.Employees(6).FirstName = "Matt"

This line of code directly references the table name, Employees, and the column name,
FirstName. The row being edited in this example is located at index position six, which
follows the table’s name. With a predefined schema loaded into your DataSet, Visual
Studio’s IntelliSense is able to tell you which tables and columns are available, making your
coding job faster and easier.

In an untyped DataSet, the IDE does not have enough knowledge about the data’s structure
to allow you to call tables and columns by name, so to make the exact same change to an
untyped DataSet, you would have to reference these items more explicitly like this:

dsCompany.Tables("Employees").Rows(6)("FirstName") = "Matt"

You would have to type this line out without the benefit of IntelliSense filling in the table and
column name, which means you would have to have a firm understanding of the table’s
structure to create this line. Try editing both a typed and an untyped table, and I think you
will immediately see the advantage of working with typed DataSets with predefined schemas
applied.

Constraints

Each table has a collection of constraints that define the rules placed on the column values
within that table. For example, one column could be restricted to allow only unique values,
which would prevent a value from being entered in a column twice. You could also define
one of the columns within a table as being the primary key for that table, which is also a data
constraint very similar to the unique constraint. Anyone that has ever created a table in a
database is already familiar with defining constraints to restrict and control the data elements
within that table. When you fill a DataSet from a data source of an XML file, all of the
constraints from that source will be duplicated within the tables created in your DataSet.

Any relationships defined within your DataSet through its Relations collection will be a
constraint placed on your data because the value in one table’s column must be a pointer to
a unique value in another table’s columns. Each DataSet has a property named
EnforceConstraints, which by default is set to True. Developers have the option of
disabling all constraints within a DataSet by setting this property to False . This prevents
exceptions from being raised whenever defined constraints are violated by data changes
within a table. Disabling constraints can be useful for temporary changes that you think may
cause exceptions, but you should always try to repair any constraint violations and reenable
those checks as soon as possible.

Connecting to Data Sources

The most common use for ADO has traditionally been to connect to a database such as SQL
Server, Oracle, or Access to work with the data contained within that database. With all of
the new XML functionality and the improvements made to the DataSet, developers will begin
to use ADO.NET in many situations that do not directly involve a database. Of course,
database access will remain ADO.NET’s bread and butter, so let’s discuss how these
connections are made and controlled. In the following section you are introduced to another
new object named the DataAdapter, which makes connecting your DataSets to a database
easier than ever. You will also learn about the Command and Connection objects, which
both appeared in previous versions of ADO. In addition, you will learn about the new
DataReader object, which provides a quick way to extract read-only data from your
database.

For each of these three objects, there are two versions: one for the OLE DB providers and
the other for the SQL providers. Table 15.4 lists the different versions of these objects and
their associated namespaces.

Table 15.4: OLE DB and SQL versions of ADO.NET objects.

Object OLE DB Provider SQL Provider

DataAdapter System.Data.OleDb.OleDbDataAdapter System.Data.SqlClient.SqlDataAdapter

Connection System.Data.OleDb.OleDbConnection System.Data.SqlClient.SqlConnection

Command System.Data.OleDb.OleDbCommand System.Data.SqlClient.SqlCommand

DataReader System.Data.OleDb.OleDbDataReader System.Data.SqlClient.SqlDataReader

The DataAdapter

Developers use the ADO.NET DataAdapter object to connect their DataSets to their chosen
data sources. Think of your database as a large tank of fuel at the local gas station, and your
DataSet as your car’s gas tank, which is a mini-version of the bigger fuel tank. The gas
pump is the Connection object and the hose that connects the pump to your car is the
DataAdapter. Once your car is full, you disconnect that hose so other cars can pull up and
get gas. Of course, with ADO.NET data access, the DataAdapter and connection are not
permanently attached to either your DataSet or the database, and the Connection object
can work both ways to provide and return data. If you are creating a DataSet
programmatically or filling it up from an XML message, you do not need a DataAdapter in
your code.

The two primary interfaces of the DataAdapter that you will be working with are the Fill and
Update methods. The Fill method activates your database connection, sends your request
for data across the network, and then pumps the returned results into your DataSet. The
Update method works in the reverse direction. When called upon, the Update method
examines the changes you made to the data within your DataSet and communicates only
those items that have changed back to the original data source. These changes include
inserted rows, deleted rows, and rows that have had column values changed. There is no
need to formulate SQL commands to handle these changes because the Update command
uses a CommandBuilder object to generate these SQL strings for you and act as a
translator between your DataSet and the database.

The Connection Object

The ADO.NET Connection object is responsible for establishing and controlling the
connection between your code and the database. Both the Command and DataAdapter
objects enlist the help of a Connection object to reach out to your data store. When you are
configuring the provider type and connection string within Visual Studio .NET, you are
actually configuring the Connection object.

Because the Connection object represents the actual link between your code and the
database, this is the object that you open and close during your database communications. If
you use a DataAdapter to manage your connection, the opening and closing of your
connection is handled automatically. If you use the Command object to work with your
database, you need to manually call the Connection object’s Open and Close methods in
your code. As with past versions of ADO, when controlling the Connection object manually,
you need to always remember to Close your connection at the earliest possible time to free
up that valuable database connection for other callers to use.

The Command Object

If you need to issue SQL commands directly against the database and do not want to work
with a DataSet, use the Command object to do so. Using the Command object to make
changes to your database can be more efficient than working with a DataSet because only
your SQL command is sent across the network. These commands include the SQL INSERT,
DELETE, and UPDATE statements. You assign your SQL command to the Command
object’s CommandText property, and then set the CommandType property to Text. Your
Command object uses a Connection object to communicate this command directly to the
database. You can also work with stored procedures using the Command object; I will show
you an example of this in the Immediate Solutions section.

The DataReader

A DataSet is designed to hold data in order to facilitate client-side editing. Sometimes you
will need to access a data store in order to fill in a data-bound control. If you first brought the
data over and filled up a DataSet before pouring the data into your control, you would be
adding an unnecessary layer between your control and the data, which would only slow
down your application. Previously, ADO used a Forward-only server-side cursor commonly
referred to as the “fire hose” cursor to quickly move through a database and draw all of the
required data back to the application. This server-side cursor sacrifices flexibility in favor of
speed because you will not be able to edit data when using it, nor will you be able to move
backwards through the table.

ADO.NET introduces the DataReader object to provide you with an easy method to quickly
pull an uneditable chunk of data out of your database. Unlike the DataAdapter’s connection
to your database, the DataReader utilizes a server-side cursor. The way that the
DataReader connects to a database and deals with your data request differs greatly from the
DataSet’s usage. To connect to the database, the DataReader does not use the
DataAdapter object. You also do not use a DataSet in your code to store the retrieved data
in. The DataReader uses a Connection object to talk to the database and a Command
object to execute the query that pulls back the needed data. The DataReader’s Read
method allows you to step forward through the database’s table one record at a time.

Tip

Use the DataReader to fill in form controls with data. DataReader is the
fastest way to pull uneditable data out of your database.

Working with ADO.NET DataSets

The ADO.NET DataSet is the main object you interface with when working with your data. In
past versions of ADO, the main data-containing object was called the Recordset. Not only
has the name changed, but all of the functionality has changed as well. DataSets are far
more complex than their Recordset ancestors, and they have the ability to act as a miniature
standalone database. In this section, I discuss how a DataSet works, and how you interface
with its data elements to make changes and then update your data store with these
changes.

Filling DataSets with Data

The DataSet is the container within which you place the data you need to work with. You can
build a DataSet from scratch by programmatically adding tables and rows, and then
populating these with data. You can also fill a DataSet using the data elements found in an
XML message, a method I discuss further in the “XML in ADO.NET” section. The final
method of filling a DataSet involves using a DataAdapter object to connect it to a data store.
Remember that a DataSet can contain multiple tables, and those tables can have
relationships with each other. In the Immediate Solutions section, you will find examples of
all three methods of filling a DataSet.

The Three Copies of Your Data

Within your DataSet, there are three copies of each data element. When your DataSet is first
populated with data, a copy of this data is stored as the original version. Whenever you
make changes to your data, these changes become part of a copy known as the proposed
changes version. Proposed changes do not become official until you execute the
AcceptChanges method, which moves all proposed changes over to a third version known

as the current copy. Changes never affect your original copy because this version of your
data is compared to the current version of your data by the DataAdapter’s Update method to
decide which data elements have actually been changed and need to be communicated
back to the data store. Figure 15.3 illustrates these three levels of data.

Figure 15.3: The three levels of data within the DataSet.

Changing Data in a DataSet

A single DataSet can contain multiple tables. Each table contains multiple columns and
multiple rows. Figure 15.3 shows how these tables, rows, and columns fit into the overall
DataSet structure. When you want to make changes to the data contained within a DataSet,
you have to be specific about where your changes will take place. You need to specify which
table, which row within that table, and which column within that row will be affected by the
change. Tables can have new rows added to them, and they can have rows deleted from
them as well. As you edit the rows within your DataSet’s tables, each row states changes to
indicate the type of operations that have been performed on it. These changes are noted, so
when it comes time to update the data store with your changes, only those items that have
been changed are sent back to the data store.

Examining RowState

Every row has a RowState property that can tell you what has been done to the data within
that row. A RowState can be one of five values: Added, Deleted, Detached, Modified, and
Unchanged. The Detached row state is given to a row that has been created using the
table’s NewRow method but has not officially been added to that table using the Rows
collection’s Add method. This row exists in the table in a detached state until you add it to
the table, at which time the RowState is changed to Added. As you edit the rows in your
DataSet, those rows RowState values change accordingly. Once you execute an
AcceptChange that commits the changes made to your rows, their RowStates are reset to
their default value, Unchanged.

Accepting and Rejecting Changes

You can accept or reject changes at the DataSet level, table level, or on a row-by-row basis.
When you accept your changes, you are moving the proposed copy of your data to the
current copy of the data. If you only AcceptChanges to a row, only that row in the current
copy is affected. In contrast, if you decide to RejectChanges made to your data, the
proposed copy of it is replaced with the values in the current copy, in effect rolling back your
data to the last acceptable state.

XML in ADO.NET

XML plays a very large role in ADO.NET. Not only is ADO.NET capable of reading and
writing its contents in XML format, which past versions of ADO could do on a limited scale,
but also the entire ADO.NET Framework was built using the open source XML technology.
ADO.NET natively speaks in XML and even uses XML to serialize its DataSets for
communication. Because XML is a nonproprietary messaging format, supporting XML gives
ADO.NET the ability to interface with non-Microsoft technologies. You can also pass
ADO.NET DataSets through network firewalls due to their XML messaging format, which
means you can literally pass your DataSets around the world without worrying about being
blocked by servers that might not understand your format.

Writing XML

ADO.NET DataSets have the ability to create XML files based on their contents. Using XML,
you can create a message that both provides data and describes the data elements, which
makes your message readable by any software that can read XML. Previously, ADO
Recordsets had the ability to stream their contents into an XML message, but because the
contents of the Recordset were somewhat one dimensional, the resulting XML messages
were also watered down due to the lack of a robust data schema. DataSets can hold multiple
tables, and the DataSet can remember the relationships between these tables. These
information elements can be communicated through an XML message to give the message’s
receiver a detailed picture of your data.

Reading XML

You can use an XML data file to populate your DataSet using the ReadXml method. With
this ability, not only can you build DataSets from scratch and load them from DataAdapters
pointing to data stores, but you can also create a DataSet using XML messages received
from external applications. If your business application has to work with a set of data
provided by another application, as long as that data is formatted using XML, all you need to
do is to read the XML message into your DataSet and you will be able to work with it the
same way you would any other DataSet. The DataSet dynamically creates its framework and
schema based on the XML description of your data, and then populates the tables with the
actual data elements.

This method of pulling data into a DataSet that did not originate from another DataSet can
also help you connect past versions of ADO to ADO.NET. In ADO version 2.5 and later, the
Recordset object has the ability to write its contents in XML format, even though the
Recordset itself does not use XML natively. Once you drop the Recordset’s contents into an
XML file, you can then build an ADO.NET DataSet from this message.

XML Schemas

A schema defines the content and structure of an object. It also helps enforce data rules by
defining the data types for each element. In XML messaging, the messages schema can be
defined within the message itself or through a link to an external file. Developing a separate
schema file is a smart way to reuse that schema from one message to another. DataSets
also use schemas to define their structure. If you create a DataSet and immediately fill it with
data through a DataAdapter, the DataSet dynamically creates a schema that mirrors the
source you pulled your data from.

An alternative to this approach is to first load a schema into your DataSet prior to filling it
with data. This approach ensures that your data rules and restrictions (also known as
constraints) are already in place and being enforced when the data is poured in. You use the
DataSet’s ReadXmlSchema method to load a schema. There is also a WriteXmlSchema

method that enables you to extract a DataSet’s schema for later use. If you need to ensure
that the schema of one DataSet exactly matches another, you can first use the Fill method
to build the first DataSet and its schema, and then extract its schema and load that file into a
second DataSet.

Using Visual Studio .NET Data Tools

Visual Studio .NET comes with an arsenal of powerful database development tools all aimed
at making your job easier and faster. You can now create DataSets and connections to your
data sources using the same drag-and-drop techniques you used to design your interface
forms. Using the Server Explorer and Toolbox windows can save you a tremendous amount
of time as they create the necessary code for you. You can modify and administer your
databases from within Visual Studio .NET, and you can generate database queries by just
using your mouse. Becoming familiar with these many timesaving tools is a must if you want
to get the most out of the .NET development environment.

Using Visual Studio .NET Data Components

In Visual Studio .NET, you have the ability to create database connections and objects using
the same drag-and-drop techniques that you used to create Windows Form interfaces. When
you are looking at a Windows or Web Form in Design mode, you will notice that your
Toolbox window has a Data panel on it. On this data panel is a set of data components that
you can drag over to your form. Unlike the control components you will find in the Toolbox
window, these data components do not directly affect the interface you are designing.
Instead of adding a visible control to the form’s surface, dropping a data component onto a
form adds that component to a small window below the form’s designer area.

Figure 15.4 shows the Visual Studio .NET IDE with a Windows Form in the design area.
Below this form, you see two boxes in a small window. These are two data components that
were dragged over from the Toolbox’s Data panel, which you also see to the left of the
Windows Form. Although adding a data component to your form does not directly affect the
visual appearance of your form, it does affect the code that goes behind your form. If you
switch over to a code view of a form with data components added, you will find the
declaration and configuration statements for these components located in the Windows
Form Designer code area.

Figure 15.4: Data components in Visual Studio .NET.

The advantage of using data components is that they create a great deal of code for you and
allow you to work with your data objects visually, just as you would a Windows control. You

can click on a data object added to a form and modify its properties via the Properties
window. Next, you will learn about the Server Explorer window, which helps you add
preconfigured data components to your Windows Form, saving you even more development
time and effort.

Accessing Data with the Visual Studio .NET Server Explorer

The Visual Studio .NET IDE includes a window called the Server Explorer window that
allows developers to quickly identify resources on a machine within their code. These
resources can include log files, counters, and databases. Not only can you see which
resources a machine has, but you can also drag these resources from the Server Explorer
window over to your project to quickly create the necessary connections and configurations
to use these resources. Because this chapter focuses on ADO.NET and data access, I will
discuss the Server Explorer window from a database developer’s point of view.

The first step to incorporating the Server Explorer window into your development session is
to configure this window to display all of the databases you may need access to. By default,
when you first open this window, the resources for your local machine are displayed. You will
find your machine’s name listed under the Server’s tree view item in this window. If you
expand your machine’s tree, you will see groupings of resources underneath it such as
Event Logs, Message Queues, Performance Counters, and Services. If your local machine
has an instance of a SQL Server database running on it, you will be able to locate the
databases hosted by this server under a SQL Server’s item. This means that you will
automatically have access to available SQL Server database items without having to make
any changes to your Server Explorer window. There are two main items you may want to
add to the Server Explorer window to give you access to even more resources:
§ Other servers on your network that you have access to
§ Data connections to non-Microsoft databases such as Access and Oracle

You can add another machine to the Server Explorer window by right-clicking on the
Server’s tree view item and selecting Add Server. Your user account must have permission
to use the remote machine that you are adding to this window. Once added, you will be able
to access resources on that remote machine the same way you would for your own machine.
If you are using remote servers to provide application resources such as a database, you
should definitely add those servers to your list.

Adding a data connection to your Server Explorer window is a great way to access data
stores that do not make themselves automatically known to Visual Studio .NET. Microsoft
Access databases, for instance, will not be displayed in the Server Explorer by default, but
you can manually add a data connection to these database types to speed up your Access-
based development projects. One of the best things about the Server Explorer window is
that any configuration changes you make to this window will be remembered for future
sessions by Visual Studio .NET. If you add a data connection to an Access database, that
connection will always be in your Server Explorer window, no matter which .NET Solution
you are working on.

Tip

Add other servers and databases on your network to your Server Explorer
window so you can quickly locate and use their resources in your .NET
projects.

Database Projects and the Query Designer Tool

One of the many project types available for creation in Visual Studio .NET is the Database
Project. When you are creating a new project, you will find this project type under the Other

Projects|Database Projects folders. Instead of enabling you to create an application, the
Database Project allows you to work with a database directly from within Visual Studio .NET.
When creating a Database Project, you must first define the connection to the database you
want to work with. Once this project has been created, you will be able to edit the target
database, or create files within your project to work with this database, such as scripts,
stored procedures, and queries. The scripts that you add to your project will already have
much of the code completed for you. You can also create SQL queries from scratch using
the powerful SQL query designer, which you will learn how to use in the Immediate Solutions
section.

The Data Form Wizard

You can add an item to your Visual Studio .NET projects called the Data Form Wizard. This
item uses a wizard interface to step you through creating a DataSet that you will then use to
create a data-driven Windows Form. Using this wizard to create your form can save you a lot
of time because it creates the data-bound controls for you. If you have previously worked
with Microsoft Access, using wizards to create interactive data forms will be familiar to you.

You will find the Data Form Wizard item by right-clicking on the project’s name in the
Solution Explorer window and selecting Add New Item. The Data Form Wizard item is
located within the Data folder of the Add New Item window. When you first add this item, a
wizard window opens to help you configure your Windows Form. The first step in setting up
your data-centric form is to declare the DataSet you plan to attach this form to. You can
either use an existing DataSet, or you can create a brand new DataSet while you are using
the Data Form’s wizard. Only DataSet items that appear within the Solution Explorer window
can be used as preexisting DataSets. You cannot use DataSets added to other forms using
data components or code-based creation.

If you opt to create a new DataSet for your Data Form, you will be walked through the
various steps necessary to create a database connection with which to fill your new DataSet.
Once the Data Form has a DataSet identified or created, you will then be asked to select
which tables and columns you want to create items for on your form. You will also have the
choice of whether to use a DataGrid control to group all of your displayed values in an easy-
to-use table or use separate controls for each data element. When you complete setting up
your Data Form, either a DataGrid or a collection of controls representing your data
elements will be added to your Windows form along with a Load button. When you run this
form and click the Load button, the associated DataSet is filled with data and then bound to
the form’s controls. All of the necessary code is created for you, although you may want to
customize these functions to give your form that personal touch.

Advanced ADO.NET Topics

Once you are familiar with the basic operations and features of ADO.NET, you can begin to
work with the more advanced portions, such as events, errors, and stored procedures.
Events are how objects communicate important pieces of information back to you, and if you
choose to not create code for these events, you could be missing out on some important
alerts. Because data is so important, making sure your DataSets contain valid data before
trying to update your data stores is an important step in avoiding exceptions being raised or
data from being corrupted. ADO.NET’s error properties and methods let you check for
problems in your data so that you can avoid any kind of trouble. In addition, stored
procedures are a great way to implement some of your business logic within the database
and speed up your database calls.

ADO.NET Events

Events in ADO.NET allow you, the developer, to create some customized code that will react
to changes in your data or database connection. ADO.NET raises these events wherever a
significant change has occurred, and if your application includes some source code to
handle this event, your code will automatically be executed. You do not have to create code
to handle every event, only those you want to react to.

In ADO.NET, you can work with events raised by the Connection, DataAdapter,
DataTable, DataRow, DataColumn, and DataSet objects. The Connection object events
raise a warning flag for you whenever the status of your connection changes or the
Connection object has a message to relay to you. Often, these Connection events are not
a sign of trouble, but there may be times when you need to know about these changes, such
as when you want to write some code to run as soon as the Connection object is closed.

The DataAdapter’s FillError event, for example, is triggered when the Fill method
encounters a problem. If you are working with typed DataSets, you should include some
code in the FillError event to check for data mismatches encountered during DataSet Fills.
An example of this would be a DataSet with a NumDependants column set to an Integer
data type. If the DataAdapter’s Fill method tries to pour a data type into this column that is
not of the Integer data type, the FillError event is triggered. You can create some code in
the FillError’s event to check for such a mismatch and correct the problem so your DataSet
can continue filling.

The DataSet and its components provide many useful events to let you know that the data
within has been modified in some way. Whenever data within a DataSet is changed or
deleted, an event is fired to notify you of this change or deletion. You might use this event to
check the DataSet’s HasErrors property to see if the latest change has corrupted your
DataSet in any way. Many of these “change” events come in two versions, which I call “ed”
and “ing”. For the deletion events, you will be able to react to both the RowDeleted event
and the RowDeleting event. The same holds true for change events with the RowChanged
and RowChanging versions. The difference between these two versions is that the “ing”
event occurs before the action is committed, whereas the “ed” event is triggered when the
action is complete. If you want to check a value and prevent some changes or deletions from
happening, you should place code in the “ing” events. If you only want to deal with the
changes after they have been made, use the “ed” versions.

ADO.NET Errors

Working with data is a delicate operation, and many problems can occur that you need to be
aware of to prevent further problems. Sometimes the connection to the data store will result
in an error, not because of your code, but it may be due to a network or hardware problem.
The DataAdapter object provides a FillError event to let you know that something went
wrong during the DataAdapter’s call to your data store. Adding some code to this event to
recover or retry your Fill attempt is a great idea if you cannot be 100 percent sure your data
store will be available 100 percent of the time.

Your DataSet and the object contained within it also raise error events and provide you with
ways to discover these errors so that you can fix them and move on. The DataSet,
DataTable, and DataRow objects all have a HasErrors property, which is set to True if an
error is present at that object’s level. These properties cascade up the DataSet’s hierarchy,
so if you have an error in a row within one of your tables, that DataRow will have HasErrors
set to True along with the DataTable containing that row and the DataSet containing that
erroneous table. Once you know an error exists, you can use one of many different methods
within the DataRow to locate and correct the error. Whenever you make changes to a
DataSet, be sure to check its HasErrors property, and only move on to the next function
when its value is False .

Working with Stored Procedures in ADO.NET

A stored procedure is a piece of code that is stored within the database itself. Applications
running outside of this database can trigger a stored procedure using only a minimal amount
of code and network communications. For example, you could create a stored procedure
that would delete an employee’s record in the Employees table. All this stored procedure
would need to perform this feat is the employee’s ID number. Without stored procedures,
you would have to execute a SQL DELETE command, which would require that even more
information be sent across the network.

Besides limiting network communications, stored procedures also execute more efficiently
than SQL commands. This is because a SQL statement sent to the database server needs
to be compiled before it can be executed, whereas a stored procedure is stored in a
compiled state, ready to act at a moment’s notice. The larger and more complex your
database actions, the more benefit you will gain from using stored procedures. If you need to
generate queries dynamically, you should probably use SQL statements, but if your
statements are fairly static or only contain a few changing parameters, you should strongly
consider moving these to stored procedures, which can accept parameters to customize
their actions.

Some stored procedures do not provide any output, such as deleting an employee’s record.
Other stored procedures can return data to the caller. You can also create stored procedures
that generate reports from your database. Typically, report formats and the databases these
reports are pulled from do not change, making them an ideal candidate for stored
procedures. Once again, you can customize these reports by providing the stored procedure
with a few dynamic parameters, such as starting and ending dates to base your report on.
Developing stored procedures is often a task left to the database gurus, but you can create
and edit these from within Visual Studio .NET. I discuss this technique in the Immediate
Solutions.

Creating a DataSet Programmatically

Typically, you will fill a DataSet using an external data source, such as a database or an
XML file. But DataSets are such a powerful way to group and organize data that you will
often find yourself in programming situations where creating a DataSet programmatically in
your code and using it to store relational data elements is the perfect answer. Creating a
DataSet from scratch is also the perfect way to gain a firm understanding of how the different
parts of a DataSet fit together. Using Visual Studio .NET’s drag-and-drop data is a fast and
powerful way to create DataSets, but by design, they hide a lot of the details and complexity
that goes on behind the scenes. Therefore, I highly recommend that your first introduction to
a DataSet be made programmatically without the benefit of Rapid Application Development
(RAD) tools.

The following code example shows you how to create a DataSet named dsCompany, which
contains a single DataTable named dtEmployees, which in turn contains several
DataRows that represent individual employee records. The individual steps that this block of
code follows to programmatically create this DataSet are numbered and explained via code-
based comments:

'Visual Basic .NET example of how to build a DataSet
programmatically
'1. Declare the individual parts of the DataSet, create new
instances of _

 a DataSet and a DataTable

Dim dsCompany As New DataSet("Company")
Dim dtEmployees As New DataTable("Employees")

Dim drEmpRecord As DataRow

'2. Define the table's column names and their data types
dtEmployees.Columns.Add("EmpID", Type.GetType("System.Int32"))

dtEmployees.Columns.Add("EmpName", Type.GetType("System.String"))
dtEmployees.Columns.Add("OfficeSym", Type.GetType("System.String"))

dtEmployees.Columns.Add("HireDate", Type.GetType("System.String"))

'3. Create the first record/DataRow
drEmpRecord = dtEmployees.NewRow

drEmpRecord("EmpID") = 11
drEmpRecord("EmpName") = "James Moffet"

drEmpRecord("OfficeSym") = "DTR"
drEmpRecord("HireDate") = "09/10/01"

'4. Add this new DataRow to the DataTable

dtEmployees.Rows.Add(drEmpRecord)

'5. Create the first record/DataRow
drEmpRecord = dtEmployees.NewRow

drEmpRecord("EmpID") = 22
drEmpRecord("EmpName") = "Paul Foster"

drEmpRecord("OfficeSym") = "BHI"
drEmpRecord("HireDate") = "03/22/98"

'6. Add this new DataRow to the DataTable

dtEmployees.Rows.Add(drEmpRecord)

'7. Add the DataTable to the DataSet
dsCompany.Tables.Add(dtEmployees)

When you first declare the Company DataSet and the Employees DataTable, these two
objects have no relationship. In Step 2, you define the columns that make up your table by
adding a column to the table, giving it a name, and defining this column’s data type. You only
have to define the columns within a single table once. In Step 3, you see that you must first
declare a NewRow to the DataTable before you can start defining the data elements that go
into that row. Once you are finished filling in that row, you complete it by using the
DataTable’s Add method to attach it to the Employees table. In Steps 5 and 6, you create a
second employee record and add that to the DataTable as well. The last step of this
example takes the table you built, along with its two employee records, and adds this
package to the Company DataSet.

You could continue to add to this DataSet in many different ways. You could add more rows
to the Employees table, or you could create a new table and add that to the Company
DataSet along with the Employees table. If your DataSet has more than one table in it, you
could define some relationships that link different tables together, just like you would with a
relational database.

Adding a DataSet Relationship

If you have a DataSet that contains two or more tables, you can define a relationship that
can connect your tables together. These relationships can be used to connect two tables
together in a way that they share data elements. In a relationship between two tables, one
table is said to be the parent, whereas the other is known as the child. Each DataSet
contains a property called DataRelationCollection which is a collection of Relations
objects. Any relationships you define for the tables contained in the DataSet are held within
the DataRelationCollection collection.

To picture how a relationship between two DataTables within a single DataSet works,
consider the following example. You have a DataSet named Company that contains two
DataTables named Employees and Offices. A single office within the company can contain
many employees. When creating an employee record, you want to indicate which office an
employee belongs to, but you do not want to include all of that office’s information in the
employee’s record. This would result in a great deal of data duplication in the Employees
table. Instead, you want to create a second table (Offices) that lists unique offices within the
company, and then link an employee’s record in the Employees table to that employee’s
associated office in the Offices table. Figure 15.5 shows a database entity relationship
drawing of the Employees and Offices tables.

Figure 15.5: The Employees and Offices tables and their relationship.

From looking at the two tables in Figure 15.5, you can see a line connecting these tables,
which represents the relationship they have. This line connects the two tables at their
OfficeID attributes. In the Offices table, the OfficeID attribute is a unique value; each office
must have a unique OfficeID assigned to it. In the Offices table, the OfficeID attribute would

be the primary key in database terms. The Employees table also has an OfficeID attribute.
Because many employees belong to the same office, this is not a unique field, so there are
duplicate OfficeID values in the Employees table. In the Employees table, the OfficeID is
said to be a foreign key because it links the Employees table to an outside table, Offices.
The Employees table is said to be the parent because this table points to the Offices table,
but the Offices table does not contain any pointers back to the Employees table.

If you have a DataSet that contains both an Employees and Offices table, you can
establish a relationship between these two tables as follows:

dsCompany.Relations.Add("EmpOffice", dsCompany.Tables("Employees")._

 Columns("OfficeID"),
dsCompany.Tables("Offices").Columns("OfficeID"))

This line of code adds an item to the DataSet’s Relations collection. Notice that the first
parameter declares a name for this relationship (EmpOffice), the second names a column in
the parent table, and the third parameter names the child table’s column. The relationship is
made between the two declared columns contained in the parent and child tables. You can
programmatically step from the parent table over to the child table to access that table’s
values. The following code example steps through every row in the Employees table, and
for each employee, writes a message to the console output window listing which office that
employee belongs too. The OfficeName attribute is not actually in the Employees table, but
is instead located in the Offices table—a child table in the EmpOffices relationship:

Dim ParentRow, ChildRow As DataRow
Dim PCRelation As DataRelation = dsCompany.Relations("EmpOffice")

'Step through each row in the Employees table
For Each ParentRow In dtEmployees.Rows

 'Step through the relationship to get to the Offices table's data
 For Each ChildRow In ParentRow.GetChildRows(PCRelation)

 Console.WriteLine(ChildRow("OfficeName"))
 Next

Next

Adding a Data Connection to the Server Explorer Window

SQL Server databases are automatically displayed for any servers listed in your Server
Explorer window. In order to access other database types from this powerful window, you
need to create a data connection to tell the Server Explorer how to connect to this data
store. These are the steps you would take to add a Microsoft Access database to your
Server Explorer window:

1. Open the Server Explorer window in Visual Studio .NET.
2. You will see two top-level items in the Server Explorer’s tree view: Data Connections

and Servers. Right-click on the Data Connections item, and select Add Connection.
3. A Data Link Properties window opens. If you have previously used Visual Studio

version 6 or 7 to configure a database connection, this window will look very familiar
to you. When the window first opens, you will see the Connection tab. Make a mental
note of the options currently available on this tab. Click on the Provider tab at the top
of this window.

4. In the list of available OLE DB providers, notice that the SQL Server OLE DB provider
is currently selected. Highlight the Microsoft Jet 4.0 OLE DB provider.

5. Click on the Connection tab at the top. Some different configuration properties appear
on this tab. Item 1 asks for the file system path to your database file. Click on the

button to the right of this text box and browse for an Access database file (any
Access database ending in .mdb will do for this exercise). When you locate the
database file, double-click on it to select it.

6. If your database requires a special user account and password to access it, fill in this
information in the Connection tab. By default, Access databases do not restrict user
access to them, so you can leave the Blank Password option checked.

7. Click Test Connection to verify that this connection works as expected. If you receive a
“Test connection succeeded” message, you can click OK on this message, and then
click OK at the bottom of the Data Link Properties window to finish adding this new
data connection.

8. In the Server Explorer window, you should now have a database entry below the Data
Connection tree. If you expand this entry, you will be able to access the individual
tables within that database as well as other important items, such as defined stored
procedures.

Different database types use different OLE DB providers. For an Access database, you
would use the latest Jet provider, whereas for an Oracle database, you would use the OLE
DB Oracle provider. SQL Server also has its own OLE DB provider, and you should see a
general-purpose ODBC provider in the providers list as well. Generally, it is best to choose
the provider that explicitly names your database’s vendor instead of using the ODBC
connection.

Each provider has different configuration options on the Connection tab you used in Step 5.
For instance, the SQL Server and Oracle providers ask you to provide the name of the
machine that is housing this database. The Jet provider I used to add the Access database
only looks at your computer’s file system to locate a database, so if you are trying to add an
Access database on a remote machine, you need to map a drive in Windows Explorer to a
remote shared drive where this database can be found.

Using Data Components to Quickly Access Data Sources

The Visual Studio .NET Toolbox and Server Explorer windows both provide the developer
with the ability to quickly create database connections by dragging components found in
these windows over to a project. When you drop a data component onto your project, a great
deal of coding is automatically completed for you. Let’s take a look at how you can use the
data components found in the Toolbox and Server Explorer windows, and also take a look at
the code that these components create for you behind the scenes.

Using Data Components from the Toolbox Window

In the Toolbox window, there is a panel named Data that contains a collection of data
components. The Data panel is only available when you are working on a Windows or Web
Form, which means you cannot use data components in a class Library file. On the Data
panel, you will find the following components: DataSet, DataView, and both OLE DB and
SQL versions of the DataAdapter, Connection, and Command components. Let’s take a
look at how you can use these components to generate database code in your project:

1. Start a new Windows Application project using Visual Basic .NET.
2. Click on the Data panel in the Toolbox to view the available data components.
3. Click and hold on an OleDbConnection component and drag it over to your Windows

Form, dropping it on the form’s surface. You will now see an OleDbConnection
object in the component window below your Windows Form.

4. Click once on the OleDbConnection component to highlight it. Look in the Properties
window, and click in the ConnectionString property box. Using the drop-down list,
select <New Connection>.

5. A Data Link Properties window opens. Click on the Providers tab at the top of this
window. Double-click on the Microsoft Jet 4.0 OLE DB Provider item in the providers
list.

6. Click the button to the right of the database name text box, and browse for a Microsoft
Access database (ending in .mdb). When you locate a database file, double-click on
it.

7. Click Test Connection to verify that this data connection works. If your database
requires a special user account to access it, be sure to enter that data below the text
box containing the database’s path. When your connection tests successfully, click
OK at the bottom of the window.

8. From the Data panel in the Toolbox window, drag an OleDbDataAdapter component
over to your Windows Form and drop it. When the Data Adapter Configuration Wizard
opens, click Next.

9. The window that appears should list the path to your Access database as defined
within the OleDbConnection component. If the text box is blank, click the drop-down
arrow to the right, and select the Access database from the list. Click Next at the
bottom of this window.

10. The third window asks if you want to use a SQL statement or a stored procedure
when accessing this database. Select the SQL statement option and click Next.

11. You will then see a window asking you to enter a SQL query. For this example, just
enter a simple SELECT query against one of the tables in the Access database you
selected. If you are not sure about the database’s structure, click Query Builder at the
bottom of this window and build a query using populated tables lists and attribute
lists. The following simple SQL query pulls all of the records out of the Employees
table:

12. SELECT * FROM Employees
13. The final DataAdapter configuration screen should report that the configuration was

successful. Click Finish at the bottom of this window. You will then see an
OleDbDataAdapter component next to your OleDbConnection component.

14. Once again, go to the Data panel of the Toolbox window, and drag a DataSet
component over to your form. A window opens asking if you want this DataSet to be
typed or untyped. Select the untyped item and click OK.

15. Right-click on the surface of the form, and select View Code. Click inside the form’s
New event, which is located inside the Windows Form Designer code area, and enter
the following line of code:

16. OleDbDataAdapter1.Fill(DataSet1)

When you run this Windows Form, your DataSet will be filled through the DataAdapter using
the SQL query you designed. In addition, you could add data controls, such as the DataGrid
control, to your form and set its DataSource property equal to DataSet1 to see this data.
You could also programmatically manipulate the data within your DataSet. Using data
components from the Toolbox requires a little bit of configuration. In the next section, I
discuss the Server Explorer window and show you how you can drag and drop
preconfigured components over to your form.

Server Explorer Data Components

The database objects you drag from your Server Explorer window over to your project work
just like their Toolbox cousins, but with one significant difference. When you drag objects
over from the Server Explorer, the data objects that are added to your code will already be
configured with all of the necessary settings. The following exercise shows you how to use
the Server Explorer to drag a database table over to your project:

1. Create a new Windows Application project.

2. From the Windows Form panel of the Toolbox, select a Label control, and drag it to the
center of your Windows Form.

3. In the Server Explorer window, select a database (either under Data Connections or
under a server’s name), and expand it until you see a list of tables within this
database.

4. Click and hold on one of the tables, drag it over to the surface of your Windows Form,
and drop it. In the component area located below your Windows Form, you will see
both an OleDbDataAdapter and an OleDbConnection object added to your form.
Both of these objects are already fully configured to point to the selected database
and table.

5. From the Toolbox window’s Data panel, drag a DataSet component over to your form,
and drop it.

6. Right-click on the Windows Form’s surface, and select View Code. In the form’s New
event, add the following lines of code:

7.
8. OleDbDataAdapter1.Fill(DataSet1)

9. Label1.Text = DataSet1.Tables.Count
10. Save and run your project. When the form loads, your label displays the number 1,

meaning that there is one table loaded into DataSet1. You could continue to drag
tables from the Server Explorer window over to your form, and then add lines of code
to add these tables to DataSet1.

11. To see the code that was automatically generated by these data components, take a
look at the code behind your Windows Form. If you expand the section of code that
reads Windows Form Designer generated code, you will see where the data
components are declared and configured in your code.

Filling a DataSet from a Database

There are many different ways to place data inside your DataSet. You can create the
DataSet’s contents from scratch in your code, you can read a file of XML into your DataSet,
or you can use a DataAdapter object to connect your DataSet to a database and fill it from
the database. Because your DataSet is not directly connected to the database you are
pulling your data from, you first need to configure a DataAdapter and a Connection object
before you can pull the data you need. The following code creates a DataSet, DataAdapter,
and Connection object, configures that connection, and then uses it to fill the DataSet with
the desired data:

'Declare a DataSet, DataAdapter, the query and the connection string
Dim dsMyData As New DataSet()

Dim daAdapter As OleDb.OleDbDataAdapter
Dim strSql As String = "SELECT * FROM Employees"

Dim strConn As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=_

 C:\Databases\Company.mdb"

'Initialize the DataAdapter with a connection and query
daAdapter = New OleDb.OleDbDataAdapter(strSql, strConn)

'Use the DataAdapter to fill up the DataSet

daAdapter.Fill(dsMyData)

The key to getting the data out of the database and into your DataSet is the DataAdapter’s
Fill method. Once you have configured the DataAdapter with a connection (strConn in the
example) and a query to run on the database (strSql in the example), all you need to do is
to execute the Fill method and point it to your awaiting DataSet. The Fill method is
responsible for opening the specified connection, executing your command, and then closing
the connection to the database. In past versions of Visual Studio, each of these steps would
require its own line of code, but the Fill method greatly simplifies data access by handling
the opening, querying, and closing steps for you.

Note

If the connection being used by the Fill method is already open when the
Fill method is executed, it remains open after the Fill method is complete. In
most cases, it’s best to let the DataAdapter handle the opening and closing
of database connections for you.

Modifying Data in a DataSet

When working with a DataSet filled with data, you must think in three dimensions: tables,
rows, and columns. With the old ADO Recordsets, you only had to worry about rows and
columns, but now you have to be more specific when locating the DataSet’s cursor to edit a
row. The following code line shows how you would change the value of a single column
located in a single row within a specific table:

dsCompany.Tables("Customers").Rows(0)("FirstName") = "Dave"

To make this change, this line of code needs to specify the exact table name, the exact row
index, and the column’s name in order to locate the data element that is being changed. The
column’s name in my example is FirstName, but you could substitute an Integer for the
name of the column if you prefer to reference columns in this way. If you try to assign a
value that violates the constraint placed on a particular row, an exception will be raised. You
can temporarily disable a row’s constraint checks by using the row’s BeginEdit method.
Here is an example of using BeginEdit to do this:

dsCompany.Tables("Customers").Rows(0).BeginEdit()

dsCompany.Tables("Customers").Rows(0)("FirstName") = 100
'No exception raised on the previous line

dsCompany.Tables("Customers").Rows(0).EndEdit()
'EndEdit re-enables constraints, and an exception is raised

If you want to make multiple row changes at one time without the trouble of having
constraints get in the way, you can use the BeginEdit to do so. Calling the EndEdit method
reenables the constraint checks, and any constraint violations still remaining from your
editing session will result in exceptions being raised. Calling the AcceptChanges method
automatically triggers the EndEdits for any BeginEdits you called but left disabled.

Adding and Deleting Rows

Earlier, when you created a DataSet programmatically, you also learned how to add a new
row to a table by using the DataTable’s NewRow method to first create that row, and then by
using the Add method of the DataTable’s Rows collection to add the completed row to the
table. The following code shows how you would use the NewRow and Add methods to
attach a new employee record to the dtEmployees table:

drEmpRecord = dtEmployees.NewRow

drEmpRecord("EmpID") = 33
drEmpRecord("EmpName") = "Oliver Westin"

drEmpRecord("OfficeSym") = "DTJ"
drEmpRecord("HireDate") = "03/22/95"

dtEmployees.Rows.Add(drEmpRecord)

To delete a row from a table, you just need to know the index number of that row so that you
can call the row’s Delete method like this:

dsCompany.Tables("Employees").Rows(7).Delete()

Locating Data in a DataTable

If you have a large number of records loaded into a DataTable, it could be very time-
consuming to step through each and every record looking for a particular column value. You
could always create a new DataSet and table from the data source using a more specific
query, but that too takes time and resources to perform. Instead of all this work, you can use
the DataTable’s Select method to run a mini-query against your table and locate the desired
items. Take a look at this code example:

Dim Results() As DataRow
Dim MyTable As DataTable

Dim strSelect As String = "EmpName = 'James Moffet'"
Dim strSort As String

Dim strRowState As DataViewRowState
'Decides how to sort the resulting rows

strSort = "EmpID DESC"
'Filter rows searched by their current status

strRowState = DataViewRowState.CurrentRows

'Pick the table to search
MyTable = dsCompany.Tables("Employees")

'Load the results of the Select into an array
Results = MyTable.Select(strSelect, strSort, strRowState)

'Print out the first returned record, first column (EmpID)
MsgBox(CStr(Results(0)(0)))

The strSelect variable in this example contains the search criteria you want to use on your
table. String values should be enclosed within single quotes when declaring your strSelect
statement in this way. It is also critical that the column name you search against, EmpName
in this example, exists in the DataTable. The sort parameter of the Select method allows you
to sort the results by any column for easier handling. The DataViewRowState parameter
acts as a filter that you can use to only look at certain versions of the rows in the table, such
as Added, Deleted, Current, or Original. The output of the Select method should be saved
in an array of DataRows. You now have a much smaller set of rows to look through, and if
your search criteria is detailed enough, you may even have that one single row you’ve been
looking for.

Accepting and Rejecting Changes

When you accept a series of changes made to your DataSet, you move all of these recently
updated or proposed values over to what is called the current copy of your data. Accepting
changes is like committing data at the DataSet level. Until you execute the DataAdapter’s
Update method, you will not be committing these changes to the actual database.
Remember, you can accept changes at the DataSet, DataTable, and DataRow levels. The
following three lines of code show you how the AcceptChanges method works for the
DataSet, DataTable, and DataRow:

DataSet1.AcceptChanges()
DataSet1.Tables("Customers").AcceptChanges()

DataSet1.Tables("Customers").Rows(9).AcceptChanges()

Be careful when using the AcceptChanges method. Once you accept all of your changes,
those values are committed to the current copy of your data and cannot be rolled back
unless you use the DataSet’s Reset method to replace all of the data in the current and
proposed copies with the data from the original copy. You can also execute a
RejectChanges at all three levels. The following example shows the RejectChanges
method used at the DataSet, DataTable, and DataRow levels:

DataSet1.RejectChanges()

DataSet1.Tables("Customers").RejectChanges()
DataSet1.Tables("Customers").Rows(3).RejectChanges()

You need to be aware of the level at which you are performing your RejectChanges
because all changed data elements at that level will be affected. For example, if you execute
a RejectChanges at the DataSet level, all changes within every table and every row of that
DataSet will be rolled back to their original value.

Saving Changes to a DataSet Back to a Database

If you use a DataAdapter to fill your DataSet with elements from a data store, you will also
use a DataAdapter object to update your data stores with any changes made within your
DataSet. The Update method of the DataAdapter makes this a simple process, just as easy
as it was to use the Fill command. Here is an example of the Update method being called:

OleDbDataAdapter1.Update(DataSet1)

This one simple little method performs a whole slew of functions on your behalf to efficiently
merge the changes in your DataSet with the original data source. The Update method first
examines your DataSet to see which items have been changed since the DataSet was last
filled. As you already learned, the DataSet maintains three copies of the data contained
within it. By comparing the current values in the DataSet to the original values that were in
the DataSet after the last Fill was done, the Update method can determine which records
need updating. By fully concentrating on communicating back to the data store only those
records that have changed, the Update method prevents a great deal of unnecessary data
from being sent across the network.

In order to communicate these changes to the data store, the Update command translates
these changed values into SQL commands, such as the INPUT, DELETE, and UPDATE
commands. The DataAdapter by itself is not able to create these SQL statements, so it must
rely on an object called the CommandBuilder to do this job. In a procedure that uses the
DataAdapter’s Update method, you need to declare an instance of a CommandBuilder

object at the top of your procedure, preferably right after you declare the DataAdapter
object. This is how you would declare both of these objects:

Dim daAdapter As OleDb.OleDbDataAdapter
Dim SQLBuilder As OleDb.OleDbCommandBuilder = New _

 OleDb.OleDbCommandBuilder(daAdapter)

Notice that the CommandBuilder’s declaration points to the DataAdapter object it will be
working with. If you try to use the DataAdapter’s Update method without first assigning that
DataAdapter a CommandBuilder, your Update method will fail to affect the data source.

Creating a Typed DataSet

Creating a typed DataSet is like creating a database. First, you define the tables within your
database; second, you add attributes to those tables, restricting which data types each
attribute can be; and third, you define the relationships that exist between your tables. Using
schemas with DataSets does take a little extra time and more than a little extra thought, but
all this work is done in the name of preventing data corruption. You could create a database
that uses Varchar2s (the database equivalent of the String data type) everywhere, but this
would open your database and allow any value to be added anywhere. You would not be
able to prevent someone from entering a name in an Age attribute or an age in the
FirstName attribute. Defining a set of rules to restrict the data elements contained within
your database or DataSet prevents mistakes and errors from occurring. These schemas act
like a security guard, checking all values that are trying to enter your DataSet and validating
them against an approved list of data types.

Developing a schema to rule over your database or DataSet takes a great deal of
forethought and planning, so step one of creating any type of schema is to sketch out your
planned data structure. Decide on meaningful names for your elements, and be sure to
select the best data type for each attribute. In the following sections, I discuss how to create
the actual schema to define your DataSet, show you how to load the schema into your
DataSet, and then discuss the effects this schema will have on your data interactions.

Creating the DataSet’s Schema

Although there are many ways to create a DataSet schema, there are two smart ways I want
to show you to help you get the job done quickly. The first method involves using an already
loaded DataSet. If you have a DataSet loaded with the proper data elements and
relationships, all you need to do to create a schema to “lock-in” this DataSet’s format is to
use the WriteXmlSchema method like this:

Dim XMLOut As IO.FileStream = New IO.FileStream("c:\XMLSchema.xsd",
_
 IO.FileMode.OpenOrCreate, IO.FileAccess.Write)
dsCompany.WriteXmlSchema(XMLOut)

This code creates a schema on your hard drive that you can then load into future DataSets
to enforce the format you worked so hard to develop the first time around. Notice that the
output file I am creating ends in a .xsd extension, which represents an XML schema
definition. For a DataSet containing an Employees and Offices table, the schema contained
in this file would look like this:

<xsd:schema id="Company" targetNamespace="" xmlns="" xmlns:xsd=_

 "http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-
microsoft-_
 com: xml-msdata">

 <xsd:element name="Company" msdata:IsDataSet="true">
 <xsd:complexType>

 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="Employees">

 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="EmpID" type="xsd:int" minOccurs="0" />
 <xsd:element name="EmpName" type="xsd:string" minOccurs="0"
/>
 <xsd:element name="OfficeID" type="xsd:int" minOccurs="0" />
 <xsd:element name="HireDate" type="xsd:string" _

 minOccurs="0" />
 </xsd:sequence>

 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Offices">
 <xsd:complexType>

 <xsd:sequence>
 <xsd:element name="OfficeID" type="xsd:int" minOccurs="0" />

 <xsd:element name="OfficeName" type="xsd:string" _
 minOccurs="0" />

 <xsd:element name="OfficeSym" type="xsd:string" _
 minOccurs="0" />

 </xsd:sequence>
 </xsd:complexType>

 </xsd:element>
 </xsd:choice>

 </xsd:complexType>
 <xsd:unique name="Constraint1">

 <xsd:selector xpath=".//Employees" />
 <xsd:field xpath="OfficeID" />

 </xsd:unique>
 <xsd:keyref name="EmpOffice" refer="Constraint1">

 <xsd:selector xpath=".//Offices" />
 <xsd:field xpath="OfficeID" />

 </xsd:keyref>
 </xsd:element>

</xsd:schema>

The second method for creating data schemas should be used when you do not have a
perfected DataSet available to dump a schema from. Database developers will like this
second method because they get to use a nifty graphical tool to plan and design the
schema, much like creating a database schema in SQL Server. Visual Studio .NET allows
you to add an item named the XML Schema item to your projects. You can edit this item in
one of two modes: Designer and XML. The Designer mode allows you to drag and drop
items from the XML Schema panel of the Toolbox over to your schema’s surface, and then
configure these items in a graphical way. The XML editing mode allows you to manipulate
the actual text behind the schema, which is a pretty complicated way to work with XML.

Within the XML Schema panel, you will see designer components that you can use to add
elements, attributes, complex and simple types, keys, and relationships. Looking back to the
schema example generated from the Employees and Offices tables, you can see that the
Employees and Offices tables translate into two different complex types. The attributes to
these tables are elements within the schema, listed within their associated tables/complex
types. A simple type can be used to create a customized data type, such as one you call
Age. After naming a simple type, you can define characteristics about it, such as its length
and ability to support white spaces. Using the XML Designer tool requires a certain degree
of knowledge of XML tagging and its supported data types, so if you are new to the world of
XML, you might want to review Chapters 5 and 14 before trying out this tool.

Add the Schema to the DataSet and Fill the DataSet

You must create the schema before you can create any DataSets using that schema. Once
the schema is finished, you can use it to initialize the DataSet’s structure prior to loading any
data into that DataSet. Schemas that you generate using the WriteXmlSchema method and
those created using the Visual Studio .NET schema designer can both be loaded by
referencing their file locations on the hard drive. Here is an example of how you would load
an XSD file on your hard drive into a DataSet created programmatically:

Dim dsWithSchema As New DataSet()

Dim SchemaIn As IO.FileStream = New
IO.FileStream("c:\XMLSchema.xsd", _
 IO.FileMode.OpenOrCreate, IO.FileAccess.Read)

dsWithSchema.ReadXmlSchema(SchemaIn)
DataGrid1.DataSource = dsWithSchema

If you were to view this DataSet using the DataGrid control, you would see that despite the
lack of data elements, this DataSet has a predefined set of columns. If you were to load the
schema created for the Employees and Offices tables, the relationship between these two
tables would be part of your new DataSet as discovered through the loaded schema. Any
attempts to add data to a table that does not meet the schema’s data type definition will
result in an exception being raised in your code. This includes data added both
programmatically using the DataTable’s NewRow method, and data that is loaded from a
data source using the Fill method.

Tip

Because adding a schema to a DataSet greatly restricts the type of data you
can add to the tables within, you should make generous use of exception-
handling routines around any code that attempts to add or modify this
DataSet.

Using DataSets to Generate XML Messages

To show you how a DataSet can write its contents to an XML message, I will use a DataSet
named DataSet1 that contains both an Employees and an Offices table. These two tables
have a relationship based on their OfficeID attribute with the Employees table being the
parent and the Offices table being the child. To extract these tables out of DataSet1 and
into an XML file, you would use the DataSet’s WriteXml method. The WriteXml method
needs a Stream object from the System.IO namespace to perform the actual writing of data
to the file system:

'Create a FileStream object to write to your file system

Dim XMLOut As IO.FileStream = New IO.FileStream("c:\XMLOUT.xml", _
 IO.FileMode.OpenOrCreate, IO.FileAccess.Write)

'Use the WriteXml method and connect it to your FileStream object
DataSet1.WriteXml(XMLOut)

I first declare a new instance of the FileStream object and set up its parameters to write to
my XMLOUT.xml file. Then I simply execute the DataSet’s WriteXml method, providing it
with my established FileStream object as a means of writing the data. After executing these
lines of code, a file named XMLADO.xml is found on my the hard drive. If I double-click on
this file, it opens in my XML file viewer of choice, which is Internet Explorer unless there is a
third-party utility installed. I then see an XML representation of the contents of DataSet1.
Here is an example of an XML message that lists two employees and two offices:

<Company>
 <Employees>

 <EmpID>11</EmpID>
 <EmpName>James Moffet</EmpName>

 <OfficeID>1</OfficeID>
 <HireDate>09/10/01</HireDate>

 </Employees>
 <Employees>

 <EmpID>22</EmpID>
 <EmpName>Paul Foster</EmpName>

 <OfficeID>2</OfficeID>
 <HireDate>03/22/98</HireDate>

 </Employees>
 <Offices>

 <OfficeID>1</OfficeID>
 <OfficeName>Finance</OfficeName>

 <OfficeSym>ZZZ</OfficeSym>
 </Offices>

 <Offices>
 <OfficeID>2</OfficeID>

 <OfficeName>HR</OfficeName>
 <OfficeSym>WWW</OfficeSym>

 </Offices>
</Company>

DataSets communicate their contents using XML, so if you could view the stream of
communication moving from a DataSet on one server to a DataSet on another server, it
would look exactly like the XML message I just generated. Moving data via XML overcomes
a major problem with older versions of ADO. In the past, ADO used COM to transfer
Recordsets, which worked great inside a company’s network, but usually failed if users tried
to pass their COM-based Recordset through a firewall. Although most firewalls will block
COM calls, they do not block XML messaging. You can use this ability of DataSets and XML
to your advantage if you need to transfer data to a server that lies behind a firewall.

Filling a DataSet from an XML Message

The ADO.NET DataSet is a powerful way to contain and manipulate data. You learned how
to create a DataSet within your code and how to fill a DataSet using a database connection.
In this section, you will learn how to fill a DataSet using an XML message. XML is a great
way to exchange messages between applications because XML can describe complex data
structures such as table relationships. You can also persist data by writing it to an XML file
and then reading that file back into a DataSet when you again need its contents. Using XML
files to persist data is commonly used on Web servers.

The following piece of code creates a DataSet and then fills it using an XML message
located on the local machine’s file system. In order to access a file on your hard drive, you
need to use the FileStream object found under the System.IO namespace. If you have
completed the “Using DataSets to Generate XML Messages” Immediate Solution, you can
easily use the XML message created by that solution to fill a new DataSet.

'Create a brand new DataSet
Dim NewDataSet As New DataSet()

'Create a new instance of the FileStream to read in your XML message
Dim XMLIn As IO.FileStream = New IO.FileStream("c:\XMLOUT.xml", _

 IO.FileMode.Open, IO.FileAccess.Read)
'Use the ReadXml method and connect it to your FileStream object

NewDataSet.ReadXml(XMLIn)

One terrific way to examine a DataSet’s contents when you are first learning about
ADO.NET is to use the DataGrid control. I like to perform my experiments using a Windows
Application project because I can drop a DataGrid control onto Form1, and then point it to
my newly created DataSet like this:

DataGrid1.DataSource = DataSet1

Not only is the DataGrid a great control you can use to allow your application’s users to view
and manipulate data, but it is also a great tool for the developer to perform spot checks on a
DataSet’s contents. The DataGrid can also display DataSets that contain multiple tables by
offering you a clickable list of available tables to view.

Using the DataReader to Access Data

If you need a block of data, but you have no need to edit and return that data back to its
source, you should avoid using a DataSet and instead opt to use the DataReader to pull
your data. The DataReader uses a quick server-side cursor to connect to your database and
pull out the data you need. This server-side cursor only moves forward through the
database, and the DataReader’s connection will not allow you to write data to the database,
only extract it. This makes the DataReader ideal for filling in controls on your interfaces with

data from a table. You can also use the DataReader if you need to do a quick value lookup
in your code.

The following code example creates a DataReader object and connects it to an Access
database containing a table named Jobs. After the DataReader’s connection is established,
I use the DataReader to fill in a ComboBox with the job titles returned from the database:

Dim strConn As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=_
 C:\Databases\Company.mdb"
Dim strSql As String = "SELECT JobTitle FROM Jobs"

Dim MyReader As OleDb.OleDbDataReader
'setup the connection with the connection string

Dim MyConn As New OleDb.OleDbConnection(strConn)
'setup the command with the SQL query and my connection

Dim MyCommand As New OleDb.OleDbCommand(strSql, MyConn)

'open the connection object
MyConn.Open()

'tell the DataReader to execute the command object

MyReader = MyCommand.ExecuteReader

'as each item is read, add it to the combobox
While (MyReader.Read)

 ComboBox1.Items.Add(MyReader("JobTitle"))
End While

'close the connection

MyConn.Close()

This code example starts by creating instances of DataReader, Connection, and
Command objects. The Connection object is first told how to connect to the database, and
then the Command object is told what query it will be running (strSql) and the name of the
Connection object it will be using. The DataReader is then pointed to the Command object,
and the query is executed. The While loop steps through the Jobs table one record at a
time, and the DataReader pulls back that record’s JobTitle attribute and adds it to the
ComboBox control. Because you are not using a DataAdapter to connect to the database,
you need to explicitly open and close your connection at the proper times.

Tip

Be sure to close your connection when you are finished using your
DataReader.

Issuing Direct Database Commands

If you need to execute a SQL command against a database that will not extract some data
into a DataSet, you can forego the unnecessary DataSet object and simply use the
Command object. You can use this method when executing SQL INSERT, DELETE, and

UPDATE commands directly against the database. Executing these SQL commands
through a Command object is far more efficient than using a DataAdapter to pull all of the
data across the network into your DataSet, modify those records, and then send the updated
items back across the network. With the Command object, only the SQL command is sent
across the network, and all processing of that command occurs on the database server. The
following code uses the SQL DELETE statement to delete all records from the Customers
table where the company’s name is equal to WidgetSpot:

Dim MyConn As SqlClient.SqlConnection = New
SqlClient.SqlConnection("Data _
 Source=localhost;Integrated Security=SSPI;Initial
Catalog=NorthWind")

Dim MyCmd As SqlClient.SqlCommand = New SqlClient.SqlCommand("DELETE
FROM _
 Customers WHERE (CompanyName = N'WidgetSpot')", MyConn)

MyConn.Open()
MyCmd.ExecuteNonQuery()

MyConn.Close()

Using this code example, you could easily replace the DELETE statement inside the
SqlCommand declaration line with either an INSERT or DELETE statement. When
executing SQL statements directly against the database, the results you are hoping for are
that no exceptions will be raised. There will not be any feedback from a Command object’s
ExecuteNonQuery if the operation was successful. Of course, how often does that happen?
Just to be safe, it is better to surround your execute direct functions with plenty of exception-
handling code to trap all of those unexpected conditions that could crash your code.

Using Stored Procedures in ADO.NET

You can execute a database’s stored procedure using the ADO.NET Command object.
Some stored procedures will execute on their own without any input from the caller. Other
procedures require that some data be provided to it in the form of Command object
parameters.

In this first example, I am using the SQL providers to access the Northwind database on a
SQL Server 2000 machine. This piece of code triggers the Ten Most Expensive Products
stored procedures, which requires no parameters to execute. The output of this stored
procedure is read in to my code using a DataReader object. Notice that I must establish a
connection to the database and manually open and close that connection in order to use my
Command object. After pulling the stored procedure’s results back into my code, I step
through the DataReader and add the top 10 most expensive products to a ListBox control on
my Windows Form.

Dim MyConn As SqlClient.SqlConnection = New
SqlClient.SqlConnection("Data _
 Source=localhost;Integrated Security=SSPI;Initial
Catalog=NorthWind")
Dim MyCmd As SqlClient.SqlCommand = New SqlClient.SqlCommand("Ten
Most _

 Expensive Products", MyConn)
MyCmd.CommandType = CommandType.StoredProcedure

'Open the connection before executing the stored procedure
MyConn.Open()

'Use a DataReader object to accept the stored procedures output

Dim Results As SqlClient.SqlDataReader = MyCmd.ExecuteReader()

'Write the contents of the Results object to the ListBox
Do While Results.Read()

 ListBox1.Items.Add(Results.GetString(0))
Loop

'Close the Results and connection objects

Results.Close()
MyConn.Close()

If you are working with a stored procedure that requires parameters in order to do its job, you
need to configure these parameters and assign them values within the Command object
prior to opening your connection and executing your command. The following code executes
the “Northwind’s Sales by Year” stored procedure. This procedure requires two input
parameters, one for the starting date and one for the ending date. It returns a table of data,
listing the sales that occurred during the requested time frame including the sales dates and
purchase totals. In this piece of code, I set up these two parameters prior to executing my
stored procedure, and then I add the sales totals to my ListBox control:

Dim MyConn As SqlClient.SqlConnection = New
SqlClient.SqlConnection("Data _
 Source=localhost;Integrated Security=SSPI;Initial
Catalog=NorthWind")

Dim MyCmd As SqlClient.SqlCommand = New SqlClient.SqlCommand("Sales
by _

 Year", MyConn)
MyCmd.CommandType = CommandType.StoredProcedure

Dim StartDate As SqlClient.SqlParameter = MyCmd.Parameters.Add_

 ("@Beginning_Date", SqlDbType.DateTime)
StartDate.Value = "01/01/1996"

Dim EndDate As SqlClient.SqlParameter = _
 MyCmd.Parameters.Add("@Ending_Date", SqlDbType.DateTime)

EndDate.Value = "12/31/1996"

MyConn.Open()

Dim Results As SqlClient.SqlDataReader = MyCmd.ExecuteReader()

Dim TotalSale As String
Do While Results.Read()

 TotalSale = Results.Item(2)
 ListBox1.Items.Add(TotalSale)

Loop

Results.Close()
MyConn.Close()

If you look at the highlighted portion of code, you will see that I have to configure these
parameters within the Command object. To configure these correctly so that the stored
procedure does not reject your parameters, you must know the exact parameter names and
required data types. If you use a wrong parameter name or mismatched data type, the
stored procedure will fail when you try to execute it. One way to discover these parameters
is to use the Server Explorer window. Locate the stored procedure under its associated
database, right-click on it, and select Edit Stored Procedure. This shows the raw text behind
the procedure, including the expected parameters and their data types that you can mirror in
your code.

Working with ADO.NET Events

ADO.NET events allow your code to react to changes that occur during your data
manipulation actions. Events, by nature, are meant to inform or notify you that something
significant has happened. Even if you choose to ignore an object’s events, that object will
still fire off these events. Your event code will decide what happens when these events are
triggered, and it is up to you to decide if it is important to react to a certain event or not. To
show you how you can work with ADO.NET, I will examine the two Connection object
events. The Connection object provides two handy events called StateChange and
InfoMessage. The StateChange event fires whenever the Connection’s State property
changes, such as from Open to Close . The following example uses some event code to
check and see which state the Connection has changed to:

Private Sub OleDbConnection1_StateChange(ByVal sender As Object, _
 ByVal e As System.Data.StateChangeEventArgs) Handles _

 OleDbConnection1.StateChange
 If e.CurrentState = ConnectionState.Closed Then

 'The connection just closed, add some code here to react to that
 ElseIf e.OriginalState = ConnectionState.Open Then

 'The connection was previously Open, but is not currently closed
 End If

End Sub

The Connection’s State property can be Open, Closed, Broken, Executing, Connecting,
or Fetching. Knowing when a particular state has been entered (using the CurrentState
property of the StateChangeEventArgs parameter) or the state’s last value before the
current change (OriginalState) can help you detect exactly where a problem has occurred.

The Connection’s InfoMessage event is used to relay messages from the .NET data
provider back to the caller. The arguments that are passed into your InfoMessage event-
handling code will tell you the name of the object that sent the message (Source), the
Message itself, and an Errors collection containing all of the errors reported by the data
source. Here is an example of the InfoMessage event checking for the existence of errors
within the Errors collection:

Private Sub OleDbConnection1_InfoMessage(ByVal sender As Object, _
 ByVal e As System.Data.OleDb.OleDbInfoMessageEventArgs) Handles _

 OleDbConnection1.InfoMessage

 If e.Errors.Count > 0 Then
 'Some errors were reported by the data source

 End If
End Sub

Examining Errors in ADO.NET

In ADO.NET, errors can exist within the DataSet, and errors can occur during data
operations, such as the DataAdapter’s Fill method. In this section, you learn how to check
your DataSets for errors, locate these errors, and then fix them so that you can save your
data safely. Take a look at the following code example:

Dim BadRows() As DataRow

Dim CheckCol As DataColumn
Dim z As Integer

Dim TotalErrors As Integer
If DataSet1.HasErrors = True Then

 'There is an error somewhere in this dataset
 If DataSet1.Tables("Customers").HasErrors = True Then

 'The error is in the Customers table!
 BadRows = DataSet1.Tables("Customers").GetErrors

 TotalErrors = BadRows.GetUpperBound(0)
 'step through each row that has an error

 For z = 0 To TotalErrors
 'check which column has the problem

 Console.WriteLine(BadRows(z).GetColumnError(CheckCol))
 'fix the problem then clear the error flag

 BadRows(z).ClearErrors()
 Next

 End If
End If

'If no errors found in the DataSet, then Update the data source
DataAdapter1.Update(DataSet1)

You can check your DataSet for errors by starting at the highest level, the DataSet itself. If
the HasErrors property is True, you know there is an error somewhere, and the next step is

to figure out which table contains that error. If the DataSet does not contain any errors, the
code skips over all of this error checking and proceeds directly to the Update call. Once you
locate the table that contains the error, you can examine an array containing all of the rows
with errors within the table. Each row that has an error points you to that error using the
GetColumnError property. Once you have located and resolved the problem, you should
turn off the row’s error flag by using the DataRow’s ClearErrors method. It’s a good idea to
rerun the HasErrors checks before you finally try to execute an Update with a DataSet, just
to be on the safe side.

When working with DataAdapters, any errors encountered during your code’s connection to
the database will be reflected in either an OleDbError class or a SqlError class, depending
on which .NET data provider you are using. The DataAdapter will create a collection of these
errors whenever a connection problem is encountered. You will be able to examine the
error’s Message (the .NET data provider’s interpretation of the problem), Source,
NativeError (the database’s version of the problem), and SQLState of the database. To trap
DataAdapter errors, enclose your adapters in a Try, Catch, Finally structure and Catch
either OleDbExceptions or SqlExceptions, depending on which .NET data provider you
are using.

Generating SQL Queries Using the Query Designer

Unless you are a SQL guru who enjoys thinking about inner and outer joins, you will certainly
appreciate Visual Studio .NET’s abilities to make creating SQL statements as easy as point-
and-click. Lets face it, if you want to talk to a database, whether to ask for some data or to
make some changes to existing data, you have to know how to talk SQL. Fortunately, using
the .NET query design tools can generate this complex language for you. To see how easy it
is to generate a query, try the following example:

1. Open any project in Visual Studio .NET and look at the Server Explorer window.
Expand one of the database entries found within this window. You can use either a
data connection you have created or a SQL Server database located under the
Servers tree. Expand the Tables tree located under the selected database.

2. Right-click on one of the tables that you want to create a query for, and select Retrieve
Data From Table. In the Design area, you will see a grid displaying all of the returned
data values from this table.

Warning Be very careful not to accidentally change a table value

displayed in the DataGrid during a query design session. These
changes are communicated directly to the database through the
Server Explorer, which is helpful if you need a quick way to edit
the actual database, but not very helpful if you did not intend to
make any changes.

3. Display the Query toolbar by selecting View|Toolbars|Query.
4. Click the three leftmost buttons on the Query toolbar, which show you the Diagram

Pane, Grid Pane, and SQL Pane. The grid listing the contents of this table is the
Results Pane, which is the fourth button on this toolbar. Figure 15.6 shows the Query
toolbar. Within the query designer window, the top pane is the Diagram Pane, the
next one down the Grid Pane, followed by the SQL Pane, and the Results Pane at
the bottom. You can see the query designer’s layout in Figure 15.7.

Figure 15.6: The Query toolbar.

Figure 15.7: The query designer interface.

5. The SQL Pane displays the actual SQL language query that you are generating. You
can manually enter queries in this pane, but if you enjoy typing SQL statements, you
probably do not need this tool in the first place. The Grid Pane displays items that
have been selected in the Diagram Pane and allows you to set criteria and
parameters for these items. The Grid Pane displays all of the currently selected
tables, each in its own separate box. Within each box is a list of that table’s attributes
with a checkbox next to each attribute.

6. To add a table, right-click inside the Diagram Pane, and select Add Table. You are
shown a list of tables available in the current database connection. Select one of the
tables, and click Add. You can add multiple tables this way. Click Close when you are
finished. You can also add tables to the Diagram Pane by dragging them to this pane
from the database’s tree, which is shown in the Server Explorer window. To remove a
table, right-click its title bar within the Diagram Pane and select Remove.

7. To create a table relationship: If you add two tables to the Diagram Pane that have a
declared relationship, you will see a line connecting these tables. Each end of the line
points to the attribute from which this relation is made. You can remove a relation by
right-clicking on this line and selecting Remove. You can add a new relation to the
Diagram Pane by clicking and holding on an attribute in one table, and then dragging
your mouse over to an attribute in another table and letting go. This added relation
will not affect the actual database, only your query. Relationships shown in the
Diagram Pane affect the JOIN syntax of your SQL statement.

8. To edit the queries criteria: For each attribute checked within a table shown in the
Diagram Pane, an item will be added to the Grid Pane. You can enter an Alias for this
attribute, which renames the column’s header value during the query. If you want to
sort the returned values by a particular column, you can set its Sort Type setting to
either Ascending or Descending. You can also define which particular items will be
returned or affected by setting some Criteria for a particular attribute. For example, for
a UsersAge attribute, you could set a Criteria value to say “>17” to only affect
records where the age is 18 or higher.

9. To validate your SQL statement, right-click within the SQL Pane, and select Validate
SQL Syntax. A message box lets you know if the text of your query is in fact a valid
statement that can be used or an invalid statement that requires some fixing before it
can be run.

10. To change the query type, click Change Type on the Query toolbar. A list of SQL
statement types that you can create in the query designer appears. Changing a query
type changes the syntax used in the SQL Pane.

11. To run your query, right-click within any of the four panes, and select Run. If your
query is a valid SELECT query, the returned results are displayed in the Results

Pane. If you are executing an UPDATE or DELETE query, you will receive a
message box letting you know if the action succeeded or not. Be careful when
running queries that change data because you are actually affecting the live
database.

Chapter 16: Working with COM and the Win32
API
By Julian Templeman

In Depth

The .NET Framework is very much the “new kid on the block” in the Windows world, and
.NET applications are going to have to be able to interact with existing Windows
technologies for some time to come. This is especially true in two areas: the Component
Object Model (COM) and the Windows Application Programming Interface (API).

COM was Microsoft’s original technology for building language-independent software
components. It is heavily used at system level and is often seen in applications because it
forms the basis of the many ActiveX controls that are widely used in Visual Basic and C++
projects. As you’ll see shortly, .NET provides a way to interoperate seamlessly between
.NET and COM objects, which is known as COM Interop.

The Windows API is the collection of functions used by Windows programmers to write
Windows applications. The .NET Framework provides an OO layer on top of the Windows
API, but there are times when you may need to use an API call that isn’t accessible through
.NET. In those cases, you can use the .NET Platform Invoke (P/Invoke or PInvoke)
mechanism to call C or C++ functions from .NET. Because the Windows API functions live in
DLLs, P/Invoke provides a general mechanism for calling C or C++ functions in DLLs from
within .NET code.

Although there is a brief explanation of COM in the sections that follow, this chapter does
assume some knowledge of what COM is and how it works as well as a passing knowledge
of the Win32 API.

Working with COM

This section describes how COM and .NET objects can interoperate. It covers two
scenarios:
§ How .NET code can use COM objects
§ How .NET objects can be used as COM objects

In the early days of .NET, the first scenario is going to be by far the most common, because
there are a lot of “legacy” COM objects in existence—especially ActiveX controls—that will
have to be used by .NET code.

The second scenario will be less common, but may occur from time to time. For example,
you may want to write a new .NET class that has to be used as part of an existing COM-
based application.

Does .NET render COM obsolete? I think that the answer has to be in many cases, no.
There are some types of COM objects, such as ActiveX controls, that will be superceded by
their .NET equivalents, but there are many cases where low-level COM programming in C++
is the most efficient delivery mechanism, and where only COM gives access to specialized
low-level functionality. Indeed, in Visual Studio .NET the Active Template Library (ATL), the
C++ library for writing COM objects, has been upgraded to support writing efficient server-
side components.

What Is COM?

If you already know what COM is, you can proceed directly to the next section, where you’ll
see how to use COM objects in .NET code.

COM is a specification for writing software components that is designed to be language and
platform independent. The specification is a set of rules that developers must follow if their
objects are to work as COM objects. If your code follows the rules, it is a COM object and
will be able to work with other COM objects.

The basis of COM is the interface, which is simply a collection of addresses of some
functions inside an object; if a client can get hold of this collection of pointers, it can use the
addresses to call the functions. Interfaces simply take the form of an array of pointers in
memory, and mechanisms exist to help client code find the interfaces exposed by an object.

Interfaces have two identifiers: a name that begins with I by convention, such as IDispatch
and IErrorInfo, and a numeric ID called an interface ID. Interface IDs are one particular use
of Globally Unique Identifiers (GUIDs), which are unique 128-bit identifiers used to identify
items in COM, and they are never duplicated. They are used to identify COM object types (or
“co-classes”), interfaces, and anything else that needs to be uniquely identified. You’ll often
see references to these GUIDs. They are most often written as a string of hex digits, like
this:

{EEC6FCC4-1973-495A-9BB6-910F0A49175C}

All the information about COM objects and their interfaces is stored in the Windows Registry
using these GUIDs to identify them. If you are interested and know how to use the Registry,
you can see all the COM object information by using RegEdit or RegEdt32 to browse the
HKEY_CLASSES_ROOT Registry hive.

One of the problems with COM is that the information about objects—where they live and
what they can do—is held external to the object in the Registry. If the link is broken
somehow—maybe by the Registry entries becoming corrupted or by the object being moved
somewhere else without updating its registration—the COM object can become orphaned
and clients will not be able to use it. .NET uses metadata stored with the objects themselves
in assemblies, so that there is no need for Registry entries, as objects are self-describing.

Because COM was introduced after all the common Windows programming languages had
been developed, the COM specification had to define a set of types that could be used to
communicate between languages, together with rules and mechanisms to ensure that cross-
language function calls worked correctly. This meant that COM programming could be tricky,
especially from C++ where you had to do literally everything yourself.

COM programming wasn’t quite so hard in Visual Basic, because the designers of VB went
to great lengths to hide the complexities of COM from the VB programmer. The drawback
with this approach was that it was difficult—and sometimes impossible—to do some COM
programming in VB, because the VB runtime hid some of the COM functionality
programmers needed to use.

Type Libraries and IDL

One of the foundational principles of COM is that clients should be able to find out about
what a COM object can do. In other words, clients can find out what interfaces a COM object
supports and what functions make up the interfaces. This means that a COM object has to
have an equivalent of .NET metadata: a way of describing what a COM object can do in

terms of what interfaces it supports. This is done in the COM world using the Interface
Definition Language (IDL) and type information.

IDL is a notation for describing COM objects and their interfaces, and COM programmers in
the C++ world are used to using IDL. At compile time, a tool called MIDL compiles the IDL
into binary information known as a type library. The type library may be part of the COM
object code attached to the DLL or EXE, or it may be held in a separate file.

.NET lets you find out about COM object capabilities in two ways. First, it allows you to read
the type library when you’re constructing the code, so that the compiler knows what your
COM object can do and can perform compile-time checks, such as checking parameter
types. This is known as early binding to a COM object, because it happens at compile time.
You perform early binding by adding a reference to the COM object to the .NET project.

.NET also allows you to create a COM object dynamically at runtime and find out what it can
do. COM has a mechanism that lets you ask COM objects whether they support a particular
interface. This mechanism lets you use late binding to COM objects, so called because
deciding which object to talk to and how to talk to it happens at runtime. .NET provides a
mechanism to access COM objects using late binding.

Dispatch Interfaces and Automation

Before moving on, it is worth mentioning dispatch interfaces. Many Windows programmers
will have come across Automation (previously called “OLE Automation”), but many
developers really don’t know what it means.

Early versions of Visual Basic, and some current scripting languages, cannot use type
libraries. This means that they cannot find out what COM objects can do before using them,
which makes life difficult. In addition, early versions of VB were designed so that the
programmer had no idea that COM even existed. COM designers didn’t want VB
programmers to have to know anything about interfaces at all.

COM designers therefore decreed that any COM object that was to work with VB had to
support one particular interface called IDispatch, and all other functions could be invoked
through this interface. This was called Automation, and it provided a very late-bound way of
using COM objects where you could ask a COM object whether it supported a particular
method or not.

Using COM Objects from .NET Code

COM objects can be used very simply from .NET code by using a runtime-callable wrapper
(RCW), a proxy class that makes the COM object look exactly like a native .NET object as
far as .NET is concerned. The RCW exposes all the methods and properties of the COM
object and handles all the work involved in creating the COM object at runtime and using its
interfaces.

RCWs can be created in one of two ways. If you are using the Visual Studio .NET IDE, you
can simply add a reference to the COM object to the project. This will cause Visual Studio to
read the object’s type library and create a wrapper based on what it finds. The alternative is
to use the command-line utility TlbImp.exe (Type Library Importer), which produces a DLL
containing a wrapper assembly. In the Immediate Solutions I’ll show you how to use both
methods of creating RCWs.

Using ActiveX Controls in .NET Code

ActiveX controls are widely used in VB, Visual C++, and other Windows programming
languages. Although the job an ActiveX control does may be simple, the underlying COM
structure is more complex for ActiveX controls than for almost any other COM object. There
are a number of interfaces that need to be implemented by the control and several others
that have to be implemented by the control container.

In order to use an ActiveX control from .NET, it is just as necessary to provide an RCW as
for any other COM object. However, because ActiveX controls are so complicated, a
predefined class called System.Windows.Forms.AxHost is provided to simplify the
process of writing the RCW for ActiveX controls. This class also handles the interaction of
the control with the development environment, such as displaying the control in the toolbox.

When you want to host an ActiveX control in a .NET project, you need to derive a new class
from AxHost for each control that you want to host. The derived class will expose all the
methods and properties of the underlying COM object and handle all the COM work
necessary to create and communicate with the object.

If you are using Visual Studio .NET, you can simply add a reference to the ActiveX control to
your project, and this will create the RCW classes automatically. If you are working from the
command line, the .NET Framework SDK contains a command-line tool, Aximp.exe, which
produces the wrapper classes for an ActiveX control.

Using .NET Objects as COM Objects

As well as using COM objects in .NET projects, it is also possible to use .NET objects as
COM objects. This scenario will be much less common, but you might have a situation
where you need to add .NET code into an existing COM project.

The same model is used: A wrapper sits between the .NET object and COM, providing all
the COM-specific behavior that .NET objects don’t support. In this case, you use a COM-
callable wrapper (CCW).

You need to follow some rules if you want to use a .NET class from COM. The rules are
summarized here, and are discussed in more detail immediately following:
§ The class must contain a default constructor—one that takes no arguments.
§ The assembly in which the class lives must be signed with a strong name.
§ The assembly must live somewhere where it can be easily found by the Common

Language Runtime (CLR).

COM doesn’t pass over any initialization information when it creates objects, so any class
you want to use as a COM object must support a default constructor.

A strong name is a way of uniquely identifying assemblies. Normally, an assembly can be
identified by its text name, version number, and optional culture information, but there’s
nothing to stop two developers from creating assemblies with the same name. If you want to
avoid the possibility of clashes, you can generate a strong name for an assembly that
consists of the text name, version number, and culture information along with a public key
and digital signature. Because the last two items are generated using the contents of the
assembly, they will be unique, and assemblies with the same strong name are expected to
be identical in all respects. COM requires components to be uniquely identified, and a strong
name is the way you do this in .NET.

Assemblies that are referenced in .NET code typically live in one of two places: in a
subdirectory somewhere under the client executable directory or in the Global Assembly
Cache (GAC). Private assemblies—ones that are only going to be used by a single client—
can be placed in any directory under the one that contains the client executable, and .NET

will search this directory tree at runtime. .NET also provides the GAC to hold shared
assemblies, which can be accessed from any client, and tools are provided to place
assemblies into the GAC. A .NET assembly that contains a component that will be used from
COM must live in one of these two locations, because the CLR will look for it at runtime in
order to instantiate the object.

The other requirement that must be satisfied before you can use a .NET object from COM is
that the correct Registry entries must be created. COM uses the system Registry to locate
COM objects, so appropriate entries must be made for the .NET object, including generating
a class ID.

Working with the Win32 API

It may sometimes be necessary to call a function that exists in a DLL outside of .NET. This
may be a Win32 API function that doesn’t have a .NET equivalent, or it may be a third-party
DLL that hasn’t been—or maybe can’t be—updated to use .NET. Whatever the reason, the
.NET Framework provides the P/Invoke mechanism to let you call functions in DLLs from
within .NET code.

When P/Invoke calls an unmanaged function in a DLL, it performs the following steps:
1. It locates the DLL containing the function.
2. It loads the DLL into memory.
3. It finds the address of the function to be called and pushes any arguments onto the

stack.
4. It calls the function.

In order to call a function in a DLL, you first have to know the name of the function or its
ordinal number and the name of the DLL that contains it.

Note

Although functions are most often called by name, it is possible to assign a
unique integer to a function within a DLL and to call the function by an
ordinal number rather than by name.

Win32 API functions are held in three system DLLs; you’ll need to find out which of the three
hosts the function you want to call. GDI32.dll contains graphics functionality, including
drawing, printing, and font management. Kernel32.dll contains lower-level operating system
functions for tasks such as memory management and resource handling. User32.dll contains
the window-management functionality, including message handling, timers, menus, and
communications.

To use a function in a DLL, you need to create a prototype in the code that tells the compiler
the name of the function, its arguments, and which DLL hosts it. How this prototype is
constructed will be language dependent. The following example shows how to declare the
prototype for calling the Win32 MessageBox function in VB, C#, and C++:

' The VB Prototype
Declare Auto Function MessageBox Lib "user32.dll" (hwnd As Integer,
_
 text As String, caption As String, type As Integer) As Integer

// The C# Prototype

[DllImport("user32.dll", CharSet=CharSet.Auto)]
public static extern int MessageBox(int hwnd, String text,

 String caption, uint type);

// The C++ Prototype
[DllImport("user32.dll", CharSet=CharSet::Auto)]

extern "C" int MessageBox(HWND hwnd, String* text,
 String* caption, unsigned int type);

The Declare statement has been used in VB for some time to declare references to external
DLLs, and .NET augments it with some extra keywords. C# and C++ declare the function as
external and use the DllImport attribute to specify the DLL and any other parameters that
may be needed.

Visual Basic programmers can also use attribute notation to declare DLL imports instead of
using the Declare statement, as shown in the following declaration:

' The VB Prototype using attributes

<DllImport ("user32.dll")>
Public Shared Auto Function MessageBox Lib (hwnd As Integer, _

 text As String, caption As String, type As Integer) As Integer

You need to use this form in VB if you want to specify some of the more obscure options that
are available when declaring prototypes.

Choosing Character Sets

The Auto, CharSet.Auto, and CharSet::Auto keywords are used to specify automatic
character-set selection. The Win32 API has two versions for any function that takes
character or string arguments: A version with an “A” suffix is used with 8-bit ANSI characters,
whereas the version with a “W” suffix uses 16-bit Unicode characters. Using Auto ensures
that the correct version will be chosen without having to explicitly provide prototypes for the
MessageBoxA and MessageBoxW functions.

Renaming DLL Functions

You may want to call a DLL function by a different name in your code for several reasons:
§ You may have a naming convention that you want to follow in your .NET code.
§ You may want to create multiple versions of the same DLL function for functions that

can take different data types.
§ You may want to simplify using ANSI and Unicode versions of Win32 functions.

In VB, you use the Alias keyword in the Declare statement to define an alias for a function
name:

' Call the function RealName using MyName as an alias

Declare Auto Function MyName Lib "user32.dll" _
 Alias RealName () As Integer

C# and C++ both specify the alias in the DllImport attribute, using the EntryPoint keyword:

// C# example
[DllImport("user32.dll", EntryPoint="RealName")]

public static extern int MyName();

Using a COM Object in a .NET Project

This solution shows you how to use a COM object from a .NET program, using .NET’s COM
Interop facility.

For this solution, I’ve created a very simple COM object called “Simple” using C++ and the
ATL library. This object exposes two methods called square() and cube(), and it’s not hard
to guess what these two methods do: Given a number, they return the square and the cube
of that number.

If you want to try this solution using the Simple COM object, you’ll have to copy the project
files from the CD and build the project in Visual Studio .NET. Simply open the project and
build it; this is all that is necessary to install and register the COM object. If you want to use
another COM object instead of Simple, you should be able to get the same results without
any trouble.

1. Start by creating a console application called VBUseCom. I’m using a console
application because the COM object I’m going to use isn’t a graphical object.

2. Right-click on the project name in the Solution Explorer, and select Add Reference
from the context menu, as shown in Figure 16.1.

Figure 16.1: Adding a reference to a project.

3. This will display the Add Reference dialog, as shown in Figure 16.2. Select the COM
tab, and scroll down the list of component names until you find the entry for the
Simple 1.0 Type Library. Click Select to add it to the list of selected components, and
then click OK to close the dialog.

Figure 16.2: The Add Reference dialog.

Once the wrapper has been created, you’ll find that a new reference called Simple has been
added to the project. Figure 16.3 shows the new reference in the Object Browser. You can
see how the wrapper class exposes the square() and cube() methods as standard VB .NET
methods.

Figure 16.3: The Object Browser displaying one of the methods for the COM wrapper
of the Simple COM object.

Note how the actual name of the object is CSimplest because that’s the name of the class
in the ATL project. This isn’t very useful to client programmers, but because you don’t use
COM GUIDs in .NET, the tools use the type library and co-class names when generating
wrapper classes. If you have access to the original COM IDL files, you can rename the co-
class or use a user-defined IDL attribute to change the name given to the wrapper class.

Note

See the documentation on the TblImp.exe utility for details of how to use
user-defined IDL attributes.

Once you have the wrapper class in place, you can use the COM object just as you would if
it was a native .NET class, as in the following example:

' Import the namespace to make naming easier

Imports Simple

Module Module1

 Sub Main()
 ' Create the object

 Dim obj1 As New CSimplest()

 ' Call a method
 Dim res As Integer = obj1.Square(3)

 Console.WriteLine("Result is {0}", res)
 End Sub

End Module

As you can see from the code, there’s nothing to tell you that you’re not using a native .NET
object.

Using Late Binding with COM Objects

.NET also allows you to use late binding with COM objects, using IDispatch to dynamically
invoke methods chosen at runtime.

Note

This solution is included for existing COM programmers. If you are not
familiar with IDispatch, Automation, and late binding, you probably won’t
want to complete this solution.

When you add a reference to a COM object to a .NET project, the IDE reads the type library
and uses it to create an RCW class that lets you use the COM object as if it were a .NET
object.

If you want to use a COM object that implements IDispatch and you need to invoke methods
and use properties dynamically at runtime, the procedure is more complex and makes use of
the System.Type and System.Activator classes.

The following example shows how to dynamically invoke a method on an object. I’m using
the same simple COM object as in the previous solution, which was created with a dual
interface, so that it can be used early or late bound:

Module Module1

 Sub Main()
 ' Get a Type object representing the COM object

 Dim aType As Type = Type.GetTypeFromProgID("Simple.Simplest")
 If aType Is Nothing Then

 Console.WriteLine("GetTypeFromProgID failed")
 Return

 End If

 ' Use an Activator to create an object
 Dim obj As Object = Activator.CreateInstance(aType)

 ' Make up the parameter list

 Dim params() As Object = {2}

 ' Call the method
 Dim o As Object

 Try

 o = aType.InvokeMember("square", _
 Reflection.BindingFlags.InvokeMethod, _

 Nothing, obj, params)
 Catch e As Exception

 Console.WriteLine("Exception from InvokeMember: " + e.ToString())
 End Try

 ' Convert and print the result

 Dim res As Long = Convert.ToInt32(o)

 Console.WriteLine("Result is {0}", res)
 End Sub

End Module

COM objects can be identified in two ways: Every COM object type has an associated class
ID (CLSID)—a 128-bit GUID that uniquely identifies the type, but isn’t very readable. The
second, optional identifier is the programmatic ID (ProgID), which provides a more readable
name for the COM object.

In .NET, objects of the System.Type class are used to represent the types, and Type has
many methods that let you find out about a type and manipulate it. In this example, I’m
creating a Type object to represent the COM object by using the GetTypeFromProgID()
shared method. This method uses the COM ProgID to create a type, and there is a
corresponding GetTypeFromCLSID() method that creates a Type object from a COM
CLSID. In both cases, the method looks up the details of the COM object in the Registry; if
this lookup fails, the call returns a null reference, so it is good idea to check the return value.

The System.Activator class can be used to create local or remote instances of types using
its CreateInstance() method. Once the object has been created, I can use the Type object’s
InvokeMember() method to execute a method. You can see that InvokeMember() has a
number of parameters:
§ The name of the function to be executed or the property to get or set.
§ A member of the BindingFlags enumeration that determines what is going to be done

by this call. In this example, a method is going to be invoked.
§ A reference to a Binder object, which isn’t being used in this example.
§ A reference to the object on which the method is going to be invoked.
§ An array of Object references containing any parameters needed by the call.

The parameters are provided as an array of objects, although in this case, there is just one
integer to be passed to the square() method.

There are many exceptions that can be thrown by InvokeMember()—the documentation
lists seven—so it is a good idea to use a Try block in case any of them get thrown.

The final stage is to convert and print out the result. InvokeMember() is a general function,
so it returns an object reference, which you need to convert into the appropriate type. I’ve
used the System.Convert class to convert the object to the Int32 I expect from square(),
and then print it out.

Note

If you’ve ever done any COM programming and have tried using the
Invoke() method on the IDispatch interface, the way it is done in .NET will
probably look very familiar!

Using COM Objects from Managed C++

Programmers using Managed C++ have to take a slightly different route in order to use COM
objects in .NET projects.

The .NET Framework SDK contains a tool called TlbImp.exe, which reads a COM type
library and creates an RCW for use in Managed C++ code. This solution shows you how to
use TlbImp.exe to create a wrapper, and then how to use the wrapper class in a .NET
project.

Start by finding the COM object you want to use. You need the type library, which may be
part of the object itself or may be in a separate file with a .tlb extension. TlbImp.exe is a
console application. The easiest way to run it is to open a Visual Studio .NET command
prompt window by selecting Start|Programs|Microsoft Visual Studio .NET 7.0|Visual Studio
.NET Tools|Visual Studio .NET Command Prompt. This creates a console with the path set
up to include all the Visual Studio and .NET Framework SDK directories, so that you can run
tools directly from the command line. Figure 16.4 shows TlbImp being run on Simple.dll,
which contains a single COM object. The output is directed to SimpleObject.dll, which results
in the creation of an assembly called SimpleObject.

Figure 16.4: Using TlbImp.exe to create an RCW for a COM object.

Once you’ve created the wrapper, you can use it in code. Here’s a simple program that uses
the COM object in Managed C++ code:

#include "stdafx.h"

#using <mscorlib.dll>

#include <tchar.h>
// Import the Simple RCW

#using "SimpleObject.dll"

using namespace System;
using namespace SimpleObject;

// This is the entry point for this application

#ifdef _UNICODE
int wmain(void)

#else
int _tmain(void)

#endif
{

 CSimplest* ps = new CSimplest();
 long l = ps->square(3);

 Console::WriteLine("Square of 3 is {0}", __box(l));

 return 0;
}

The lines I’ve added to a standard Managed C++ application project are highlighted. The
#using directive loads the DLL at runtime and reads the metadata for the type. So that I
don’t have to qualify every name with “SimpleObject,” I use a using directive to import all the
names in the namespace. Note how you can choose the name for the assembly when you
run TlbImp.exe.

Once that’s been done, I can use the type as if it was a normal .NET object, using new to
create an object, and then calling methods on it. It is not obvious at all that I’m using a COM
object and not a native .NET object.

Using an ActiveX Control in a .NET Project

It is very likely that in the early days of .NET, developers are going to need to use existing
ActiveX controls in .NET projects. In this solution, I’ll show you how it can be done.

The problem is that .NET knows nothing about ActiveX controls, only about .NET controls,
so you need to generate a .NET wrapper class for the ActiveX control:

1. Create a new Visual Basic Windows Forms application. Once the application has been
created and the form has appeared on the screen, bring up the toolbox, and right-
click anywhere on it. Select Customize Toolbox from the context menu, as shown in
Figure 16.5.

Figure 16.5: The Customize Toolbox context menu item.

2. This displays the Customize Toolbox dialog, which is shown in Figure 16.6.

Figure 16.6: The Customize Toolbox dialog for customizing the Visual Studio
.NET toolbox.

3. As you can see, the Customize Toolbox dialog lets you add both .NET and COM
components to the toolbox; make sure the COM tab is selected for this exercise. I’ve
chosen to add the Calendar control that comes with Microsoft Office—you can select
this control or use any other that you choose from the list. Click the checkbox to the
left of the control name in order to select it, and then click OK.

4. Scroll down to the end of the list of components in the toolbox, and you’ll find that a
new entry has been added, which represents the ActiveX control, as shown in Figure
16.7.

Figure 16.7: An ActiveX control added to the toolbox.

If you look at the project references in the Solution Explorer, you’ll find that several new
references have been added to the project. In the case of the Calendar control, I get three
new references: AxMSACAL, MSACAL, and stdole. The first two references are to the
wrapper class that’s been generated to let you talk to the ActiveX control. If you right-click
the one whose name starts with “Ax” and choose Properties from the context menu, you’ll
see the properties for the reference displayed in the property browser. They’ll look similar to
the properties shown in Figure 16.8. Of special interest is the path, which points to
AxInterop.MSACAL_7_0.dll. This is the .NET wrapper that’s been created to work with the
Calendar control.

Figure 16.8: The properties for an ActiveX control wrapper reference.

If you display the Object Browser—shown in Figure 16.9—by pressing Ctrl+Alt+J or
selecting View|Other Windows|Object Browser, you can see just how complex the underlying
ActiveX control is. You can also see in the right-hand pane how the wrapper exposes all the
methods and properties of the original control. Just like the original Visual Basic Object
Browser, you can click on any method or property and its details will be shown in the bottom
pane.

Figure 16.9: The Object Browser showing an ActiveX control wrapper.

You can then select the control and drop it onto a .NET form exactly as you would a native
.NET control. It will appear on the form, as shown in Figure 16.10, and you can manipulate
its properties and use it in code just as you would any other .NET component.

Figure 16.10: An ActiveX control on a Windows Form.

Calling an Unmanaged Function in a DLL Using Platform Invoke

The following example shows how to call an unmanaged function in a DLL from within .NET
code. I’ll use the MessageBox() function from the Win32 API, as it provides a simple
example, and it is easy to check that the call has worked correctly.

A Visual Basic Example

Here’s an example using Visual Basic:
1. Start by creating a simple Visual Basic Windows Forms project. On the form, place a

textbox and a button, as shown in Figure 16.11.

Figure 16.11: A simple form for displaying a Windows MessageBox.

2. When the button is clicked, a Win32 MessageBox is displayed, which contains the
string entered into the textbox. Add an Imports statement to the top of the project
code:

3. Imports System.Runtime.InteropServices
4.

5. This namespace contains the classes that perform the interoperation. Next, add a
Declare statement to the top of the class to define the prototype for the MessageBox
function and to specify which DLL it lives in:

6. Public Class Form1
7. Inherits System.Windows.Forms.Form

8.
9. Declare Auto Function MessageBox Lib "user32.dll" _

10. (ByVal hwnd As Integer, ByVal text As String, _
11. ByVal caption As String, ByVal type As Integer)

_
12. As Integer

Declare may be familiar to you if you’ve used previous versions of Visual Basic. You
use it to declare the prototype for a function that you want to use in a DLL. It tells the
compiler the name of the function, the name of the DLL that has to be loaded, and the
arguments and return type of the function.

The Auto keyword tells the compiler to automatically choose the correct version of
the MessageBox function because there are two: MessageBoxA(), which uses 8-bit
ANSI characters, and MessageBoxW(), which uses 16-bit Unicode characters. This
is usually the option you want, but if you need to specially call one or the other, you
can use the Ansi or Unicode keywords instead.

13. Add a handler for the button, and use it to call the function in exactly the same way as
you would any other .NET function:

14. Private Sub Button1_Click(ByVal sender As
System.Object, _

15. ByVal e As System.EventArgs) Handles Button1.Click
16. ' When the button is clicked, show a message box

17. Dim s As String = TextBox1.Text
18. MessageBox(0, s, "MessageBox Example", 0)

19. End Sub

The Win32 API function takes four arguments. The first is the handle of the window that is
the parent of the MessageBox; by making it zero, I’m specifying that the desktop is the
parent. You probably wouldn’t do this in real code, but then in real code you’d be using the
.NET MessageBox class instead of calling the API function.

The second and third arguments are the text to be displayed in the MessageBox and its
caption. The fourth parameter determines the type of the MessageBox. It is an integer value
that determines the combination of buttons and icons that will be displayed, and a value of
zero gives you the simplest possible version with a single OK button and no icon.

A C# Example

The way that you declare a reference to an external DLL function is very different in C# and
C++ than how you do it in VB, so I’ll provide a C# example to round out the examples:

1. Create a C# Windows application, and place a textbox and a button on the form, as
shown in Figure 16.11. Add a reference to System.Runtime.InteropServices to the
list at the start of the code, as this defines the DllImport attribute that you’ll be using
later:

2. using System.Runtime.InteropServices;
3. Next, add the prototype for the MessageBox function to the class:

// The C# Prototype

[DllImport("user32.dll", CharSet=CharSet.Auto)]
public static extern int MessageBox(int hwnd, String text,

 String caption, uint type);

Note the attributes in square brackets. DllImport tells the compiler that this is the declaration
of a function that’s been imported from a DLL, and the first argument tells it the DLL that has
to be loaded at runtime. The second argument specifies automatic character-set selection,
so that the Unicode version of MessageBox() will be called automatically.

